1
|
Birkedal R, Branovets J, Vendelin M. Compartmentalization in cardiomyocytes modulates creatine kinase and adenylate kinase activities. FEBS Lett 2024; 598:2623-2640. [PMID: 39112921 DOI: 10.1002/1873-3468.14994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/03/2024] [Accepted: 07/21/2024] [Indexed: 11/12/2024]
Abstract
Intracellular molecules are transported by motor proteins or move by diffusion resulting from random molecular motion. Cardiomyocytes are packed with structures that are crucial for function, but also confine the diffusional spaces, providing cells with a means to control diffusion. They form compartments in which local concentrations are different from the overall, average concentrations. For example, calcium and cyclic AMP are highly compartmentalized, allowing these versatile second messengers to send different signals depending on their location. In energetic compartmentalization, the ratios of AMP and ADP to ATP are different from the average ratios. This is important for the performance of ATPases fuelling cardiac excitation-contraction coupling and mechanical work. A recent study suggested that compartmentalization modulates the activity of creatine kinase and adenylate kinase in situ. This could have implications for energetic signaling through, for example, AMP-activated kinase. It highlights the importance of taking compartmentalization into account in our interpretation of cellular physiology and developing methods to assess local concentrations of AMP and ADP to enhance our understanding of compartmentalization in different cell types.
Collapse
Affiliation(s)
- Rikke Birkedal
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Estonia
| | - Jelena Branovets
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Estonia
| | - Marko Vendelin
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Estonia
| |
Collapse
|
2
|
Mancini AE, Rizzo MA. A Novel Single-Color FRET Sensor for Rho-Kinase Reveals Calcium-Dependent Activation of RhoA and ROCK. SENSORS (BASEL, SWITZERLAND) 2024; 24:6869. [PMID: 39517770 PMCID: PMC11548655 DOI: 10.3390/s24216869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Ras homolog family member A (RhoA) acts as a signaling hub in many cellular processes, including cytoskeletal dynamics, division, migration, and adhesion. RhoA activity is tightly spatiotemporally controlled, but whether downstream effectors share these activation dynamics is unknown. We developed a novel single-color FRET biosensor to measure Rho-associated kinase (ROCK) activity with high spatiotemporal resolution in live cells. We report the validation of the Rho-Kinase Activity Reporter (RhoKAR) biosensor. RhoKAR activation was specific to ROCK activity and was insensitive to PKA activity. We then assessed the mechanisms of ROCK activation in mouse fibroblasts. Increasing intracellular calcium with ionomycin increased RhoKAR activity and depleting intracellular calcium with EGTA decreased RhoKAR activity. We also investigated the signaling intermediates in this process. Blocking calmodulin or CaMKII prevented calcium-dependent activation of ROCK. These results indicate that ROCK activity is increased by calcium in fibroblasts and that this activation occurs downstream of CaM/CaMKII.
Collapse
Affiliation(s)
| | - Megan A. Rizzo
- Department of Pharmacology, Physiology, and Drug Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| |
Collapse
|
3
|
Qiao L, Getz M, Gross B, Tenner B, Zhang J, Rangamani P. Spatiotemporal orchestration of calcium-cAMP oscillations on AKAP/AC nanodomains is governed by an incoherent feedforward loop. PLoS Comput Biol 2024; 20:e1012564. [PMID: 39480900 PMCID: PMC11556706 DOI: 10.1371/journal.pcbi.1012564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 11/12/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
The nanoscale organization of enzymes associated with the dynamics of second messengers is critical for ensuring compartmentation and localization of signaling molecules in cells. Specifically, the spatiotemporal orchestration of cAMP and Ca2+ oscillations is critical for many cellular functions. Previous experimental studies have shown that the formation of nanodomains of A-kinase anchoring protein 79/150 (AKAP150) and adenylyl cyclase 8 (AC8) on the surface of pancreatic MIN6 β cells modulates the phase of Ca2+-cAMP oscillations from out-of-phase to in-phase. In this work, we develop computational models of the Ca2+/cAMP pathway and AKAP/AC nanodomain formation that give rise to the two important predictions: instead of an arbitrary phase difference, the out-of-phase Ca2+/cAMP oscillation reaches Ca2+ trough and cAMP peak simultaneously, which is defined as inversely out-of-phase; the in-phase and inversely out-of-phase oscillations associated with Ca2+-cAMP dynamics on and away from the nanodomains can be explained by an incoherent feedforward loop. Factors such as cellular surface-to-volume ratio, compartment size, and distance between nanodomains do not affect the existence of in-phase or inversely out-of-phase Ca2+/cAMP oscillation, but cellular surface-to-volume ratio and compartment size can affect the time delay for the inversely out-of-phase Ca2+/cAMP oscillation while the distance between two nanodomains does not. Finally, we predict that both the Turing pattern-generated nanodomains and experimentally measured nanodomains demonstrate the existence of in-phase and inversely out-of-phase Ca2+/cAMP oscillation when the AC8 is at a low level, consistent with the behavior of an incoherent feedforward loop. These findings unveil the key circuit motif that governs cAMP and Ca2+ oscillations and advance our understanding of how nanodomains can lead to spatial compartmentation of second messengers.
Collapse
Affiliation(s)
- Lingxia Qiao
- Department of Pharmacology, University of California San Diego, San Diego, California, United States of America
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, California, United States of America
| | - Michael Getz
- Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, Indiana, United States of America
| | - Ben Gross
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, California, United States of America
| | - Brian Tenner
- SomaLogic, San Diego, California, United States of America
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, San Diego, California, United States of America
- Department of Bioengineering, University of California San Diego, San Diego, California, United States of America
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, California, United States of America
| | - Padmini Rangamani
- Department of Pharmacology, University of California San Diego, San Diego, California, United States of America
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, California, United States of America
| |
Collapse
|
4
|
Magnuson MA, Osipovich AB. Ca 2+ signaling and metabolic stress-induced pancreatic β-cell failure. Front Endocrinol (Lausanne) 2024; 15:1412411. [PMID: 39015185 PMCID: PMC11250477 DOI: 10.3389/fendo.2024.1412411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
Early in the development of Type 2 diabetes (T2D), metabolic stress brought on by insulin resistance and nutrient overload causes β-cell hyperstimulation. Herein we summarize recent studies that have explored the premise that an increase in the intracellular Ca2+ concentration ([Ca2+]i), brought on by persistent metabolic stimulation of β-cells, causes β-cell dysfunction and failure by adversely affecting β-cell function, structure, and identity. This mini-review builds on several recent reviews that also describe how excess [Ca2+]i impairs β-cell function.
Collapse
Affiliation(s)
- Mark A. Magnuson
- Department of Molecular Physiology and Biophysics and Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States
| | | |
Collapse
|
5
|
Dai N, Groenendyk J, Michalak M. Interplay between myotubularins and Ca 2+ homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119739. [PMID: 38710289 DOI: 10.1016/j.bbamcr.2024.119739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/08/2024]
Abstract
The myotubularin family, encompassing myotubularin 1 (MTM1) and 14 myotubularin-related proteins (MTMRs), represents a conserved group of phosphatases featuring a protein tyrosine phosphatase domain. Nine members are characterized by an active phosphatase domain C(X)5R, dephosphorylating the D3 position of PtdIns(3)P and PtdIns(3,5)P2. Mutations in myotubularin genes result in human myopathies, and several neuropathies including X-linked myotubular myopathy and Charcot-Marie-Tooth type 4B. MTM1, MTMR6 and MTMR14 also contribute to Ca2+ signaling and Ca2+ homeostasis that play a key role in many MTM-dependent myopathies and neuropathies. Here we explore the evolving roles of MTM1/MTMRs, unveiling their influence on critical aspects of Ca2+ signaling pathways.
Collapse
Affiliation(s)
- Ning Dai
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Jody Groenendyk
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| |
Collapse
|
6
|
Crapart CC, Scott ZC, Konno T, Sharma A, Parutto P, Bailey DMD, Westrate LM, Avezov E, Koslover EF. Luminal transport through intact endoplasmic reticulum limits the magnitude of localized Ca 2+ signals. Proc Natl Acad Sci U S A 2024; 121:e2312172121. [PMID: 38502705 PMCID: PMC10990089 DOI: 10.1073/pnas.2312172121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 02/09/2024] [Indexed: 03/21/2024] Open
Abstract
The endoplasmic reticulum (ER) forms an interconnected network of tubules stretching throughout the cell. Understanding how ER functionality relies on its structural organization is crucial for elucidating cellular vulnerability to ER perturbations, which have been implicated in several neuronal pathologies. One of the key functions of the ER is enabling Ca[Formula: see text] signaling by storing large quantities of this ion and releasing it into the cytoplasm in a spatiotemporally controlled manner. Through a combination of physical modeling and live-cell imaging, we demonstrate that alterations in ER shape significantly impact its ability to support efficient local Ca[Formula: see text] releases, due to hindered transport of luminal content within the ER. Our model reveals that rapid Ca[Formula: see text] release necessitates mobile luminal buffer proteins with moderate binding strength, moving through a well-connected network of ER tubules. These findings provide insight into the functional advantages of normal ER architecture, emphasizing its importance as a kinetically efficient intracellular Ca[Formula: see text] delivery system.
Collapse
Affiliation(s)
- Cécile C. Crapart
- UK Dementia Research Institute at the University of Cambridge, CambridgeCB2 0AH, United Kingdom
- Department of Clinical Neurosciences, School of Clinical Medicine, The University of Cambridge, CambridgeCB2 0AH, United Kingdom
| | | | - Tasuku Konno
- UK Dementia Research Institute at the University of Cambridge, CambridgeCB2 0AH, United Kingdom
- Department of Clinical Neurosciences, School of Clinical Medicine, The University of Cambridge, CambridgeCB2 0AH, United Kingdom
| | - Aman Sharma
- Department of Physics, University of California, San Diego, La Jolla, CA92130
| | - Pierre Parutto
- UK Dementia Research Institute at the University of Cambridge, CambridgeCB2 0AH, United Kingdom
- Department of Clinical Neurosciences, School of Clinical Medicine, The University of Cambridge, CambridgeCB2 0AH, United Kingdom
| | - David M. D. Bailey
- UK Dementia Research Institute at the University of Cambridge, CambridgeCB2 0AH, United Kingdom
- Department of Clinical Neurosciences, School of Clinical Medicine, The University of Cambridge, CambridgeCB2 0AH, United Kingdom
| | - Laura M. Westrate
- Department of Chemistry and Biochemistry, Calvin University, Grand Rapids, MI49546
| | - Edward Avezov
- UK Dementia Research Institute at the University of Cambridge, CambridgeCB2 0AH, United Kingdom
- Department of Clinical Neurosciences, School of Clinical Medicine, The University of Cambridge, CambridgeCB2 0AH, United Kingdom
| | - Elena F. Koslover
- Department of Physics, University of California, San Diego, La Jolla, CA92130
| |
Collapse
|
7
|
Ho KYL, An K, Carr RL, Dvoskin AD, Ou AYJ, Vogl W, Tanentzapf G. Maintenance of hematopoietic stem cell niche homeostasis requires gap junction-mediated calcium signaling. Proc Natl Acad Sci U S A 2023; 120:e2303018120. [PMID: 37903259 PMCID: PMC10636368 DOI: 10.1073/pnas.2303018120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/11/2023] [Indexed: 11/01/2023] Open
Abstract
Regulation of stem cells requires coordination of the cells that make up the stem cell niche. Here, we describe a mechanism that allows communication between niche cells to coordinate their activity and shape the signaling environment surrounding resident stem cells. Using the Drosophila hematopoietic organ, the lymph gland, we show that cells of the hematopoietic niche, the posterior signaling center (PSC), communicate using gap junctions (GJs) and form a signaling network. This network allows PSC cells to exchange Ca2+ signals repetitively which regulate the hematopoietic niche. Disruption of Ca2+ signaling in the PSC or the GJ-mediated network connecting niche cells causes dysregulation of the PSC and blood progenitor differentiation. Analysis of PSC-derived cell signaling shows that the Hedgehog pathway acts downstream of GJ-mediated Ca2+ signaling to modulate the niche microenvironment. These data show that GJ-mediated communication between hematopoietic niche cells maintains their homeostasis and consequently controls blood progenitor behavior.
Collapse
Affiliation(s)
- Kevin Y. L. Ho
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BCV6T 1Z3, Canada
| | - Kevin An
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BCV6T 1Z3, Canada
| | - Rosalyn L. Carr
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BCV6T 1Z3, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BCV6T 1Z3, Canada
- British Columbia Children’s Hospital Research Institute, British Columbia Children’s Hospital, Vancouver, BCV5Z 4H4, Canada
| | - Alexandra D. Dvoskin
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BCV6T 1Z3, Canada
| | - Annie Y. J. Ou
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BCV6T 1Z3, Canada
- School of Kinesiology, University of British Columbia, Vancouver, BCV6T 1Z1, Canada
| | - Wayne Vogl
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BCV6T 1Z3, Canada
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BCV6T 1Z3, Canada
| |
Collapse
|
8
|
Saito S, Mori K. Detection and Quantification of Calcium Ions in the Endoplasmic Reticulum and Cytoplasm of Cultured Cells Using Fluorescent Reporter Proteins and ImageJ Software. Bio Protoc 2023; 13:e4738. [PMID: 37638301 PMCID: PMC10450730 DOI: 10.21769/bioprotoc.4738] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/09/2023] [Accepted: 05/14/2023] [Indexed: 08/29/2023] Open
Abstract
This protocol describes a method for detecting and quantifying calcium ions in the endoplasmic reticulum (ER) and cytoplasm of cultured cells using fluorescent reporter proteins and ImageJ software. Genetically engineered fluorescent reporter proteins, such as G-CEPIA1er and GCaMP6f, localize to intracellular regions of interest (i.e., ER and cytoplasm) and emit green fluorescence upon binding to calcium ions. In this way, the fluorescence brightness of cells transfected with expression vectors for these reporters reflects the calcium ion concentration in each intracellular region. Here, we describe procedures for observing cultured cells expressing these fluorescent reporters under a fluorescence microscope, analyzing the obtained image using the free image analysis software ImageJ (https://imagej.net/ij/index.html), and determining the average fluorescence brightness of multiple cells present in the image. The current method allows us to quickly and easily quantify calcium ions on an image containing multiple cells and to determine whether there are relative differences in intracellular calcium ion concentration among experiments with different conditions. Key features Detection and quantification of calcium ions in the ER and cytoplasm using fluorescent reporter proteins Quick and easy verification of measurement results using ImageJ Simultaneous comparison between various experimental conditions (drug treatment, mutants, etc.).
Collapse
Affiliation(s)
- Shunsuke Saito
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
9
|
Xue N, Sun M, Gai Z, Bai M, Sun J, Sai S, Zhang L. Genome-Wide Identification and Expression Analysis of Calmodulin (CaM) and Calmodulin-Like (CML) Genes in the Brown Algae Saccharina japonica. PLANTS (BASEL, SWITZERLAND) 2023; 12:1934. [PMID: 37653850 PMCID: PMC10222329 DOI: 10.3390/plants12101934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 09/02/2023]
Abstract
Calmodulins (CaMs) and Calmodulin-like proteins (CMLs) are vital in plant growth, development, and stress responses. However, CaMs and CMLs have not been fully identified and characterized in brown algae, which has been evolving independently of the well-studied green plant lineage. In this study, whole-genome searches revealed one SjCaM and eight SjCMLs in Saccharina japonica, and one EsCaM and eleven EsCMLs in Ectocarpus sp. SjCaM and EsCaM encoded identical protein products and shared 88.59-89.93% amino acid identities with Arabidopsis thaliana AtCaMs, thereby indicating that brown algae CaMs retained a similar Ca2+ sensors function as in plants. The phylogenetic and gene structure analysis results showed that there was significant divergence in the gene sequences among brown algae CMLs. Furthermore, evolutionary analysis indicated that the function of brown alga CMLs was relatively conserved, which may be related to the fact that brown algae do not need to face complex environments like terrestrial plants. Regulatory elements prediction and the expression analysis revealed the probable functioning of SjCaM/CML genes in gametophyte development and the stress response in S. japonica. In addition, the SjCaM/SjCMLs interacting proteins and chemicals were preliminarily predicted, suggesting that SjCaM/SjCMLs might play putative roles in Ca2+/CaM-mediated growth and development processes and stimulus responses. Therefore, these results will facilitate our understanding of the evolution of brown algae CaMs/CMLs and the functional identification of SjCaM/SjCMLs.
Collapse
Affiliation(s)
- Nianchao Xue
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Minghui Sun
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Zihan Gai
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Meihan Bai
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Juan Sun
- National Engineering Science Research & Development Center of Algae and Sea Cucumbers of China, Shandong Technology Innovation Center of Algae and Sea Cucumber, Provincial Key Laboratory of Genetic Improvement & Efficient Culture of Marine Algae of Shandong, Shandong Oriental Ocean Sci-Tech Co., Ltd., Yantai 264003, China
| | - Shan Sai
- National Engineering Science Research & Development Center of Algae and Sea Cucumbers of China, Shandong Technology Innovation Center of Algae and Sea Cucumber, Provincial Key Laboratory of Genetic Improvement & Efficient Culture of Marine Algae of Shandong, Shandong Oriental Ocean Sci-Tech Co., Ltd., Yantai 264003, China
| | - Linan Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
10
|
Tassone A, Meringolo M, Ponterio G, Bonsi P, Schirinzi T, Martella G. Mitochondrial Bioenergy in Neurodegenerative Disease: Huntington and Parkinson. Int J Mol Sci 2023; 24:ijms24087221. [PMID: 37108382 PMCID: PMC10138549 DOI: 10.3390/ijms24087221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Strong evidence suggests a correlation between degeneration and mitochondrial deficiency. Typical cases of degeneration can be observed in physiological phenomena (i.e., ageing) as well as in neurological neurodegenerative diseases and cancer. All these pathologies have the dyshomeostasis of mitochondrial bioenergy as a common denominator. Neurodegenerative diseases show bioenergetic imbalances in their pathogenesis or progression. Huntington's chorea and Parkinson's disease are both neurodegenerative diseases, but while Huntington's disease is genetic and progressive with early manifestation and severe penetrance, Parkinson's disease is a pathology with multifactorial aspects. Indeed, there are different types of Parkinson/Parkinsonism. Many forms are early-onset diseases linked to gene mutations, while others could be idiopathic, appear in young adults, or be post-injury senescence conditions. Although Huntington's is defined as a hyperkinetic disorder, Parkinson's is a hypokinetic disorder. However, they both share a lot of similarities, such as neuronal excitability, the loss of striatal function, psychiatric comorbidity, etc. In this review, we will describe the start and development of both diseases in relation to mitochondrial dysfunction. These dysfunctions act on energy metabolism and reduce the vitality of neurons in many different brain areas.
Collapse
Affiliation(s)
- Annalisa Tassone
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Maria Meringolo
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
| | - Giulia Ponterio
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Tommaso Schirinzi
- Unit of Neurology, Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| |
Collapse
|
11
|
Regulation of cardiac function by cAMP nanodomains. Biosci Rep 2023; 43:232544. [PMID: 36749130 PMCID: PMC9970827 DOI: 10.1042/bsr20220953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/29/2023] [Accepted: 02/07/2023] [Indexed: 02/08/2023] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is a diffusible intracellular second messenger that plays a key role in the regulation of cardiac function. In response to the release of catecholamines from sympathetic terminals, cAMP modulates heart rate and the strength of contraction and ease of relaxation of each heartbeat. At the same time, cAMP is involved in the response to a multitude of other hormones and neurotransmitters. A sophisticated network of regulatory mechanisms controls the temporal and spatial propagation of cAMP, resulting in the generation of signaling nanodomains that enable the second messenger to match each extracellular stimulus with the appropriate cellular response. Multiple proteins contribute to this spatiotemporal regulation, including the cAMP-hydrolyzing phosphodiesterases (PDEs). By breaking down cAMP to a different extent at different locations, these enzymes generate subcellular cAMP gradients. As a result, only a subset of the downstream effectors is activated and a specific response is executed. Dysregulation of cAMP compartmentalization has been observed in cardiovascular diseases, highlighting the importance of appropriate control of local cAMP signaling. Current research is unveiling the molecular organization underpinning cAMP compartmentalization, providing original insight into the physiology of cardiac myocytes and the alteration associated with disease, with the potential to uncover novel therapeutic targets. Here, we present an overview of the mechanisms that are currently understood to be involved in generating cAMP nanodomains and we highlight the questions that remain to be answered.
Collapse
|
12
|
Adeoye T, Shah SI, Demuro A, Rabson DA, Ullah G. Upregulated Ca 2+ Release from the Endoplasmic Reticulum Leads to Impaired Presynaptic Function in Familial Alzheimer's Disease. Cells 2022; 11:2167. [PMID: 35883609 PMCID: PMC9315668 DOI: 10.3390/cells11142167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 12/10/2022] Open
Abstract
Neurotransmitter release from presynaptic terminals is primarily regulated by rapid Ca2+ influx through membrane-resident voltage-gated Ca2+ channels (VGCCs). Moreover, accumulating evidence indicates that the endoplasmic reticulum (ER) is extensively present in axonal terminals of neurons and plays a modulatory role in synaptic transmission by regulating Ca2+ levels. Familial Alzheimer's disease (FAD) is marked by enhanced Ca2+ release from the ER and downregulation of Ca2+ buffering proteins. However, the precise consequence of impaired Ca2+ signaling within the vicinity of VGCCs (active zone (AZ)) on exocytosis is poorly understood. Here, we perform in silico experiments of intracellular Ca2+ signaling and exocytosis in a detailed biophysical model of hippocampal synapses to investigate the effect of aberrant Ca2+ signaling on neurotransmitter release in FAD. Our model predicts that enhanced Ca2+ release from the ER increases the probability of neurotransmitter release in FAD. Moreover, over very short timescales (30-60 ms), the model exhibits activity-dependent and enhanced short-term plasticity in FAD, indicating neuronal hyperactivity-a hallmark of the disease. Similar to previous observations in AD animal models, our model reveals that during prolonged stimulation (~450 ms), pathological Ca2+ signaling increases depression and desynchronization with stimulus, causing affected synapses to operate unreliably. Overall, our work provides direct evidence in support of a crucial role played by altered Ca2+ homeostasis mediated by intracellular stores in FAD.
Collapse
Affiliation(s)
- Temitope Adeoye
- Department of Physics, University of South Florida, Tampa, FL 33620, USA; (T.A.); (S.I.S.); (D.A.R.)
| | - Syed I. Shah
- Department of Physics, University of South Florida, Tampa, FL 33620, USA; (T.A.); (S.I.S.); (D.A.R.)
| | - Angelo Demuro
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA;
| | - David A. Rabson
- Department of Physics, University of South Florida, Tampa, FL 33620, USA; (T.A.); (S.I.S.); (D.A.R.)
| | - Ghanim Ullah
- Department of Physics, University of South Florida, Tampa, FL 33620, USA; (T.A.); (S.I.S.); (D.A.R.)
| |
Collapse
|
13
|
TRPM3-mediated dynamic mitochondrial activity in NGF-induced latent sensitization of chronic low back pain. Pain 2022; 163:e1115-e1128. [PMID: 35384915 DOI: 10.1097/j.pain.0000000000002642] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/23/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT The transient receptor potential ion channel TRPM3 is highly prevalent on nociceptive dorsal root ganglion (DRG) neurons, but its functions in neuronal plasticity of chronic pain remain obscure. In an animal model of nonspecific low back pain (LBP), latent spinal sensitization known as nociceptive priming is induced by nerve growth factor (NGF) injection. Here we address the TRPM3-associated molecular basis of NGF-induced latent spinal sensitization at presynaptic level by studying TRPM3-mediated calcium transients in DRG neurons. By investigating TRPM3-expressing HEK cells, we further show the dynamic mitochondrial activity downstream of TRPM3 activation. NGF enhances TRPM3 function, attenuates TRPM3 tachyphylaxis, and slows intracellular calcium clearance; TRPM3 activation triggers more mitochondrial calcium loading than depolarization does, causing a steady-state mitochondrial calcium elevation and a delayed recovery of cytosolic calcium; mitochondrial calcium buffering accounts for approximately 40% of calcium influx subsequent to TRPM3 activation. TRPM3 activation provokes an outbreak of pulsatile superoxide production (mitoflash) that comes in the form of a surge in frequency being tunable. We suggest that mitoflash pulsations downstream of TRPM3 activation might be an early signaling event initiating pain sensitization. Tuning of mitoflash activity would be a novel bottom-up therapeutic strategy for chronic pain conditions such as LBP and beyond.
Collapse
|
14
|
Ho KYL, Khadilkar RJ, Carr RL, Tanentzapf G. A gap-junction-mediated, calcium-signaling network controls blood progenitor fate decisions in hematopoiesis. Curr Biol 2021; 31:4697-4712.e6. [PMID: 34480855 DOI: 10.1016/j.cub.2021.08.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 05/28/2021] [Accepted: 08/06/2021] [Indexed: 11/24/2022]
Abstract
Stem cell homeostasis requires coordinated fate decisions among stem cells that are often widely distributed within a tissue at varying distances from their stem cell niche. This requires a mechanism to ensure robust fate decisions within a population of stem cells. Here, we show that, in the Drosophila hematopoietic organ, the lymph gland (LG), gap junctions form a network that coordinates fate decisions between blood progenitors. Using live imaging of calcium signaling in intact LGs, we find that blood progenitors are connected through a signaling network. Blocking gap junction function disrupts this network, alters the pattern of encoded calcium signals, and leads to loss of progenitors and precocious blood cell differentiation. Ectopic and uniform activation of the calcium-signaling mediator CaMKII restores progenitor homeostasis when gap junctions are disrupted. Overall, these data show that gap junctions equilibrate cell signals between blood progenitors to coordinate fate decisions and maintain hematopoietic homeostasis.
Collapse
Affiliation(s)
- Kevin Y L Ho
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Rohan J Khadilkar
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Advanced Centre for Treatment, Research and Education in Cancer-Tata Memorial Centre (ACTREC-TMC), Kharghar, Navi Mumbai, Maharashtra 410210, India
| | - Rosalyn L Carr
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
15
|
Kosanke M, Davenport C, Szepes M, Wiehlmann L, Kohrn T, Dorda M, Gruber J, Menge K, Sievert M, Melchert A, Gruh I, Göhring G, Martin U. iPSC culture expansion selects against putatively actionable mutations in the mitochondrial genome. Stem Cell Reports 2021; 16:2488-2502. [PMID: 34560000 PMCID: PMC8514965 DOI: 10.1016/j.stemcr.2021.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 01/19/2023] Open
Abstract
Therapeutic application of induced pluripotent stem cell (iPSC) derivatives requires comprehensive assessment of the integrity of their nuclear and mitochondrial DNA (mtDNA) to exclude oncogenic potential and functional deficits. It is unknown, to which extent mtDNA variants originate from their parental cells or from de novo mutagenesis, and whether dynamics in heteroplasmy levels are caused by inter- and intracellular selection or genetic drift. Sequencing of mtDNA of 26 iPSC clones did not reveal evidence for de novo mutagenesis, or for any selection processes during reprogramming or differentiation. Culture expansion, however, selected against putatively actionable mtDNA mutations. Altogether, our findings point toward a scenario in which intracellular selection of mtDNA variants during culture expansion shapes the mutational landscape of the mitochondrial genome. Our results suggest that intercellular selection and genetic drift exert minor impact and that the bottleneck effect in context of the mtDNA genetic pool might have been overestimated. Expansion culture selects against putatively actionable mtDNA mutations in iPSCs Intracellular selection on mtDNA molecules shapes the mutational landscape Random genetic drift and intercellular selection exert minor impact Selection acts during culture expansion but not during reprogramming or differentiation
Collapse
Affiliation(s)
- Maike Kosanke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Colin Davenport
- Research Core Unit Genomics, Hannover Medical School, 30625 Hannover, Germany
| | - Monika Szepes
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Lutz Wiehlmann
- Research Core Unit Genomics, Hannover Medical School, 30625 Hannover, Germany
| | - Tim Kohrn
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Marie Dorda
- Research Core Unit Genomics, Hannover Medical School, 30625 Hannover, Germany
| | - Jonas Gruber
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Kaja Menge
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Maike Sievert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Anna Melchert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Ina Gruh
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Gudrun Göhring
- Institute of Human Genetics, Hannover Medical School, 30625 Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany.
| |
Collapse
|
16
|
Crosstalk among Calcium ATPases: PMCA, SERCA and SPCA in Mental Diseases. Int J Mol Sci 2021; 22:ijms22062785. [PMID: 33801794 PMCID: PMC8000800 DOI: 10.3390/ijms22062785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/20/2022] Open
Abstract
Calcium in mammalian neurons is essential for developmental processes, neurotransmitter release, apoptosis, and signal transduction. Incorrectly processed Ca2+ signal is well-known to trigger a cascade of events leading to altered response to variety of stimuli and persistent accumulation of pathological changes at the molecular level. To counterbalance potentially detrimental consequences of Ca2+, neurons are equipped with sophisticated mechanisms that function to keep its concentration in a tightly regulated range. Calcium pumps belonging to the P-type family of ATPases: plasma membrane Ca2+-ATPase (PMCA), sarco/endoplasmic Ca2+-ATPase (SERCA) and secretory pathway Ca2+-ATPase (SPCA) are considered efficient line of defense against abnormal Ca2+ rises. However, their role is not limited only to Ca2+ transport, as they present tissue-specific functionality and unique sensitive to the regulation by the main calcium signal decoding protein—calmodulin (CaM). Based on the available literature, in this review we analyze the contribution of these three types of Ca2+-ATPases to neuropathology, with a special emphasis on mental diseases.
Collapse
|
17
|
Gao P, Yan Z, Zhu Z. Mitochondria-Associated Endoplasmic Reticulum Membranes in Cardiovascular Diseases. Front Cell Dev Biol 2020; 8:604240. [PMID: 33240899 PMCID: PMC7680862 DOI: 10.3389/fcell.2020.604240] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
The endoplasmic reticulum (ER) and mitochondria are physically connected to form dedicated structural domains known as mitochondria-associated ER membranes (MAMs), which participate in fundamental biological processes, including lipid and calcium (Ca2+) homeostasis, mitochondrial dynamics and other related cellular behaviors such as autophagy, ER stress, inflammation and apoptosis. Many studies have proved the importance of MAMs in maintaining the normal function of both organelles, and the abnormal amount, structure or function of MAMs is related to the occurrence of cardiovascular diseases. Here, we review the knowledge regarding the components of MAMs according to their different functions and the specific roles of MAMs in cardiovascular physiology and pathophysiology, focusing on some highly prevalent cardiovascular diseases, including ischemia-reperfusion, diabetic cardiomyopathy, heart failure, pulmonary arterial hypertension and systemic vascular diseases. Finally, we summarize the possible mechanisms of MAM in cardiovascular diseases and put forward some obstacles in the understanding of MAM function we may encounter.
Collapse
Affiliation(s)
- Peng Gao
- Department of Hypertension and Endocrinology, Chongqing Institute of Hypertension, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhencheng Yan
- Department of Hypertension and Endocrinology, Chongqing Institute of Hypertension, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Chongqing Institute of Hypertension, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
18
|
Chu L, Yin H, Gao L, Gao L, Xia Y, Zhang C, Chen Y, Liu T, Huang J, Boheler KR, Zhou Y, Yang HT. Cardiac Na +-Ca 2+ exchanger 1 (ncx1h) is critical for the ventricular cardiomyocyte formation via regulating the expression levels of gata4 and hand2 in zebrafish. SCIENCE CHINA-LIFE SCIENCES 2020; 64:255-268. [PMID: 32648190 DOI: 10.1007/s11427-019-1706-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/22/2020] [Indexed: 10/23/2022]
Abstract
Ca2+ signaling is critical for heart development; however, the precise roles and regulatory pathways of Ca2+ transport proteins in cardiogenesis remain largely unknown. Sodium-calcium exchanger 1 (Ncx1) is responsible for Ca2+ efflux in cardiomyocytes. It is involved in cardiogenesis, while the mechanism is unclear. Here, using the forward genetic screening in zebrafish, we identified a novel mutation at a highly-conserved leucine residue in ncx1 gene (mutantLDD353/ncx1hL154P) that led to smaller hearts with reduced heart rate and weak contraction. Mechanistically, the number of ventricular but not atrial cardiomyocytes was reduced in ncx1hL154P zebrafish. These defects were mimicked by knockdown or knockout of ncx1h. Moreover, ncx1hL154P had cytosolic and mitochondrial Ca2+ overloading and Ca2+ transient suppression in cardiomyocytes. Furthermore, ncx1hL154P and ncx1h morphants downregulated cardiac transcription factors hand2 and gata4 in the cardiac regions, while overexpression of hand2 and gata4 partially rescued cardiac defects including the number of ventricular myocytes. These findings demonstrate an essential role of the novel 154th leucine residue in the maintenance of Ncx1 function in zebrafish, and reveal previous unrecognized critical roles of the 154th leucine residue and Ncx1 in the formation of ventricular cardiomyocytes by at least partially regulating the expression levels of gata4 and hand2.
Collapse
Affiliation(s)
- Liming Chu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology and Laboratory of Development and Diseases, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, China.,Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
| | - Huimin Yin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology and Laboratory of Development and Diseases, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, China.,Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
| | - Lei Gao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology and Laboratory of Development and Diseases, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, China.,Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
| | - Li Gao
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yu Xia
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology and Laboratory of Development and Diseases, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, China.,Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
| | - Chiyuan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology and Laboratory of Development and Diseases, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, China.,Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
| | - Yi Chen
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tingxi Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology and Laboratory of Development and Diseases, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, China.,Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
| | - Jijun Huang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology and Laboratory of Development and Diseases, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, China.,Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
| | - Kenneth R Boheler
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Yong Zhou
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology and Laboratory of Development and Diseases, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, China. .,Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China.
| | - Huang-Tian Yang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology and Laboratory of Development and Diseases, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, China. .,Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China.
| |
Collapse
|
19
|
Zhai X, Sterea AM, El Hiani Y. Lessons from the Endoplasmic Reticulum Ca 2+ Transporters-A Cancer Connection. Cells 2020; 9:E1536. [PMID: 32599788 PMCID: PMC7349521 DOI: 10.3390/cells9061536] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
Ca2+ is an integral mediator of intracellular signaling, impacting almost every aspect of cellular life. The Ca2+-conducting transporters located on the endoplasmic reticulum (ER) membrane shoulder the responsibility of constructing the global Ca2+ signaling landscape. These transporters gate the ER Ca2+ release and uptake, sculpt signaling duration and intensity, and compose the Ca2+ signaling rhythm to accommodate a plethora of biological activities. In this review, we explore the mechanisms of activation and functional regulation of ER Ca2+ transporters in the establishment of Ca2+ homeostasis. We also contextualize the aberrant alterations of these transporters in carcinogenesis, presenting Ca2+-based therapeutic interventions as a means to tackle malignancies.
Collapse
Affiliation(s)
- Xingjian Zhai
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| | | | - Yassine El Hiani
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| |
Collapse
|
20
|
Benkert J, Hess S, Roy S, Beccano-Kelly D, Wiederspohn N, Duda J, Simons C, Patil K, Gaifullina A, Mannal N, Dragicevic E, Spaich D, Müller S, Nemeth J, Hollmann H, Deuter N, Mousba Y, Kubisch C, Poetschke C, Striessnig J, Pongs O, Schneider T, Wade-Martins R, Patel S, Parlato R, Frank T, Kloppenburg P, Liss B. Cav2.3 channels contribute to dopaminergic neuron loss in a model of Parkinson's disease. Nat Commun 2019; 10:5094. [PMID: 31704946 PMCID: PMC6841684 DOI: 10.1038/s41467-019-12834-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 09/27/2019] [Indexed: 12/21/2022] Open
Abstract
Degeneration of dopaminergic neurons in the substantia nigra causes the motor symptoms of Parkinson's disease. The mechanisms underlying this age-dependent and region-selective neurodegeneration remain unclear. Here we identify Cav2.3 channels as regulators of nigral neuronal viability. Cav2.3 transcripts were more abundant than other voltage-gated Ca2+ channels in mouse nigral neurons and upregulated during aging. Plasmalemmal Cav2.3 protein was higher than in dopaminergic neurons of the ventral tegmental area, which do not degenerate in Parkinson's disease. Cav2.3 knockout reduced activity-associated nigral somatic Ca2+ signals and Ca2+-dependent after-hyperpolarizations, and afforded full protection from degeneration in vivo in a neurotoxin Parkinson's mouse model. Cav2.3 deficiency upregulated transcripts for NCS-1, a Ca2+-binding protein implicated in neuroprotection. Conversely, NCS-1 knockout exacerbated nigral neurodegeneration and downregulated Cav2.3. Moreover, NCS-1 levels were reduced in a human iPSC-model of familial Parkinson's. Thus, Cav2.3 and NCS-1 may constitute potential therapeutic targets for combatting Ca2+-dependent neurodegeneration in Parkinson's disease.
Collapse
Affiliation(s)
- Julia Benkert
- Institute of Applied Physiology, University of Ulm, Ulm, Germany
| | - Simon Hess
- Institute for Zoology, Biocenter, CECAD, University of Cologne, Cologne, Germany
| | - Shoumik Roy
- Institute of Applied Physiology, University of Ulm, Ulm, Germany
| | - Dayne Beccano-Kelly
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Johanna Duda
- Institute of Applied Physiology, University of Ulm, Ulm, Germany
| | - Carsten Simons
- Institute of Applied Physiology, University of Ulm, Ulm, Germany
| | - Komal Patil
- Institute of Applied Physiology, University of Ulm, Ulm, Germany
| | | | - Nadja Mannal
- Institute of Applied Physiology, University of Ulm, Ulm, Germany
| | - Elena Dragicevic
- Institute of Applied Physiology, University of Ulm, Ulm, Germany
| | - Desirée Spaich
- Institute of Applied Physiology, University of Ulm, Ulm, Germany
| | - Sonja Müller
- Institute of Applied Physiology, University of Ulm, Ulm, Germany
| | - Julia Nemeth
- Institute of Applied Physiology, University of Ulm, Ulm, Germany
| | - Helene Hollmann
- Institute of Applied Physiology, University of Ulm, Ulm, Germany
| | - Nora Deuter
- Institute of Applied Physiology, University of Ulm, Ulm, Germany
| | - Yassine Mousba
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Christian Kubisch
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Joerg Striessnig
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Olaf Pongs
- Institute of Physiology, CIPMM, University of the Saarland, Homburg, Germany
| | - Toni Schneider
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Richard Wade-Martins
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Sandip Patel
- Department of Cell and Developmental Biology, UCL, London, UK
| | - Rosanna Parlato
- Institute of Applied Physiology, University of Ulm, Ulm, Germany
| | - Tobias Frank
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Peter Kloppenburg
- Institute for Zoology, Biocenter, CECAD, University of Cologne, Cologne, Germany
| | - Birgit Liss
- Institute of Applied Physiology, University of Ulm, Ulm, Germany.
- New College, University of Oxford, Oxford, UK.
| |
Collapse
|
21
|
Anract J, Baures M, Barry Delongchamps N, Capiod T. Microcalcifications, calcium-sensing receptor, and cancer. Cell Calcium 2019; 82:102051. [PMID: 31276858 DOI: 10.1016/j.ceca.2019.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 12/20/2022]
Abstract
Calcium stones and calculi are observed in numerous human tissues. They are the result of deposition of calcium salts and are due to high local calcium concentrations. Prostatic calculi are usually classified as endogenous or extrinsic stones. Endogenous stones are commonly caused by obstruction of the prostatic ducts around an enlarged prostate resulting from benign prostatic hyperplasia or from chronic inflammation. The latter occurs mainly around the urethra and is generally caused by reflux of urine into the prostate. Calcium concentrations higher than in the plasma at sites of infection may induce the chemotactic response that eventually leads to recruitment of inflammatory cells. The calcium sensing receptor (CaSR) may be crucial for this recruitment as its expression and activity are increased by cytokines such as IL-6 and high extracellular calcium concentrations, respectively. The links between calcium calculi, inflammation, calcium supplementation, and CaSR functions in prostate cancer patients will be discussed in this review.
Collapse
Affiliation(s)
- Julien Anract
- INSERM Unit 1151, Institut Necker Enfants Malades (INEM), Université Paris Descartes, Paris 75014, France; Urology Department, Hôpital Cochin, Assistance Publique Hôpitaux de Paris, Paris 75014, France
| | - Manon Baures
- INSERM Unit 1151, Institut Necker Enfants Malades (INEM), Université Paris Descartes, Paris 75014, France
| | - Nicolas Barry Delongchamps
- INSERM Unit 1151, Institut Necker Enfants Malades (INEM), Université Paris Descartes, Paris 75014, France; Urology Department, Hôpital Cochin, Assistance Publique Hôpitaux de Paris, Paris 75014, France
| | - Thierry Capiod
- INSERM Unit 1151, Institut Necker Enfants Malades (INEM), Université Paris Descartes, Paris 75014, France.
| |
Collapse
|
22
|
Sabatini PV, Speckmann T, Lynn FC. Friend and foe: β-cell Ca 2+ signaling and the development of diabetes. Mol Metab 2019; 21:1-12. [PMID: 30630689 PMCID: PMC6407368 DOI: 10.1016/j.molmet.2018.12.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/03/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The divalent cation Calcium (Ca2+) regulates a wide range of processes in disparate cell types. Within insulin-producing β-cells, increases in cytosolic Ca2+ directly stimulate insulin vesicle exocytosis, but also initiate multiple signaling pathways. Mediated through activation of downstream kinases and transcription factors, Ca2+-regulated signaling pathways leverage substantial influence on a number of critical cellular processes within the β-cell. Additionally, there is evidence that prolonged activation of these same pathways is detrimental to β-cell health and may contribute to Type 2 Diabetes pathogenesis. SCOPE OF REVIEW This review aims to briefly highlight canonical Ca2+ signaling pathways in β-cells and how β-cells regulate the movement of Ca2+ across numerous organelles and microdomains. As a main focus, this review synthesizes experimental data from in vitro and in vivo models on both the beneficial and detrimental effects of Ca2+ signaling pathways for β-cell function and health. MAJOR CONCLUSIONS Acute increases in intracellular Ca2+ stimulate a number of signaling cascades, resulting in (de-)phosphorylation events and activation of downstream transcription factors. The short-term stimulation of these Ca2+ signaling pathways promotes numerous cellular processes critical to β-cell function, including increased viability, replication, and insulin production and secretion. Conversely, chronic stimulation of Ca2+ signaling pathways increases β-cell ER stress and results in the loss of β-cell differentiation status. Together, decades of study demonstrate that Ca2+ movement is tightly regulated within the β-cell, which is at least partially due to its dual roles as a potent signaling molecule.
Collapse
Affiliation(s)
- Paul V Sabatini
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Thilo Speckmann
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Francis C Lynn
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
23
|
Endolysosomal Ca 2+ Signalling and Cancer Hallmarks: Two-Pore Channels on the Move, TRPML1 Lags Behind! Cancers (Basel) 2018; 11:cancers11010027. [PMID: 30591696 PMCID: PMC6356888 DOI: 10.3390/cancers11010027] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 12/22/2022] Open
Abstract
The acidic vesicles of the endolysosomal (EL) system are emerging as an intracellular Ca2+ store implicated in the regulation of multiple cellular functions. The EL Ca2+ store releases Ca2+ through a variety of Ca2+-permeable channels, including Transient Receptor Potential (TRP) Mucolipin 1-3 (TRPML1-3) and two-pore channels 1-2 (TPC1-2), whereas EL Ca2+ refilling is sustained by the proton gradient across the EL membrane and/or by the endoplasmic reticulum (ER). EL Ca2+ signals may be either spatially restricted to control vesicle trafficking, autophagy and membrane repair or may be amplified into a global Ca2+ signal through the Ca2+-dependent recruitment of ER-embedded channels. Emerging evidence suggested that nicotinic acid adenine dinucleotide phosphate (NAADP)-gated TPCs sustain multiple cancer hallmarks, such as migration, invasiveness and angiogenesis. Herein, we first survey the EL Ca2+ refilling and release mechanisms and then focus on the oncogenic role of EL Ca2+ signaling. While the evidence in favor of TRPML1 involvement in neoplastic transformation is yet to be clearly provided, TPCs are emerging as an alternative target for anticancer therapies.
Collapse
|
24
|
Wang M, Teng Y. Genome-wide identification and analysis of MICU genes in land plants and their potential role in calcium stress. Gene 2018; 670:174-181. [PMID: 29852202 DOI: 10.1016/j.gene.2018.05.102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/09/2018] [Accepted: 05/25/2018] [Indexed: 11/24/2022]
Abstract
Mitochondrial calcium uptake (MICU) plays a vital role in the regulation of mitochondrial calcium homeostasis, and, consequently, influences calcium signaling transduction. Although genes involved in mitochondrial calcium uptake have been well studied in animals, less is known about their ubiquity and function in plants. In this study, we identified 96 MICU genes in land plants. On the basis of phylogenetic analysis of MICU proteins, they were classified into three clades: MICU from eudicots (Clade I), from monocots (Clade II), and from a basal angiosperm, a bryophyte, and a lycophyte (Clade III). Pairwise identity analysis across all MICU proteins showed that they are highly conserved among land plants at the protein level. Conserved motif analysis showed that most MICU proteins contained three EF-hands, and an additional EF-hand motif first identified in the MICU of Arabidopsis thaliana but not mammals was found in all 96 putative MICU proteins. This suggests that a cellular pathway of calcium uptake and signaling that requires three EF-hand motifs is evolutionarily conserved in plants. In addition, we discovered that MICU-defective mutants of Arabidopsis thaliana exhibited longer roots than wild-type under high calcium stress. Concurrently, the mRNA transcription levels of MICU were decreased under high calcium conditions. These results suggest that loss-of-function mutations of MICU may have potential roles in helping plants resist high calcium stress. This study provides clues to the possible role of plant MICU in mitochondrial calcium uptake, as well as useful information to support further studies on MICU function in plants.
Collapse
Affiliation(s)
- Mengyun Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310016, People's Republic of China
| | - Yibo Teng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310016, People's Republic of China.
| |
Collapse
|
25
|
Vervliet T. Ryanodine Receptors in Autophagy: Implications for Neurodegenerative Diseases? Front Cell Neurosci 2018; 12:89. [PMID: 29636667 PMCID: PMC5880912 DOI: 10.3389/fncel.2018.00089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/13/2018] [Indexed: 12/18/2022] Open
Abstract
Intracellular Ca2+ signaling is important in the regulation of several cellular processes including autophagy. The endoplasmic reticulum (ER) is the main and largest intracellular Ca2+ store. At the ER two protein families of Ca2+ release channels, inositol 1,4,5-trisphosphate receptors (IP3Rs) and ryanodine receptors (RyRs), are expressed. Several studies have reported roles in the regulation of autophagy for the ubiquitously expressed IP3R. For instance, IP3R-mediated Ca2+ release supresses basal autophagic flux by promoting mitochondrial metabolism, while also promoting the rapid initial increase in autophagic flux in response to nutrient starvation. Insights into the contribution of RyRs in autophagy have been lagging significantly compared to the advances made for IP3Rs. This is rather surprising considering that RyRs are predominantly expressed in long-lived cells with specialized metabolic needs, such as neurons and muscle cells, in which autophagy plays important roles. In this review article, recent studies revealing roles for RyRs in the regulation of autophagy will be discussed. Several RyR-interacting proteins that have been established to modulate both RyR function and autophagy will also be highlighted. Finally, the involvement of RyRs in neurodegenerative diseases will be addressed. Inhibition of RyR channels has not only been shown to be beneficial for treating several of these diseases but also regulates autophagy.
Collapse
Affiliation(s)
- Tim Vervliet
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
26
|
Ostrovidov S, Ebrahimi M, Bae H, Nguyen HK, Salehi S, Kim SB, Kumatani A, Matsue T, Shi X, Nakajima K, Hidema S, Osanai M, Khademhosseini A. Gelatin-Polyaniline Composite Nanofibers Enhanced Excitation-Contraction Coupling System Maturation in Myotubes. ACS APPLIED MATERIALS & INTERFACES 2017; 9:42444-42458. [PMID: 29023089 DOI: 10.1021/acsami.7b03979] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In this study, composite gelatin-polyaniline (PANI) nanofibers doped with camphorsulfonic acid (CSA) were fabricated by electrospinning and used as substrates to culture C2C12 myoblast cells. We observed enhanced myotube formation on composite gelatin-PANI nanofibers compared to gelatin nanofibers, concomitantly with enhanced myotube maturation. Thus, in myotubes, intracellular organization, colocalization of the dihydropyridine receptor (DHPR) and ryanodine receptor (RyR), expression of genes correlated to the excitation-contraction (E-C) coupling apparatus, calcium transients, and myotube contractibility were increased. Such composite material scaffolds combining topographical and electrically conductive cues may be useful to direct skeletal muscle cell organization and to improve cellular maturation, functionality, and tissue formation.
Collapse
Affiliation(s)
- Serge Ostrovidov
- WPI-Advanced Institute for Materials Research, Tohoku University , Sendai 980-8577, Japan
- Department of Medicine, Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School , Cambridge, Massachusetts 02139, United States
| | - Majid Ebrahimi
- WPI-Advanced Institute for Materials Research, Tohoku University , Sendai 980-8577, Japan
| | - Hojae Bae
- KU Convergence Science and Technology Institute, Department of Stem Cell and Regenerative Biotechnology, Konkuk University , Hwayang-dong, Kwangjin-gu, Seoul 05029, Republic of Korea
| | - Hung Kim Nguyen
- WPI-Advanced Institute for Materials Research, Tohoku University , Sendai 980-8577, Japan
| | - Sahar Salehi
- WPI-Advanced Institute for Materials Research, Tohoku University , Sendai 980-8577, Japan
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth , Bayreuth 95440, Germany
| | - Sang Bok Kim
- Department of Eco-Machinery system, Korea Institute of Machinery and Materials , Daejeon 305-343, Republic of Korea
| | - Akichika Kumatani
- WPI-Advanced Institute for Materials Research, Tohoku University , Sendai 980-8577, Japan
- Graduate School of Environmental Studies, Tohoku University , Sendai 980-8579, Japan
| | - Tomokazu Matsue
- WPI-Advanced Institute for Materials Research, Tohoku University , Sendai 980-8577, Japan
- Graduate School of Environmental Studies, Tohoku University , Sendai 980-8579, Japan
| | - Xuetao Shi
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology , Guangzhou 510006, PR China
| | - Ken Nakajima
- School of Materials and Chemical Technology, Tokyo Institute of Technology , Tokyo 152-8550, Japan
| | - Shizu Hidema
- Graduate School of Agricultural Science, Department of Molecular and Cell Biology, Tohoku University , Sendai 981-8555, Japan
| | - Makoto Osanai
- Department of Radiological Imaging and Informatics, Tohoku University Graduate School of Medicine , Sendai 980-8575, Japan
- Department of Intelligent Biomedical Systems Engineering, Graduate School of Biomedical Engineering, Tohoku University , Sendai 980-8575, Japan
| | - Ali Khademhosseini
- WPI-Advanced Institute for Materials Research, Tohoku University , Sendai 980-8577, Japan
- Department of Medicine, Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School , Cambridge, Massachusetts 02139, United States
- KU Convergence Science and Technology Institute, Department of Stem Cell and Regenerative Biotechnology, Konkuk University , Hwayang-dong, Kwangjin-gu, Seoul 05029, Republic of Korea
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University , Boston, Massachusetts 02115, United States
- Department of Physics, Faculty of Science, King Abdulaziz University , Jeddah 21569, Saudi Arabia
- California NanoSystems Institute (CNSI), and Center for Minimally Invasive Therapeutics (C-MIT), Department of Bioengineering and Department of Radiology, University of California , Los Angeles, California 90095, United States
| |
Collapse
|
27
|
Calcium signaling and cell cycle: Progression or death. Cell Calcium 2017; 70:3-15. [PMID: 28801101 DOI: 10.1016/j.ceca.2017.07.006] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/23/2017] [Accepted: 07/23/2017] [Indexed: 12/12/2022]
Abstract
Cytosolic Ca2+ concentration levels fluctuate in an ordered manner along the cell cycle, in line with the fact that Ca2+ is involved in the regulation of cell proliferation. Cell proliferation should be an error-free process, yet is endangered by mistakes. In fact, a complex network of proteins ensures that cell cycle does not progress until the previous phase has been successfully completed. Occasionally, errors occur during the cell cycle leading to cell cycle arrest. If the error is severe, and the cell cycle checkpoints work perfectly, this results into cellular demise by activation of apoptotic or non-apoptotic cell death programs. Cancer is characterized by deregulated proliferation and resistance against cell death. Ca2+ is a central key to these phenomena as it modulates signaling pathways that control oncogenesis and cancer progression. Here, we discuss how Ca2+ participates in the exogenous and endogenous signals controlling cell proliferation, as well as in the mechanisms by which cells die if irreparable cell cycle damage occurs. Moreover, we summarize how Ca2+ homeostasis remodeling observed in cancer cells contributes to deregulated cell proliferation and resistance to cell death. Finally, we discuss the possibility to target specific components of Ca2+ signal pathways to obtain cytostatic or cytotoxic effects.
Collapse
|
28
|
Lopez-Crisosto C, Pennanen C, Vasquez-Trincado C, Morales PE, Bravo-Sagua R, Quest AFG, Chiong M, Lavandero S. Sarcoplasmic reticulum-mitochondria communication in cardiovascular pathophysiology. Nat Rev Cardiol 2017; 14:342-360. [PMID: 28275246 DOI: 10.1038/nrcardio.2017.23] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Repetitive, calcium-mediated contractile activity renders cardiomyocytes critically dependent on a sustained energy supply and adequate calcium buffering, both of which are provided by mitochondria. Moreover, in vascular smooth muscle cells, mitochondrial metabolism modulates cell growth and proliferation, whereas cytosolic calcium levels regulate the arterial vascular tone. Physical and functional communication between mitochondria and sarco/endoplasmic reticulum and balanced mitochondrial dynamics seem to have a critical role for optimal calcium transfer to mitochondria, which is crucial in calcium homeostasis and mitochondrial metabolism in both types of muscle cells. Moreover, mitochondrial dysfunction has been associated with myocardial damage and dysregulation of vascular smooth muscle proliferation. Therefore, sarco/endoplasmic reticulum-mitochondria coupling and mitochondrial dynamics are now viewed as relevant factors in the pathogenesis of cardiac and vascular diseases, including coronary artery disease, heart failure, and pulmonary arterial hypertension. In this Review, we summarize the evidence related to the role of sarco/endoplasmic reticulum-mitochondria communication in cardiac and vascular muscle physiology, with a focus on how perturbations contribute to the pathogenesis of cardiovascular disorders.
Collapse
Affiliation(s)
- Camila Lopez-Crisosto
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
| | - Christian Pennanen
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
| | - Cesar Vasquez-Trincado
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
| | - Pablo E Morales
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
| | - Roberto Bravo-Sagua
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile.,Instituto de Nutricion y Tecnologia de los Alimentos (INTA), Universidad de Chile, Avenida El Líbano 5524, Santiago 7830490, Chile
| | - Andrew F G Quest
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile.,Centro de Estudios Moleculares de la Celula (CEMC), Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile.,Centro de Estudios Moleculares de la Celula (CEMC), Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile.,Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75235, USA
| |
Collapse
|
29
|
Affiliation(s)
- Indu S Ambudkar
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, MD 20892, USA.
| | - Shmuel Muallem
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, MD 20892, USA
| |
Collapse
|
30
|
Wagner S, De Bortoli S, Schwarzländer M, Szabò I. Regulation of mitochondrial calcium in plants versus animals. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3809-29. [PMID: 27001920 DOI: 10.1093/jxb/erw100] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Ca(2+) acts as an important cellular second messenger in eukaryotes. In both plants and animals, a wide variety of environmental and developmental stimuli trigger Ca(2+) transients of a specific signature that can modulate gene expression and metabolism. In animals, mitochondrial energy metabolism has long been considered a hotspot of Ca(2+) regulation, with a range of pathophysiology linked to altered Ca(2+) control. Recently, several molecular players involved in mitochondrial Ca(2+) signalling have been identified, including those of the mitochondrial Ca(2+) uniporter. Despite strong evidence for sophisticated Ca(2+) regulation in plant mitochondria, the picture has remained much less clear. This is currently changing aided by live imaging and genetic approaches which allow dissection of subcellular Ca(2+) dynamics and identification of the proteins involved. We provide an update on our current understanding in the regulation of mitochondrial Ca(2+) and signalling by comparing work in plants and animals. The significance of mitochondrial Ca(2+) control is discussed in the light of the specific metabolic and energetic needs of plant and animal cells.
Collapse
Affiliation(s)
- Stephan Wagner
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Sara De Bortoli
- Department of Biology and CNR Institute of Neurosciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| | - Markus Schwarzländer
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Ildikò Szabò
- Department of Biology and CNR Institute of Neurosciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| |
Collapse
|
31
|
Extracellular Calcium Has Multiple Targets to Control Cell Proliferation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:133-56. [DOI: 10.1007/978-3-319-26974-0_7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
A ternary complex comprising FAK, PTPα and IP3 receptor 1 functionally engages focal adhesions and the endoplasmic reticulum to mediate IL-1-induced Ca2+ signalling in fibroblasts. Biochem J 2015; 473:397-410. [PMID: 26611753 DOI: 10.1042/bj20150907] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/26/2015] [Indexed: 11/17/2022]
Abstract
Ca(2+) release is tightly sequestered in eukaryotic cells to enable fine spatio-temporal control of signalling but how Ca(2+) release from the endoplasmic reticulum (ER) is linked to cell adhesions is not defined. We examined the spatial restriction of Ca(2+) release through the inositol 1,4,5-triphosphate receptor 1 (IP3R1) in response to interleukin-1 (IL-1) and the functions of the adhesion-associated proteins, focal adhesion kinase (FAK) and protein tyrosine phosphatase-α (PTPα). In cultured fibroblasts IL-1 treatment promoted co-localization of PTPα and FAK with the ER and increased association of IP3R1 with PTPα and FAK at focal adhesions (FAs). GST pull-down assays of purified proteins demonstrated that PTPα and FAK directly interacted with IP3R1. These interactions depended on the focal adhesion-targeting (FAT) and band4.1-ezrin-radixin-moesin (FERM) domains of FAK. PTPα was required for the association of IP3R1 with Src, which mediated IP3R1 phosphorylation and consequently ER Ca(2+) release. Collectively, these data indicate that PTPα and FAK, which are enriched in FAs, interact with IP3R1 at adjacent ER sites to spatially sequester IL-1-induced Ca(2+) signalling.
Collapse
|
33
|
Tawk MY, Zimmermann K, Bossu J, Potrich C, Bourcier T, Dalla Serra M, Poulain B, Prévost G, Jover E. Internalization of staphylococcal leukotoxins that bind and divert the
C
5a receptor is required for intracellular
Ca
2+
mobilization by human neutrophils. Cell Microbiol 2015; 17:1241-57. [DOI: 10.1111/cmi.12434] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/26/2015] [Accepted: 03/01/2015] [Indexed: 01/12/2023]
Affiliation(s)
- Mira Y. Tawk
- Fédération de Médecine Translationnelle de Strasbourg EA7290 Virulence Bactérienne Précoce Institut de Bactériologie et Hôpitaux Universitaires de Strasbourg Université de Strasbourg Strasbourg France
| | - Kiran Zimmermann
- Fédération de Médecine Translationnelle de Strasbourg EA7290 Virulence Bactérienne Précoce Institut de Bactériologie et Hôpitaux Universitaires de Strasbourg Université de Strasbourg Strasbourg France
| | - Jean‐Louis Bossu
- INCI – UPR‐CNRS 3212 Physiologie des réseaux de neurones Strasbourg France
| | - Cristina Potrich
- National Research Council of Italy Institute of Biophysics and Bruno Kessler Foundation Trento Italy
| | - Tristan Bourcier
- Fédération de Médecine Translationnelle de Strasbourg EA7290 Virulence Bactérienne Précoce Institut de Bactériologie et Hôpitaux Universitaires de Strasbourg Université de Strasbourg Strasbourg France
| | - Mauro Dalla Serra
- National Research Council of Italy Institute of Biophysics and Bruno Kessler Foundation Trento Italy
| | - Bernard Poulain
- INCI – UPR‐CNRS 3212 Physiologie des réseaux de neurones Strasbourg France
| | - Gilles Prévost
- Fédération de Médecine Translationnelle de Strasbourg EA7290 Virulence Bactérienne Précoce Institut de Bactériologie et Hôpitaux Universitaires de Strasbourg Université de Strasbourg Strasbourg France
| | - Emmanuel Jover
- Fédération de Médecine Translationnelle de Strasbourg EA7290 Virulence Bactérienne Précoce Institut de Bactériologie et Hôpitaux Universitaires de Strasbourg Université de Strasbourg Strasbourg France
| |
Collapse
|
34
|
Mehta S, Zhang J. Dynamic visualization of calcium-dependent signaling in cellular microdomains. Cell Calcium 2015; 58:333-41. [PMID: 25703691 DOI: 10.1016/j.ceca.2015.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 11/17/2022]
Abstract
Cells rely on the coordinated action of diverse signaling molecules to sense, interpret, and respond to their highly dynamic external environment. To ensure the specific and robust flow of information, signaling molecules are often spatially organized to form distinct signaling compartments, and our understanding of the molecular mechanisms that guide intracellular signaling hinges on the ability to directly probe signaling events within these cellular microdomains. Ca(2+) signaling in particular owes much of its functional versatility to this type of exquisite spatial regulation. As discussed below, a number of methods have been developed to investigate the mechanistic and functional implications of microdomains of Ca(2+) signaling, ranging from the application of Ca(2+) buffers to the direct and targeted visualization of Ca(2+) signaling microdomains using genetically encoded fluorescent reporters.
Collapse
Affiliation(s)
- Sohum Mehta
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
35
|
Lipovsek M, Fierro A, Pérez EG, Boffi JC, Millar NS, Fuchs PA, Katz E, Elgoyhen AB. Tracking the molecular evolution of calcium permeability in a nicotinic acetylcholine receptor. Mol Biol Evol 2014; 31:3250-65. [PMID: 25193338 PMCID: PMC4245820 DOI: 10.1093/molbev/msu258] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Nicotinic acetylcholine receptors are a family of ligand-gated nonselective cationic channels that participate in fundamental physiological processes at both the central and the peripheral nervous system. The extent of calcium entry through ligand-gated ion channels defines their distinct functions. The α9α10 nicotinic cholinergic receptor, expressed in cochlear hair cells, is a peculiar member of the family as it shows differences in the extent of calcium permeability across species. In particular, mammalian α9α10 receptors are among the ligand-gated ion channels which exhibit the highest calcium selectivity. This acquired differential property provides the unique opportunity of studying how protein function was shaped along evolutionary history, by tracking its evolutionary record and experimentally defining the amino acid changes involved. We have applied a molecular evolution approach of ancestral sequence reconstruction, together with molecular dynamics simulations and an evolutionary-based mutagenesis strategy, in order to trace the molecular events that yielded a high calcium permeable nicotinic α9α10 mammalian receptor. Only three specific amino acid substitutions in the α9 subunit were directly involved. These are located at the extracellular vestibule and at the exit of the channel pore and not at the transmembrane region 2 of the protein as previously thought. Moreover, we show that these three critical substitutions only increase calcium permeability in the context of the mammalian but not the avian receptor, stressing the relevance of overall protein structure on defining functional properties. These results highlight the importance of tracking evolutionarily acquired changes in protein sequence underlying fundamental functional properties of ligand-gated ion channels.
Collapse
Affiliation(s)
- Marcela Lipovsek
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N Torres, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Angélica Fierro
- Department of Organic Chemistry, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Edwin G Pérez
- Department of Organic Chemistry, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan C Boffi
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N Torres, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Neil S Millar
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Paul A Fuchs
- Department of Otolaryngology, Head and Neck Surgery, and Center for Hearing and Balance, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Eleonora Katz
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N Torres, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N Torres, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina Departamento de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
36
|
Spéder P, Brand AH. Gap junction proteins in the blood-brain barrier control nutrient-dependent reactivation of Drosophila neural stem cells. Dev Cell 2014; 30:309-21. [PMID: 25065772 PMCID: PMC4139190 DOI: 10.1016/j.devcel.2014.05.021] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/15/2014] [Accepted: 05/24/2014] [Indexed: 01/27/2023]
Abstract
Neural stem cells in the adult brain exist primarily in a quiescent state but are reactivated in response to changing physiological conditions. How do stem cells sense and respond to metabolic changes? In the Drosophila CNS, quiescent neural stem cells are reactivated synchronously in response to a nutritional stimulus. Feeding triggers insulin production by blood-brain barrier glial cells, activating the insulin/insulin-like growth factor pathway in underlying neural stem cells and stimulating their growth and proliferation. Here we show that gap junctions in the blood-brain barrier glia mediate the influence of metabolic changes on stem cell behavior, enabling glia to respond to nutritional signals and reactivate quiescent stem cells. We propose that gap junctions in the blood-brain barrier are required to translate metabolic signals into synchronized calcium pulses and insulin secretion. Blood-brain barrier gap junctions are required for neural stem cell reactivation Gap junctions control both insulin transcription and secretion Calcium oscillations in the blood-brain barrier depend on gap junctions and nutrition Blood-brain barrier membrane polarization links calcium to insulin secretion
Collapse
Affiliation(s)
- Pauline Spéder
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Andrea H Brand
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| |
Collapse
|
37
|
Manhas N, Sneyd J, Pardasani KR. Modelling the transition from simple to complex Ca²⁺ oscillations in pancreatic acinar cells. J Biosci 2014; 39:463-84. [PMID: 24845510 DOI: 10.1007/s12038-014-9430-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A mathematical model is proposed which systematically investigates complex calcium oscillations in pancreatic acinar cells. This model is based on calcium-induced calcium release via inositol trisphosphate receptors (IPR) and ryanodine receptors (RyR) and includes calcium modulation of inositol (1,4,5) trisphosphate (IP3) levels through feedback regulation of degradation and production. In our model, the apical and the basal regions are separated by a region containing mitochondria, which is capable of restricting Ca2+ responses to the apical region. We were able to reproduce the observed oscillatory patterns, from baseline spikes to sinusoidal oscillations. The model predicts that calcium-dependent production and degradation of IP3 is a key mechanism for complex calcium oscillations in pancreatic acinar cells. A partial bifurcation analysis is performed which explores the dynamic behaviour of the model in both apical and basal regions.
Collapse
Affiliation(s)
- Neeraj Manhas
- Department of Mathematics, Maulana Azad National Institute of Technology, Bhopal 462 051, India,
| | | | | |
Collapse
|
38
|
Simon M, Plattner H. Unicellular Eukaryotes as Models in Cell and Molecular Biology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 309:141-98. [DOI: 10.1016/b978-0-12-800255-1.00003-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
Kistler AD, Singh G, Altintas MM, Yu H, Fernandez IC, Gu C, Wilson C, Srivastava SK, Dietrich A, Walz K, Kerjaschki D, Ruiz P, Dryer S, Sever S, Dinda AK, Faul C, Reiser J. Transient receptor potential channel 6 (TRPC6) protects podocytes during complement-mediated glomerular disease. J Biol Chem 2013; 288:36598-609. [PMID: 24194522 DOI: 10.1074/jbc.m113.488122] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gain-of-function mutations in the calcium channel TRPC6 lead to autosomal dominant focal segmental glomerulosclerosis and podocyte expression of TRPC6 is increased in some acquired human glomerular diseases, particularly in membranous nephropathy. These observations led to the hypothesis that TRPC6 overactivation is deleterious to podocytes through pathological calcium signaling, both in genetic and acquired diseases. Here, we show that the effects of TRPC6 on podocyte function are context-dependent. Overexpression of TRPC6 alone did not directly affect podocyte morphology and cytoskeletal structure. Unexpectedly, however, overexpression of TRPC6 protected podocytes from complement-mediated injury, whereas genetic or pharmacological TRPC6 inactivation increased podocyte susceptibility to complement. Mechanistically, this effect was mediated by Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) activation. Podocyte-specific TRPC6 transgenic mice showed stronger CaMKII activation, reduced podocyte foot process effacement and reduced levels of proteinuria during nephrotoxic serum nephritis, whereas TRPC6 null mice exhibited reduced CaMKII activation and higher levels of proteinuria compared with wild type littermates. Human membranous nephropathy biopsy samples showed podocyte staining for active CaMKII, which correlated with the degree of TRPC6 expression. Together, these data suggest a dual and context dependent role of TRPC6 in podocytes where acute activation protects from complement-mediated damage, but chronic overactivation leads to focal segmental glomerulosclerosis.
Collapse
Affiliation(s)
- Andreas D Kistler
- From the Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Moccia F, Dragoni S, Cinelli M, Montagnani S, Amato B, Rosti V, Guerra G, Tanzi F. How to utilize Ca²⁺ signals to rejuvenate the repairative phenotype of senescent endothelial progenitor cells in elderly patients affected by cardiovascular diseases: a useful therapeutic support of surgical approach? BMC Surg 2013; 13 Suppl 2:S46. [PMID: 24267290 PMCID: PMC3851045 DOI: 10.1186/1471-2482-13-s2-s46] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Endothelial dysfunction or loss is the early event that leads to a host of severe cardiovascular diseases, such as atherosclerosis, hypertension, brain stroke, myocardial infarction, and peripheral artery disease. Ageing is regarded among the most detrimental risk factor for vascular endothelium and predisposes the subject to atheroscleorosis and inflammatory states even in absence of traditional comorbid conditions. Standard treatment to restore blood perfusion through stenotic arteries are surgical or endovascular revascularization. Unfortunately, ageing patients are not the most amenable candidates for such interventions, due to high operative risk or unfavourable vascular involvement. It has recently been suggested that the transplantation of autologous bone marrow-derived endothelial progenitor cells (EPCs) might constitute an alternative and viable therapeutic option for these individuals. Albeit pre-clinical studies demonstrated the feasibility of EPC-based therapy to recapitulate the diseased vasculature of young and healthy animals, clinical studies provided less impressive results in old ischemic human patients. One hurdle associated to this kind of approach is the senescence of autologous EPCs, which are less abundant in peripheral blood and display a reduced pro-angiogenic activity. Conversely, umbilical cord blood (UCB)-derived EPCs are more suitable for cellular therapeutics due to their higher frequency and sensitivity to growth factors, such as vascular endothelial growth factor (VEGF). An increase in intracellular Ca2+ concentration is central to EPC activation by VEGF. We have recently demonstrated that the Ca2+ signalling machinery driving the oscillatory Ca2+ response to this important growth factor is different in UCB-derived EPCs as compared to their peripheral counterparts. In particular, we focussed on the so-called endothelial colony forming cells (ECFCs), which are the only EPC population belonging to the endothelial lineage and able to form capillary-like structures in vitro and stably integrate with host vasculature in vivo. The present review provides a brief description of how exploiting the Ca2+ toolkit of juvenile EPCs to restore the repairative phenotype of senescent EPCs to enhance their regenerative outcome in therapeutic settings.
Collapse
|
41
|
Abstract
Mitochondria not only govern energy production, but are also involved in crucial cellular signalling processes. They are one of the most important organelles determining the Ca(2+) regulatory pathway in the cell. Several mathematical models explaining these mechanisms were constructed, but only few of them describe interplay between calcium concentrations in endoplasmic reticulum (ER), cytoplasm and mitochondria. Experiments measuring calcium concentrations in mitochondria and ER suggested the existence of cytosolic microdomains with locally elevated calcium concentration in the nearest vicinity of the outer mitochondrial membrane. These intermediate physical connections between ER and mitochondria are called MAM (mitochondria-associated ER membrane) complexes. We propose a model with a direct calcium flow from ER to mitochondria, which may be justified by the existence of MAMs, and perform detailed numerical analysis of the effect of this flow on the type and shape of calcium oscillations. The model is partially based on the Marhl et al model. We have numerically found that the stable oscillations exist for a considerable set of parameter values. However, for some parameter sets the oscillations disappear and the trajectories of the model tend to a steady state with very high calcium level in mitochondria. This can be interpreted as an early step in an apoptotic pathway.
Collapse
Affiliation(s)
- Piotr Szopa
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | | | | |
Collapse
|
42
|
Abstract
There is a vast array of dyes currently available for measurement of cytosolic calcium. These encompass single and dual excitation and single and dual emission probes. The choice of particular probe depends on the experimental question and the type of equipment to be used. It is therefore extremely difficult to define a universal approach that will suit all potential investigators. Preparations under investigation are loaded with the selected organic indicator dye by incubation with ester derivatives, by micropipet injection or reverse permeabilization. Indicators can also be targeted to a range of intracellular organelles. Calibration of a fluorescent signal into Ca(2+) concentration is in theory relatively simple but the investigator needs to take great care in this process. This chapter describes the theory of these processes and some of the pitfalls users should be aware of. Precise experimental details can be found in the subsequent chapters of this volume.
Collapse
Affiliation(s)
- Alec W M Simpson
- Department of Cell and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.
| |
Collapse
|
43
|
Permyakov SE, Vologzhannikova AA, Emelyanenko VI, Knyazeva EL, Kazakov AS, Lapteva YS, Permyakova ME, Zhadan AP, Permyakov EA. The impact of alpha-N-acetylation on structural and functional status of parvalbumin. Cell Calcium 2012; 52:366-76. [DOI: 10.1016/j.ceca.2012.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 05/30/2012] [Accepted: 06/01/2012] [Indexed: 01/09/2023]
|
44
|
Ras and Rap1 govern spatiotemporal dynamic of activated ERK in pituitary living cells. Cell Signal 2012; 24:2237-48. [PMID: 22940095 DOI: 10.1016/j.cellsig.2012.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 08/02/2012] [Accepted: 08/14/2012] [Indexed: 11/22/2022]
Abstract
The Ras/Raf/MEK/ERK is a conserved signalling pathway involved in the control of fundamental cellular processes. Despite extensive research, how this pathway can process a myriad of diverse extracellular inputs into substrate specificity to determine biological outcomes is not fully understood. It has been established that the ERK1/2 pathway is an integrative point in the control of the pituitary function exerted by various extracellular signals. In addition we previously established that the GTPases Ras and Rap1 play a key role in the regulation of ERK1/2-dependent prolactin transcription by EGF or the cAMP-dependent neuropeptide VIP. In this report, using the FRET-based biosensor of ERK activity (EKAR) in the pituitary GH4C1 cell line, we show that both EGF and VIP tightly control the spatiotemporal dynamic of activated ERK with different magnitude and duration. Importantly, we provide the first evidence of a differential control of cytoplasmic and nuclear pools of activated ERK by the GTPases Ras and Rap1. Ras is required for nuclear magnitude and duration of EGF-dependent ERK activation, whereas it is required for both VIP-activated cytoplasmic and nuclear ERK pools. Rap1 is exclusively involved in VIP-activated ERK nuclear pool. Moreover, consistent with the control of the nuclear pool of activated ERK by the GTPases, we observe the same differential role of Ras and Rap1 on ERK nuclear translocation triggered by EGF or VIP. Together these findings identify Ras and Rap1 as determinant partners in shaping nuclear and cytoplasmic ERK kinetics in response to EGF and VIP, which in turn should control pituitary secretion.
Collapse
|
45
|
Designing biological compartmentalization. Trends Cell Biol 2012; 22:662-70. [PMID: 22841504 DOI: 10.1016/j.tcb.2012.07.002] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/29/2012] [Accepted: 07/05/2012] [Indexed: 12/18/2022]
Abstract
Intracellular organization is a key factor in cell metabolism. Cells have evolved various organizational systems to solve the challenges of toxic pathway intermediates, competing metabolic reactions, and slow turnover rates. Inspired by nature, synthetic biologists have utilized proteins, nucleic acids, and lipids to construct synthetic organizational systems that mimic natural systems. Many of these systems have been applied to metabolic pathways and shown to significantly increase the production of industrially and commercially important chemicals. Further engineering and characterization of synthetic organizational systems will allow us to better understand native cellular strategies of spatial organization. Here, we discuss recent advances and ongoing efforts in designing and characterizing synthetic compartmentalization systems to mimic natural strategies and increase metabolic yields of engineered pathways.
Collapse
|
46
|
Moccia F, Berra-Romani R, Tanzi F. Update on vascular endothelial Ca 2+ signalling: A tale of ion channels, pumps and transporters. World J Biol Chem 2012; 3:127-58. [PMID: 22905291 PMCID: PMC3421132 DOI: 10.4331/wjbc.v3.i7.127] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/04/2012] [Accepted: 07/11/2012] [Indexed: 02/05/2023] Open
Abstract
A monolayer of endothelial cells (ECs) lines the lumen of blood vessels and forms a multifunctional transducing organ that mediates a plethora of cardiovascular processes. The activation of ECs from as state of quiescence is, therefore, regarded among the early events leading to the onset and progression of potentially lethal diseases, such as hypertension, myocardial infarction, brain stroke, and tumor. Intracellular Ca2+ signals have long been know to play a central role in the complex network of signaling pathways regulating the endothelial functions. Notably, recent work has outlined how any change in the pattern of expression of endothelial channels, transporters and pumps involved in the modulation of intracellular Ca2+ levels may dramatically affect whole body homeostasis. Vascular ECs may react to both mechanical and chemical stimuli by generating a variety of intracellular Ca2+ signals, ranging from brief, localized Ca2+ pulses to prolonged Ca2+ oscillations engulfing the whole cytoplasm. The well-defined spatiotemporal profile of the subcellular Ca2+ signals elicited in ECs by specific extracellular inputs depends on the interaction between Ca2+ releasing channels, which are located both on the plasma membrane and in a number of intracellular organelles, and Ca2+ removing systems. The present article aims to summarize both the past and recent literature in the field to provide a clear-cut picture of our current knowledge on the molecular nature and the role played by the components of the Ca2+ machinery in vascular ECs under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Francesco Moccia
- Francesco Moccia, Franco Tanzi, Department of Biology and Biotechnologies "Lazzaro Spallanzani", Laboratory of Physiology, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
| | | | | |
Collapse
|
47
|
Munaron L, Scianna M. Multilevel complexity of calcium signaling: Modeling angiogenesis. World J Biol Chem 2012; 3:121-6. [PMID: 22905290 PMCID: PMC3421110 DOI: 10.4331/wjbc.v3.i6.121] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 05/11/2012] [Accepted: 05/18/2012] [Indexed: 02/05/2023] Open
Abstract
Intracellular calcium signaling is a universal, evolutionary conserved and versatile regulator of cell biochemistry. The complexity of calcium signaling and related cell machinery can be investigated by the use of experimental strategies, as well as by computational approaches. Vascular endothelium is a fascinating model to study the specific properties and roles of calcium signals at multiple biological levels. During the past 20 years, live cell imaging, patch clamp and other techniques have allowed us to detect and interfere with calcium signaling in endothelial cells (ECs), providing a huge amount of information on the regulation of vascularization (angiogenesis) in normal and tumoral tissues. These data range from the spatiotemporal dynamics of calcium within different cell microcompartments to those in entire multicellular and organized EC networks. Beside experimental strategies, in silico endothelial models, specifically designed for simulating calcium signaling, are contributing to our knowledge of vascular physiology and pathology. They help to investigate and predict the quantitative features of proangiogenic events moving through subcellular, cellular and supracellular levels. This review focuses on some recent developments of computational approaches for proangiogenic endothelial calcium signaling. In particular, we discuss the creation of hybrid simulation environments, which combine and integrate discrete Cellular Potts Models. They are able to capture the phenomenological mechanisms of cell morphological reorganization, migration, and intercellular adhesion, with single-cell spatiotemporal models, based on reaction-diffusion equations that describe the agonist-induced intracellular calcium events.
Collapse
Affiliation(s)
- Luca Munaron
- Luca Munaron, Department of Life Sciences and Systems Biology, Centre for Nanostructured Interfaces and Surfaces, Centre for Complex Systems in Molecular Biology and Medicine, University of Torino, 10123 Torino, Italy
| | | |
Collapse
|
48
|
Heindorff K, Blenau W, Walz B, Baumann O. Characterization of a Ca2+/calmodulin-dependent AC1 adenylyl cyclase in a non-neuronal tissue, the blowfly salivary gland. Cell Calcium 2012; 52:103-12. [PMID: 22633849 DOI: 10.1016/j.ceca.2012.04.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 04/19/2012] [Accepted: 04/25/2012] [Indexed: 01/18/2023]
Abstract
Crosstalk between intracellular signalling pathways is a functionally important and widespread phenomenon in cell physiology across phyla. In the salivary gland of the blowfly, serotonin induces fluid secretion via parallel activation of both the InsP(3)/Ca(2+) and the cAMP/PKA signalling pathways, which interact on multiple levels. We have determined the molecular identity of a link between both pathways that mediates a Ca(2+)-dependent rise of intracellular cAMP. Whereas hydrolysis of cAMP via phosphodiesterases is largely independent of Ca(2+), cAMP synthesis by adenylyl cyclases (AC) is potentiated in a Ca(2+)/calmodulin (Ca(2+)/CaM)-dependent manner. The existence of a Ca(2+)/CaM-dependent AC is supported by physiological data and a molecular approach. We have cloned Cv rutabaga cDNA, encoding the first blowfly AC, and confirmed its expression in the salivary gland via reverse transcription followed by polymerase chain reaction. The putative gene product of Cv rutabaga is a Ca(2+)/CaM-dependent type I AC and shows highest homology to Rutabaga from Drosophila. Thus, a Ca(2+)/CaM-dependent AC serves as a link between the InsP(3)/Ca(2+) and the cAMP/PKA signalling pathways in the salivary gland of the blowfly and might be important for the amplification and optimization of the secretory response.
Collapse
Affiliation(s)
- Kristoffer Heindorff
- Institut für Biochemie und Biologie, Zoophysiologie, Universität Potsdam, Potsdam-Golm, Germany
| | | | | | | |
Collapse
|
49
|
Lee H, DeLoache WC, Dueber JE. Spatial organization of enzymes for metabolic engineering. Metab Eng 2012; 14:242-51. [DOI: 10.1016/j.ymben.2011.09.003] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 07/27/2011] [Accepted: 09/09/2011] [Indexed: 10/17/2022]
|
50
|
Role of Uropathogenic Escherichia coli Virulence Factors in Development of Urinary Tract Infection and Kidney Damage. Int J Nephrol 2012; 2012:681473. [PMID: 22506110 PMCID: PMC3312279 DOI: 10.1155/2012/681473] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 11/02/2011] [Accepted: 12/01/2011] [Indexed: 01/17/2023] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is a causative agent in the vast majority of urinary tract infections (UTIs), including cystitis and pyelonephritis, and infectious complications, which may result in acute renal failure in healthy individuals as well as in renal transplant patients. UPEC expresses a multitude of virulence factors to break the inertia of the mucosal barrier. In response to the breach by UPEC into the normally sterile urinary tract, host inflammatory responses are triggered leading to cytokine production, neutrophil influx, and the exfoliation of infected bladder epithelial cells. Several signaling pathways activated during UPEC infection, including the pathways known to activate the innate immune response, interact with calcium-dependent signaling pathways. Some UPEC isolates, however, might possess strategies to delay or suppress the activation of components of the innate host response in the urinary tract. Studies published in the recent past provide new information regarding how virulence factors of uropathogenic E. coli are involved in activation of the innate host response. Despite numerous host defense mechanisms, UPEC can persist within the urinary tract and may serve as a reservoir for recurrent infections and serious complications. Presentation of the molecular details of these events is essential for development of successful strategies for prevention of human UTIs and urological complications associated with UTIs.
Collapse
|