1
|
Jin C, Yan K, Wang M, Song W, Wang B, Men Y, Niu J, He Y, Zhang Q, Qi J. Dissecting the dynamic cellular transcriptional atlas of adult teleost testis development throughout the annual reproductive cycle. Development 2024; 151:dev202296. [PMID: 38477640 DOI: 10.1242/dev.202296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/09/2024] [Indexed: 03/14/2024]
Abstract
Teleost testis development during the annual cycle involves dramatic changes in cellular compositions and molecular events. In this study, the testicular cells derived from adult black rockfish at distinct stages - regressed, regenerating and differentiating - were meticulously dissected via single-cell transcriptome sequencing. A continuous developmental trajectory of spermatogenic cells, from spermatogonia to spermatids, was delineated, elucidating the molecular events involved in spermatogenesis. Subsequently, the dynamic regulation of gene expression associated with spermatogonia proliferation and differentiation was observed across spermatogonia subgroups and developmental stages. A bioenergetic transition from glycolysis to mitochondrial respiration of spermatogonia during the annual developmental cycle was demonstrated, and a deeper level of heterogeneity and molecular characteristics was revealed by re-clustering analysis. Additionally, the developmental trajectory of Sertoli cells was delineated, alongside the divergence of Leydig cells and macrophages. Moreover, the interaction network between testicular micro-environment somatic cells and spermatogenic cells was established. Overall, our study provides detailed information on both germ and somatic cells within teleost testes during the annual reproductive cycle, which lays the foundation for spermatogenesis regulation and germplasm preservation of endangered species.
Collapse
Affiliation(s)
- Chaofan Jin
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266000, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China
| | - Kai Yan
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266000, China
| | - Mengya Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266000, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China
| | - Weihao Song
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266000, China
| | - Bo Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266000, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China
| | - Yu Men
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266000, China
| | - Jingjing Niu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266000, China
| | - Yan He
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266000, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China
| | - Quanqi Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266000, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China
| | - Jie Qi
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266000, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China
| |
Collapse
|
2
|
Liu W, Sun X, Li F, Jiang Q, An J, Wu Y, Yang J, Qin M, Zhao Y, Tang Y, Wu T, Yan Z, Jiang D, Liu R, Li W, Zhi X, Chen C. An essential role of the E3 ubiquitin ligase RNF126 in ensuring meiosis I completion during spermatogenesis. J Adv Res 2024:S2090-1232(24)00333-3. [PMID: 39142440 DOI: 10.1016/j.jare.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
INTRODUCTION Homologous recombination repair during meiosis is essential for the exchange of genetic information between sister chromosomes, underpinning spermatogenesis and, consequently, fertility. The disruption of this process can lead to infertility, highlighting the importance of identifying the molecular actors involved. OBJECTIVES This study aims to elucidate the role of the E3 ubiquitin ligase Rnf126 in spermatogenesis and its impact on fertility, particularly through its involvement in meiotic homologous recombination repair. METHODS We used heterozygous and homozygous Rnf126 deletion models in mouse testes to examine the consequences on testicular health, sperm count, and the process of spermatogenesis. Additionally, we explored the association between RNF126 gene missense variants and nonobstructive male infertility in patients, with a focus on their functional impact on the protein's ubiquitin ligase activity. RESULTS Rnf126 deletion led to testicular atrophy, disrupted seminiferous tubule structure, reduced sperm count, and spermatogenesis arrest at meiotic prophase I. Furthermore, male mice exhibited impaired homologous recombination repair and increased apoptosis within the seminiferous tubules. We identified four missense variants of the RNF126 (V68M, R241H, E261A, D253N) associated with male infertility. Specifically, the E261A and D253N variants, located in the RING domain, directly compromised the E3 ubiquitin ligase activity of RNF126. CONCLUSION Our findings demonstrate the pivotal role of RNF126 in maintaining spermatogenesis and fertility, offering insights into the molecular mechanisms underlying male infertility. The identified RNF126 variants present novel targets for diagnostic and therapeutic strategies in treating nonobstructive male infertility.
Collapse
Affiliation(s)
- Wenjing Liu
- The Third Affiliated Hospital, Kunming Medical University, Kunming 650118, China; Academy of Biomedical Engineering, Kunming Medical University, Kunming 650500, China; Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiya Sun
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Fubing Li
- Academy of Biomedical Engineering, Kunming Medical University, Kunming 650500, China
| | - Qiuyun Jiang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Jianting An
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yingying Wu
- Department of the Pathology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Jingyi Yang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Meng Qin
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Yuxin Zhao
- The Third Affiliated Hospital, Kunming Medical University, Kunming 650118, China
| | - Yongjia Tang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310063, China
| | - Tingyue Wu
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Zhiqiang Yan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Dewei Jiang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Rong Liu
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Wenhui Li
- The Third Affiliated Hospital, Kunming Medical University, Kunming 650118, China
| | - Xu Zhi
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Ceshi Chen
- The Third Affiliated Hospital, Kunming Medical University, Kunming 650118, China; Academy of Biomedical Engineering, Kunming Medical University, Kunming 650500, China
| |
Collapse
|
3
|
Fábián A, Péntek BK, Soós V, Sági L. Heat stress during male meiosis impairs cytoskeletal organization, spindle assembly and tapetum degeneration in wheat. FRONTIERS IN PLANT SCIENCE 2024; 14:1314021. [PMID: 38259921 PMCID: PMC10800805 DOI: 10.3389/fpls.2023.1314021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024]
Abstract
The significance of heat stress in agriculture is ever-increasing with the progress of global climate changes. Due to a negative effect on the yield of staple crops, including wheat, the impairment of plant reproductive development triggered by high ambient temperature became a restraint in food production. Although the heat sensitivity of male meiosis and the following gamete development in wheat has long been recognized, a detailed structural characterization combined with a comprehensive gene expression analysis has not been done about this phenomenon. We demonstrate here that heat stress severely alters the cytoskeletal configuration, triggers the failure of meiotic division in wheat. Moreover, it changes the expression of genes related to gamete development in male meiocytes and the tapetum layer in a genotype-dependent manner. 'Ellvis', a heat-tolerant winter wheat cultivar, showed high spikelet fertility rate and only scarce structural aberrations upon exposure to high temperature. In addition, heat shock genes and genes involved in scavenging reactive oxygen species were significantly upregulated in 'Ellvis', and the expression of meiosis-specific and major developmental genes showed high stability in this cultivar. In the heat-sensitive 'Mv 17-09', however, genes participating in cytoskeletal fiber nucleation, the spindle assembly checkpoint genes, and tapetum-specific developmental regulators were downregulated. These alterations may be related to the decreased cytoskeleton content, frequent micronuclei formation, and the erroneous persistence of the tapetum layer observed in the sensitive genotype. Our results suggest that understanding the heat-sensitive regulation of these gene functions would be an essential contribution to the development of new, heat-tolerant cultivars.
Collapse
Affiliation(s)
- Attila Fábián
- Centre for Agricultural Research, Hungarian Research Network, Martonvásár, Hungary
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | | | - Vilmos Soós
- Centre for Agricultural Research, Hungarian Research Network, Martonvásár, Hungary
| | - László Sági
- Centre for Agricultural Research, Hungarian Research Network, Martonvásár, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Centre for Agricultural Research, Hungarian Research Network, Martonvásár, Hungary
| |
Collapse
|
4
|
Ding X, Gong X, Fan Y, Cao J, Zhao J, Zhang Y, Wang X, Meng K. DNA double-strand break genetic variants in patients with premature ovarian insufficiency. J Ovarian Res 2023; 16:135. [PMID: 37430352 DOI: 10.1186/s13048-023-01221-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 06/20/2023] [Indexed: 07/12/2023] Open
Abstract
Premature ovarian insufficiency (POI) is a clinically heterogeneous disease that may seriously affect the physical and mental health of women of reproductive age. POI primarily manifests as ovarian function decline and endocrine disorders in women prior to age 40 and is an established cause of female infertility. It is crucial to elucidate the causative factors of POI, not only to expand the understanding of ovarian physiology, but also to provide genetic counselling and fertility guidance to affected patients. Factors leading to POI are multifaceted with genetic factors accounting for 7% to 30%. In recent years, an increasing number of DNA damage-repair-related genes have been linked with the occurrence of POI. Among them, DNA double-strand breaks (DSBs), one of the most damaging to DNA, and its main repair methods including homologous recombination (HR) and non-homologous end joining (NHEJ) are of particular interest. Numerous genes are known to be involved in the regulation of programmed DSB formation and damage repair. The abnormal expression of several genes have been shown to trigger defects in the overall repair pathway and induce POI and other diseases. This review summarises the DSB-related genes that may contribute to the development of POI and their potential regulatory mechanisms, which will help to further establish role of DSB in the pathogenesis of POI and provide theoretical guidance for the study of the pathogenesis and clinical treatment of this disease.
Collapse
Affiliation(s)
- Xuechun Ding
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Xiaowei Gong
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yingying Fan
- Affiliated Hospital of Jining Medical University, Jining, China
| | - Jinghe Cao
- Affiliated Hospital of Jining Medical University, Jining, China
| | - Jingyu Zhao
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yixin Zhang
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Xiaomei Wang
- College of Basic Medicine, Jining Medical University, Jining, China.
| | - Kai Meng
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China.
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China.
| |
Collapse
|
5
|
Xu X, Wang C, Xiao Q, Huang X, Zhou Y, Luo X, Zhang Y, Xu X, Qin Q, Liu S. The alternative transcription and expression characterization of Dmc1 in autotetraploid Carassius auratus. Front Genet 2023; 14:1135006. [PMID: 37056290 PMCID: PMC10086133 DOI: 10.3389/fgene.2023.1135006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Established autotetraploids often have a highly stable meiosis with high fertility compared with neo-autotetraploids. The autotetraploid Carassius auratus (4n = 200, RRRR) (4nRR), which stemmed from whole-genome duplication of Carassius auratus red var. (2n = 100, RR) (RCC), produces diploid gametes with an adopted diploid-like chromosome pairing in meiosis and maintains the formation of autotetraploid lineages. In this study, we focused on Dmc1, a meiosis-specific recombinase during the prophase of meiosis I, and elaborated on the genetic variation, alternative transcription, expression characterization, and epigenetic modification of Dmc1 in RCC and 4nRR. Two original Dmc1 from RCC were identified in 4nRR, and two duplicated Dmc1 differences in genetic composition were observed in 4nRR. Furthermore, we only noticed that one original and one duplicated Dmc1 were expressed in RCC and 4nRR, respectively. However, both possessed identical gene expression profiles, differential expression of sexual dimorphism, and hypomethylation levels. These results indicated that the specific expression of duplicated Dmc1 may be involve in the progression of meiosis of the diploid-like chromosome pairing in autotetraploid Carassius auratus. Herein, the findings significantly increase knowledge of meiosis of autopolyploid fish and provide meaningful insights into genetic breeding in polyploidy fish.
Collapse
|
6
|
Altmannova V, Spirek M, Orlic L, Jēkabsons A, Clarence T, Henggeler A, Mlcouskova J, Chaleil RA, Matos J, Krejci L. The role of bivalent ions in the regulation of D-loop extension mediated by DMC1 during meiotic recombination. iScience 2022; 25:105439. [PMID: 36388968 PMCID: PMC9641244 DOI: 10.1016/j.isci.2022.105439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/06/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
During meiosis, programmed DNA double-strand breaks (DSBs) are repaired by homologous recombination. DMC1, a conserved recombinase, plays a central role in this process. DMC1 promotes DNA strand exchange between homologous chromosomes, thus creating the physical linkage between them. Its function is regulated not only by several accessory proteins but also by bivalent ions. Here, we show that whereas calcium ions in the presence of ATP cause a conformational change within DMC1, stimulating its DNA binding and D-loop formation, they inhibit the extension of the invading strand within the D-loop. Based on structural studies, we have generated mutants of two highly conserved amino acids - E162 and D317 - in human DMC1, which are deficient in calcium regulation. In vivo studies of their yeast homologues further showed that they exhibit severe defects in meiosis, thus emphasizing the importance of calcium ions in the regulation of DMC1 function and meiotic recombination.
Collapse
Affiliation(s)
- Veronika Altmannova
- Department of Biology, Masaryk University, Brno 62500, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno 65691, Czech Republic
| | - Mario Spirek
- Department of Biology, Masaryk University, Brno 62500, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno 65691, Czech Republic
| | - Lucija Orlic
- Max Perutz Labs, University of Vienna, Dr. Bohr-Gasse 9 1030 Vienna, Austria
| | - Atis Jēkabsons
- Department of Biology, Masaryk University, Brno 62500, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno 65691, Czech Republic
| | - Tereza Clarence
- Biomolecular Modelling Laboratory, The Francis Crick Institute, London, UK
| | - Adrian Henggeler
- Max Perutz Labs, University of Vienna, Dr. Bohr-Gasse 9 1030 Vienna, Austria
| | - Jarmila Mlcouskova
- International Clinical Research Center, St. Anne’s University Hospital, Brno 65691, Czech Republic
| | | | - Joao Matos
- Max Perutz Labs, University of Vienna, Dr. Bohr-Gasse 9 1030 Vienna, Austria
| | - Lumir Krejci
- Department of Biology, Masaryk University, Brno 62500, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno 65691, Czech Republic
- National Center for Biomolecular Research, Masaryk University, Brno 62500, Czech Republic
| |
Collapse
|
7
|
Zheng Y, Zhang L, Jin L, Zhang P, Li F, Guo M, Gao Q, Zeng Y, Li M, Zeng W. Unraveling three-dimensional chromatin structural dynamics during spermatogonial differentiation. J Biol Chem 2021; 298:101559. [PMID: 34979097 PMCID: PMC8814405 DOI: 10.1016/j.jbc.2021.101559] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/13/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are able to undergo both self-renewal and differentiation. Unlike self-renewal, which replenishes the SSC and progenitor pool, differentiation is an irreversible process committing cells to meiosis. Although the preparations for meiotic events in differentiating spermatogonia (Di-SG) are likely to be accompanied by alterations in chromatin structure, the three-dimensional chromatin architectural differences between SSCs and Di-SG, and the higher-order chromatin dynamics during spermatogonial differentiation, have not been systematically investigated. Here, we performed in situ high-throughput chromosome conformation capture, RNA-seq, and chromatin immunoprecipitation-sequencing analyses on porcine undifferentiated spermatogonia (which consist of SSCs and progenitors) and Di-SG. We identified that Di-SG exhibited less compact chromatin structural organization, weakened compartmentalization, and diminished topologically associating domains in comparison with undifferentiated spermatogonia, suggesting that diminished higher-order chromatin architecture in meiotic cells, as shown by recent reports, might be preprogrammed in Di-SG. Our data also revealed that A/B compartments, representing open or closed chromatin regions respectively, and topologically associating domains were related to dynamic gene expression during spermatogonial differentiation. Furthermore, we unraveled the contribution of promoter-enhancer interactions to premeiotic transcriptional regulation, which has not been accomplished in previous studies due to limited cell input and resolution. Together, our study uncovered the three-dimensional chromatin structure of SSCs/progenitors and Di-SG, as well as the interplay between higher-order chromatin architecture and dynamic gene expression during spermatogonial differentiation. These findings provide novel insights into the mechanisms for SSC self-renewal and differentiation and have implications for diagnosis and treatment of male sub-/infertility.
Collapse
Affiliation(s)
- Yi Zheng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lingkai Zhang
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Long Jin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Pengfei Zhang
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fuyuan Li
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ming Guo
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qiang Gao
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yao Zeng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Wenxian Zeng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
8
|
Tan X, He Y, Li Z, Wang Q, Du X, Liu J, Li B. Epigenetic silencing of bovine meiosis-specific recombinase Dmc1 by DNA methylation. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.2001383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Xiaofan Tan
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, People’s Republic of China
| | - Yu He
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, People’s Republic of China
| | - Zongzhe Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, People’s Republic of China
| | - Qihui Wang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, People’s Republic of China
| | - Xuehai Du
- Liaoning Provincial Animal Husbandry Development Center, Liaoning Province Agricultural Development Service Center, Shenyang, People’s Republic of China
| | - Jingge Liu
- College of Animal Science and Technology, Jinling Institute of Technology, Nanjing, People’s Republic of China
| | - Bojiang Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, People’s Republic of China
| |
Collapse
|
9
|
Robert N, Yan C, Si-Jiu Y, Bo L, He H, Pengfei Z, Hongwei X, Jian Z, Shijie L, Qian Z. Expression of Rad51 and the histo-morphological evaluation of testis of the sterile male cattle-yak. Theriogenology 2021; 172:239-254. [PMID: 34298284 DOI: 10.1016/j.theriogenology.2021.06.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 11/18/2022]
Abstract
Meiotic recombination is key to the repair of DNA double-strand break damage, provide a link between homologs for proper chromosome segregation as well as ensure genetic diversity in organisms. Defects in recombination often lead to sterility. The ubiquitously expressed Rad51 and the meiosis-specific DMC1 are two closely related recombinases that catalyze the key strand invasion and exchange step of meiotic recombination. This study cloned and sequenced the coding region of cattle-yak Rad51 and determined its mRNA and protein expression levels, evaluated its molecular and evolutionary relationship as well as evaluated the histo-morphological structure of testes in the yellow cattle, yak and the sterile cattle-yak hybrid. The Rad51 gene was amplified using PCR, cloned and sequenced using testicular cDNA from yak and cattle-yak. Real-time PCR was used to examine the expression levels of Rad51/DMC1 mRNA in the cattle, yak and cattle-yak testis while western blotting, immunofluorescence and immunohistochemistry were used to assess the protein expression and localization of Rad51/DMC1 protein in the testicular tissue sections. The results revealed that the mRNA and protein expression of Rad51 and DMC1 are extremely low in the male cattle-yak testis with a corresponding higher incidence of germ cell apoptosis. There was also thinning of the germinal epithelium possibly due to the depletion of the germ cells leading to the widening of the lumen area of the cattle-yak seminiferous tubule. Our findings provide support for the hypothesis that the low expression of Rad51 and DMC1 may contribute to the male hybrid sterility in the cattle-yak.
Collapse
Affiliation(s)
- Niayale Robert
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Cui Yan
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine Gansu Agricultural University, Lanzhou, China.
| | - Yu Si-Jiu
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine Gansu Agricultural University, Lanzhou, China
| | - Liao Bo
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Honghong He
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine Gansu Agricultural University, Lanzhou, China
| | - Zhao Pengfei
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xu Hongwei
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Zhang Jian
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Li Shijie
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Zhang Qian
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
10
|
Zhang MY, Tian Y, Yan ZH, Li WD, Zang CJ, Li L, Sun XF, Shen W, Cheng SF. Maternal Bisphenol S exposure affects the reproductive capacity of F1 and F2 offspring in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115382. [PMID: 32866863 DOI: 10.1016/j.envpol.2020.115382] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/10/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol S (BPS) is an endocrine disruptor which is widely used in commercial plastic products. Previous studies have shown that exposure to BPS has toxic effects on various aspects of mammalian, but there are few reports about reproductive toxicity. In order to investigate the effects of maternal BPS exposure on the reproductive of F1 and F2 female mice, the pregnant mice were orally administered with different dosages of BPS only once every day from 12.5 to 15.5 days post-coitus (dpc). The results showed that maternal BPS exposure to 2 μg per kg of body weight per day (2 μg/kg) and 10 μg/kg accelerated the meiotic prophase I (MPI) of F1 female mice and the expression of the genes related to meiotic were increased. Further studies showed that maternal BPS exposure resulted in a significant increase in the percentage of oocytes enclosed in primordial follicles in the 3 days post-partum (3 dpp) ovaries of F1 female mice. And at the time of 21 days post-partum (21 dpp) in F1 female mice, the number of antral follicles were significantly lower compare to controls. In the study of five-week female mice of F1, we found that BPS disturbed the folliculogenesis, and the maturation rates and fertilization rates of oocytes were significantly decreased. Of note, maternal BPS exposure disrupted H3K4 and H3K9 tri-methylation levels in F1 ovaries. Maternal BPS exposure only affected the cyst breakdown in F2 female mice. Taken together, our results suggest that, maternal BPS exposure impaired the process of meiosis and oogenesis of F1 and F2 offspring, resulting in abnormal follicular development and serious damage to the reproduction.
Collapse
Affiliation(s)
- Ming-Yu Zhang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu Tian
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zi-Hui Yan
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei-Dong Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chuan-Jie Zang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lan Li
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiao-Feng Sun
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shun-Feng Cheng
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
11
|
Xie H, Kang Y, Wang S, Zheng P, Chen Z, Roy S, Zhao C. E2f5 is a versatile transcriptional activator required for spermatogenesis and multiciliated cell differentiation in zebrafish. PLoS Genet 2020; 16:e1008655. [PMID: 32196499 PMCID: PMC7112233 DOI: 10.1371/journal.pgen.1008655] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/01/2020] [Accepted: 02/05/2020] [Indexed: 11/18/2022] Open
Abstract
E2f5 is a member of the E2f family of transcription factors that play essential roles during many cellular processes. E2f5 was initially characterized as a transcriptional repressor in cell proliferation studies through its interaction with the Retinoblastoma (Rb) protein for inhibition of target gene transcription. However, the precise roles of E2f5 during embryonic and post-embryonic development remain incompletely investigated. Here, we report that zebrafish E2f5 plays critical roles during spermatogenesis and multiciliated cell (MCC) differentiation. Zebrafish e2f5 mutants develop exclusively as infertile males. In the mutants, spermatogenesis is arrested at the zygotene stage due to homologous recombination (HR) defects, which finally leads to germ cell apoptosis. Inhibition of cell apoptosis in e2f5;tp53 double mutants rescued ovarian development, although oocytes generated from the double mutants were still abnormal, characterized by aberrant distribution of nucleoli. Using transcriptome analysis, we identified dmc1, which encodes an essential meiotic recombination protein, as the major target gene of E2f5 during spermatogenesis. E2f5 can bind to the promoter of dmc1 to promote HR, and overexpression of dmc1 significantly increased the fertilization rate of e2f5 mutant males. Besides gametogenesis defects, e2f5 mutants failed to develop MCCs in the nose and pronephric ducts during early embryonic stages, but these cells recovered later due to redundancy with E2f4. Moreover, we demonstrate that ion transporting principal cells in the pronephric ducts, which remain intercalated with the MCCs, do not contain motile cilia in wild-type embryos, while they generate single motile cilia in the absence of E2f5 activity. In line with this, we further show that E2f5 activates the Notch pathway gene jagged2b (jag2b) to inhibit the acquisition of MCC fate as well as motile cilia differentiation by the neighboring principal cells. Taken together, our data suggest that E2f5 can function as a versatile transcriptional activator and identify novel roles of the protein in spermatogenesis as well as MCC differentiation during zebrafish development.
Collapse
Affiliation(s)
- Haibo Xie
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Yunsi Kang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Shuo Wang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Pengfei Zheng
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Zhe Chen
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Department of Pediatrics, Yong Loo Ling School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chengtian Zhao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
- * E-mail:
| |
Collapse
|
12
|
Zhao Y, Wang Y, Upadhyay S, Xue C, Lin X. Activation of Meiotic Genes Mediates Ploidy Reduction during Cryptococcal Infection. Curr Biol 2020; 30:1387-1396.e5. [PMID: 32109388 DOI: 10.1016/j.cub.2020.01.081] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/04/2019] [Accepted: 01/28/2020] [Indexed: 12/23/2022]
Abstract
Cryptococcus neoformans is a global human fungal pathogen that causes fatal meningoencephalitis in mostly immunocompromised individuals. During pulmonary infection, cryptococcal cells form large polyploid cells that exhibit increased resistance to host immune attack and are proposed to contribute to the latency of cryptococcal infection. These polyploid titan cells can generate haploid and aneuploid progeny that may result in systemic infection. What triggers cryptococcal polyploidization and how ploidy reduction is achieved remain open questions. Here, we discovered that Cryptococcus cells polyploidize in response to genotoxic stresses that cause DNA double-strand breaks. Intriguingly, meiosis-specific genes are activated in C. neoformans and contribute to ploidy reduction, both in vitro and during infection in mice. Cryptococcal cells that activated their meiotic genes in mice were resistant to specific genotoxic stress compared to sister cells recovered from the same host tissue but without activation of meiotic genes. Our findings support the idea that meiotic genes, in addition to their conventional roles in classic sexual reproduction, contribute to adaptation of eukaryotic cells that undergo dramatic genome changes in response to genotoxic stress. The discovery has additional implications for evolution of sexual reproduction and the paradox of the presence of meiotic machinery in asexual species. Finally, our findings in this eukaryotic microbe mirror the revolutionary discoveries of the polyploidization and meiosis-like ploidy reduction process in cancer cells, suggesting that the reversible ploidy change itself could provide a general mechanism for rejuvenation to promote individual survival in response to stress.
Collapse
Affiliation(s)
- Youbao Zhao
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Yina Wang
- Public Health Research Institute Center, New Jersey Medical School - Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Srijana Upadhyay
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Chaoyang Xue
- Public Health Research Institute Center, New Jersey Medical School - Rutgers, The State University of New Jersey, Newark, NJ 07103, USA.
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA; Department of Plant Biology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
13
|
Qin Q, Zhou Y, Wang C, Zhang M, Qin H, Zhao C, Liu S. Analysis on the Meiosis-Related Gene (Dmc1, Ph1) Expression in Autotriploid Carassius auratus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:753-761. [PMID: 31520246 PMCID: PMC6890579 DOI: 10.1007/s10126-019-09921-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Triploid is usually considered to be unable to perform normal meiosis due to the abnormal behavior of the three sets of chromosomes. But autotriploid Carassius auratus in the Dongting water system (3n = 150, abbreviated as 3nCC) can perform normal meiosis. In artificial autotriploid Carassius auratus (3n = 150, abbreviated as 3nRR), female individuals undergo normal meiosis and produce mature gametes, while male individuals cannot. To better understand the effects of triploidization on meiosis in fish, we study the structure, methylation level, and expression level of meiosis-related genes (Dmc1, Ph1) in diploid Carassius auratus (2n = 100, abbreviated as 2nCC), Carassius auratus red var.(2n = 100, abbreviated as RCC), 3nCC and 3nRR. The results show that, compared with their diploid ancestors (2nCC and RCC), Dmc1 and Ph1 genes are hypomethylated in all 3nCC and female 3nRR, while are hypermethylated in male 3nRR. Correspondingly, Dmc1 and Ph1 genes are highly expressed in all 3nCC and female 3nRR, while are lowly expressed in male 3nRR. These results indicate that high expression of meiosis-related genes can contribute to restoration of bivalent pairing during meiosis in autotriploid Carassius auratus. This study provides new insights into the effect of DNA methylation on the fertility in triploid fish.
Collapse
Affiliation(s)
- Qinbo Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Yuwei Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Chongqing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Minghe Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Huan Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Chun Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.
| |
Collapse
|
14
|
Feng C, Su H, Bai H, Wang R, Liu Y, Guo X, Liu C, Zhang J, Yuan J, Birchler JA, Han F. High-efficiency genome editing using a dmc1 promoter-controlled CRISPR/Cas9 system in maize. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1848-1857. [PMID: 29569825 PMCID: PMC6181213 DOI: 10.1111/pbi.12920] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 05/13/2023]
Abstract
Previous studies revealed that the promoters for driving both Cas9 and sgRNAs are quite important for efficient genome editing by CRISPR/Cas9 in plants. Here, we report our results of targeted genome editing using the maize dmc1 gene promoter combined with the U3 promoter for Cas9 and sgRNA, respectively. Three loci in the maize genome were selected for targeting. The T0 plants regenerated were highly efficiently edited at the target sites with homozygous or bi-allelic mutants accounting for about 66%. The mutations in T0 plants could be stably transmitted to the T1 generation, and new mutations could be generated in gametes or zygotes. Whole-genome resequencing indicated that no off-target mutations could be detected in the predicted loci with sequence similarity to the targeted site. Our results show that the dmc1 promoter-controlled (DPC) CRISPR/Cas9 system is highly efficient in maize and provide further evidence that the optimization of the promoters used for the CRISPR/Cas9 system is important for enhancing the efficiency of targeted genome editing in plants. The evolutionary conservation of the dmc1 gene suggests its potential for use in other plant species.
Collapse
Affiliation(s)
- Chao Feng
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Handong Su
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Han Bai
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Rui Wang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Yalin Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xianrui Guo
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Chang Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jing Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Jing Yuan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | | | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| |
Collapse
|
15
|
Singh G, Da Ines O, Gallego ME, White CI. Analysis of the impact of the absence of RAD51 strand exchange activity in Arabidopsis meiosis. PLoS One 2017; 12:e0183006. [PMID: 28797117 PMCID: PMC5552350 DOI: 10.1371/journal.pone.0183006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/27/2017] [Indexed: 11/21/2022] Open
Abstract
The ploidy of eukaryote gametes must be halved to avoid doubling of numbers of chromosomes with each generation and this is carried out by meiosis, a specialized cell division in which a single chromosomal replication phase is followed by two successive nuclear divisions. With some exceptions, programmed recombination ensures the proper pairing and distribution of homologous pairs of chromosomes in meiosis and recombination defects thus lead to sterility. Two highly related recombinases are required to catalyse the key strand-invasion step of meiotic recombination and it is the meiosis-specific DMC1 which is generally believed to catalyse the essential non-sister chromatid crossing-over, with RAD51 catalysing sister-chromatid and non-cross-over events. Recent work in yeast and plants has however shown that in the absence of RAD51 strand-exchange activity, DMC1 is able to repair all meiotic DNA breaks and surprisingly, that this does not appear to affect numbers of meiotic cross-overs. In this work we confirm and extend this conclusion. Given that more than 95% of meiotic homologous recombination in Arabidopsis does not result in inter-homologue crossovers, Arabidopsis is a particularly sensitive model for testing the relative importance of the two proteins-even minor effects on the non-crossover event population should produce detectable effects on crossing-over. Although the presence of RAD51 protein provides essential support for the action of DMC1, our results show no significant effect of the absence of RAD51 strand-exchange activity on meiotic crossing-over rates or patterns in different chromosomal regions or across the whole genome of Arabidopsis, strongly supporting the argument that DMC1 catalyses repair of all meiotic DNA breaks, not only non-sister cross-overs.
Collapse
Affiliation(s)
- Gunjita Singh
- Génétique, Reproduction et Dévelopement, UMR CNRS 6293 - INSERM U1103 - Université Cleront Auvergne Campus Universitaire des Cézeaux, Aubiere, France
| | - Olivier Da Ines
- Génétique, Reproduction et Dévelopement, UMR CNRS 6293 - INSERM U1103 - Université Cleront Auvergne Campus Universitaire des Cézeaux, Aubiere, France
| | - Maria Eugenia Gallego
- Génétique, Reproduction et Dévelopement, UMR CNRS 6293 - INSERM U1103 - Université Cleront Auvergne Campus Universitaire des Cézeaux, Aubiere, France
| | - Charles I. White
- Génétique, Reproduction et Dévelopement, UMR CNRS 6293 - INSERM U1103 - Université Cleront Auvergne Campus Universitaire des Cézeaux, Aubiere, France
| |
Collapse
|
16
|
Disruption of dmc1 Produces Abnormal Sperm in Medaka (Oryzias latipes). Sci Rep 2016; 6:30912. [PMID: 27480068 PMCID: PMC4969596 DOI: 10.1038/srep30912] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/08/2016] [Indexed: 11/25/2022] Open
Abstract
DMC1 is a recombinase that is essential for meiotic synapsis. Experiments in extensive species of eukaryotes have indicated the independent role of DMC1 in repairing double strand breaks (DSBs) produced during meiosis I. Mutation of dmc1 in mice and human often leads to obstacles in spermatogenesis and male sterility. Here, we report on the disruption of dmc1 in male medaka (Oryzias latipes). Synapsis was disturbed in the mutant medaka testis nuclei, as observed in mice and other organisms. Unexpectedly, the mutant medaka could produce a few sperm and, although most of these had multiple tail or multiple head malformations, some of them could swim, and few of them even had insemination ability. Our transcriptome analysis showed that there was not a remarkable change in the expression of most of the genes involved in the pathways associated with the meiotic DNA repair and flagella assembly. Our results provided an indication of the accessory mechanisms that might be involved in the repair of DSBs during meiosis. In a species besides humans, we provided evidence that disorders in meiosis recombination might lead to the malformation of sperm.
Collapse
|
17
|
Sansam CL, Pezza RJ. Connecting by breaking and repairing: mechanisms of DNA strand exchange in meiotic recombination. FEBS J 2015; 282:2444-57. [PMID: 25953379 PMCID: PMC4573575 DOI: 10.1111/febs.13317] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 03/26/2015] [Accepted: 05/06/2015] [Indexed: 01/03/2023]
Abstract
During prophase of meiosis I, homologous chromosomes interact and undergo recombination. Successful completion of these processes is required in order for the homologous chromosomes to mount the meiotic spindle as a pair. The organization of the chromosomes into pairs ensures orderly segregation to opposite poles of the dividing cell, such that each gamete receives one copy of each chromosome. Chiasmata, the cytological manifestation of crossover products of recombination, physically connect the homologs in pairs, providing a linkage that facilitates their segregation. Consequently, mutations that reduce the level of recombination are invariably associated with increased errors in meiotic chromosome segregation. In this review, we focus on recent biochemical and genetic advances in elucidating the mechanisms of meiotic DNA strand exchange catalyzed by the Dmc1 protein. We also discuss the mode by which two recombination mediators, Hop2 and Mnd1, facilitate rate-limiting steps of DNA strand exchange catalyzed by Dmc1.
Collapse
Affiliation(s)
- Christopher L Sansam
- Cell Cycle and Cancer Biology Program, Oklahoma Medical Research Foundation and the Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Roberto J Pezza
- Cell Cycle and Cancer Biology Program, Oklahoma Medical Research Foundation and the Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| |
Collapse
|
18
|
Jahns MT, Vezon D, Chambon A, Pereira L, Falque M, Martin OC, Chelysheva L, Grelon M. Crossover localisation is regulated by the neddylation posttranslational regulatory pathway. PLoS Biol 2014; 12:e1001930. [PMID: 25116939 PMCID: PMC4130666 DOI: 10.1371/journal.pbio.1001930] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 07/03/2014] [Indexed: 12/21/2022] Open
Abstract
A genetic study finds the neddylation pathway (known to-date for post-translational protein modification) is involved in regulating crossover localization but not crossover number during meiosis in Arabidopsis. Crossovers (COs) are at the origin of genetic variability, occurring across successive generations, and they are also essential for the correct segregation of chromosomes during meiosis. Their number and position are precisely controlled, however the mechanisms underlying these controls are poorly understood. Neddylation/rubylation is a regulatory pathway of posttranslational protein modification that is required for numerous cellular processes in eukaryotes, but has not yet been linked to homologous recombination. In a screen for meiotic recombination-defective mutants, we identified several axr1 alleles, disrupting the gene encoding the E1 enzyme of the neddylation complex in Arabidopsis. Using genetic and cytological approaches we found that axr1 mutants are characterised by a shortage in bivalent formation correlated with strong synapsis defects. We determined that the bivalent shortage in axr1 is not due to a general decrease in CO formation but rather due to a mislocalisation of class I COs. In axr1, as in wild type, COs are still under the control of the ZMM group of proteins. However, in contrast to wild type, they tend to cluster together and no longer follow the obligatory CO rule. Lastly, we showed that this deregulation of CO localisation is likely to be mediated by the activity of a cullin 4 RING ligase, known to be involved in DNA damage sensing during somatic DNA repair and mouse spermatogenesis. In conclusion, we provide evidence that the neddylation/rubylation pathway of protein modification is a key regulator of meiotic recombination. We propose that rather than regulating the number of recombination events, this pathway regulates their localisation, through the activation of cullin 4 RING ligase complexes. Possible targets for these ligases are discussed. During meiosis, two successive chromosomal divisions follow a single S phase, resulting in the formation of four haploid cells, each with half of the parental genetic material. This reduction in chromosome number occurs during the first meiotic division, when homologous chromosomes (paternal and maternal) are separated from each other. For this to happen, homologous chromosomes associate in structures called bivalents, where each chromosome is linked to its homologue by a point of contact known as chiasmata. These chiasmata reflect the formation of crossovers (COs), one of the manifestations of the exchange of genetic material occurring during homologous recombination. CO number varies little at around two per chromosome pair, and they tend to be evenly spaced on chromosomes. Thus, CO number and distribution are very tightly controlled. However, the mechanisms underlying these controls are very poorly understood. In this study, we identified a regulatory pathway of meiotic recombination. We show that this pathway does not regulate the amount of recombination events per se, but instead controls their localisation, as when it is defective, CO events cluster together in a few regions of the genome, leading to bivalent shortage and progeny aneuploidy with incorrect numbers of chromosomes. This regulatory pathway is a posttranslational protein modification system called neddylation (or rubylation in plants), known to be required for numerous cellular processes in eukaryotes. We identify an enzyme of the neddylation complex as a major regulator of meiotic recombination in Arabidopsis and show that this process may be also conserved in mammals.
Collapse
Affiliation(s)
- Marina Tagliaro Jahns
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Daniel Vezon
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Aurélie Chambon
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Lucie Pereira
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Matthieu Falque
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche de Génétique Végétale, Université Paris-Sud, Gif-sur-Yvette, France
| | - Olivier C. Martin
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche de Génétique Végétale, Université Paris-Sud, Gif-sur-Yvette, France
| | - Liudmila Chelysheva
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Mathilde Grelon
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- * E-mail:
| |
Collapse
|
19
|
Wang L, Tian X, Gyawali R, Upadhyay S, Foyle D, Wang G, Cai JJ, Lin X. Morphotype transition and sexual reproduction are genetically associated in a ubiquitous environmental pathogen. PLoS Pathog 2014; 10:e1004185. [PMID: 24901238 PMCID: PMC4047104 DOI: 10.1371/journal.ppat.1004185] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/30/2014] [Indexed: 11/18/2022] Open
Abstract
Sexual reproduction in an environmental pathogen helps maximize its lineage fitness to changing environment and the host. For the fungal pathogen Cryptococcus neoformans, sexual reproduction is proposed to have yielded hyper virulent and drug resistant variants. The life cycle of this pathogen commences with mating, followed by the yeast-hypha transition and hyphal growth, and it concludes with fruiting body differentiation and sporulation. How these sequential differentiation events are orchestrated to ensure developmental continuality is enigmatic. Here we revealed the genetic network of the yeast-to-hypha transition in Cryptococcus by analyzing transcriptomes of populations with a homogeneous morphotype generated by an engineered strain. Among this network, we found that a Pumilio-family protein Pum1 and the matricellular signal Cfl1 represent two major parallel circuits directing the yeast-hypha transition. Interestingly, only Pum1 coordinates the sequential morphogenesis events during a-α bisexual and α unisexual reproduction. Pum1 initiates the yeast-to-hypha transition, partially through a novel filament-specific secretory protein Fas1; Pum1 is also required to sustain hyphal growth after the morphological switch. Furthermore, Pum1 directs subsequent differentiation of aerial hyphae into fruiting bodies in both laboratory and clinical isolates. Pum1 exerts its control on sexual reproduction partly through regulating the temporal expression of Dmc1, the meiosis-specific recombinase. Therefore, Pum1 serves a pivotal role in bridging post-mating morphological differentiation events with sexual reproduction in Cryptococcus. Our findings in Cryptococcus illustrate how an environmental pathogen can ensure the completion of its life cycle to safeguard its long-term lineage success.
Collapse
Affiliation(s)
- Linqi Wang
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- * E-mail: (LW); (XL)
| | - Xiuyun Tian
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Rachana Gyawali
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Srijana Upadhyay
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Dylan Foyle
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Gang Wang
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| | - James J. Cai
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| | - Xiaorong Lin
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- * E-mail: (LW); (XL)
| |
Collapse
|
20
|
Kobayashi W, Sekine S, Machida S, Kurumizaka H. Green fluorescent protein fused to the C terminus of RAD51 specifically interferes with secondary DNA binding by the RAD51-ssDNA complex. Genes Genet Syst 2014; 89:169-79. [DOI: 10.1266/ggs.89.169] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Wataru Kobayashi
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University
| | - Satoshi Sekine
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University
| | - Shinichi Machida
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University
| |
Collapse
|
21
|
Uanschou C, Ronceret A, Von Harder M, De Muyt A, Vezon D, Pereira L, Chelysheva L, Kobayashi W, Kurumizaka H, Schlögelhofer P, Grelon M. Sufficient amounts of functional HOP2/MND1 complex promote interhomolog DNA repair but are dispensable for intersister DNA repair during meiosis in Arabidopsis. THE PLANT CELL 2013; 25:4924-40. [PMID: 24363313 PMCID: PMC3903996 DOI: 10.1105/tpc.113.118521] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
During meiosis, homologous recombination (HR) is essential to repair programmed DNA double-strand breaks (DSBs), and a dedicated protein machinery ensures that the homologous chromosome is favored over the nearby sister chromatid as a repair template. The homologous-pairing protein2/meiotic nuclear division protein1 (HOP2/MND1) protein complex has been identified as a crucial factor of meiotic HR in Arabidopsis thaliana, since loss of either MND1 or HOP2 results in failure of DNA repair. We isolated two mutant alleles of HOP2 (hop2-2 and hop2-3) that retained the capacity to repair meiotic DSBs via the sister chromatid but failed to use the homologous chromosome. We show that in these alleles, the recombinases radiation sensitive51 (RAD51) and disrupted meiotic cDNA1 (DMC1) are loaded, but only the intersister DNA repair pathway is activated. The hop2-2 phenotype is correlated with a decrease in HOP2/MND1 complex abundance. In hop2-3, a truncated HOP2 protein is produced that retains its ability to bind to DMC1 and DNA but forms less stable complexes with MND1 and fails to efficiently stimulate DMC1-driven D-loop formation. Genetic analyses demonstrated that in the absence of DMC1, HOP2/MND1 is dispensable for RAD51-mediated intersister DNA repair, while in the presence of DMC1, a minimal amount of functional HOP2/MND1 is essential to drive intersister DNA repair.
Collapse
Affiliation(s)
- Clemens Uanschou
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Arnaud Ronceret
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France
| | - Mona Von Harder
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Arnaud De Muyt
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France
| | - Daniel Vezon
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France
| | - Lucie Pereira
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France
| | - Liudmila Chelysheva
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France
| | - Wataru Kobayashi
- Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Hitoshi Kurumizaka
- Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Peter Schlögelhofer
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
- Address correspondence to
| | - Mathilde Grelon
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France
| |
Collapse
|
22
|
Neri S, Bourin P, Peyrafitte JA, Cattini L, Facchini A, Mariani E. Human adipose stromal cells (ASC) for the regeneration of injured cartilage display genetic stability after in vitro culture expansion. PLoS One 2013; 8:e77895. [PMID: 24205017 PMCID: PMC3810264 DOI: 10.1371/journal.pone.0077895] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 09/05/2013] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stromal cells are emerging as an extremely promising therapeutic agent for tissue regeneration due to their multi-potency, immune-modulation and secretome activities, but safety remains one of the main concerns, particularly when in vitro manipulation, such as cell expansion, is performed before clinical application. Indeed, it is well documented that in vitro expansion reduces replicative potential and some multi-potency and promotes cell senescence. Furthermore, during in vitro aging there is a decrease in DNA synthesis and repair efficiency thus leading to DNA damage accumulation and possibly inducing genomic instability. The European Research Project ADIPOA aims at validating an innovative cell-based therapy where autologous adipose stromal cells (ASCs) are injected in the diseased articulation to activate regeneration of the cartilage. The primary objective of this paper was to assess the safety of cultured ASCs. The maintenance of genetic integrity was evaluated during in vitro culture by karyotype and microsatellite instability analysis. In addition, RT-PCR array-based evaluation of the expression of genes related to DNA damage signaling pathways was performed. Finally, the senescence and replicative potential of cultured cells was evaluated by telomere length and telomerase activity assessment, whereas anchorage-independent clone development was tested in vitro by soft agar growth. We found that cultured ASCs do not show genetic alterations and replicative senescence during the period of observation, nor anchorage-independent growth, supporting an argument for the safety of ASCs for clinical use.
Collapse
Affiliation(s)
- Simona Neri
- Laboratory of Immunorheumatology and Tissue Regeneration/RAMSES, Rizzoli Orthopedic Institute, Bologna, Italy
- * E-mail:
| | - Philippe Bourin
- Etablissement Français du Sang Pyrénées Méditerranée (EFS-PM), Toulouse, France
- CSA21, Toulouse, France
| | - Julie-Anne Peyrafitte
- Etablissement Français du Sang Pyrénées Méditerranée (EFS-PM), Toulouse, France
- STROMALAB, UMR 5273 Centre national de la Recherche Scientifique (CNRS)/Université Paul Sabatier, U1031 Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
| | - Luca Cattini
- Laboratory of Immunorheumatology and Tissue Regeneration/RAMSES, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Andrea Facchini
- Laboratory of Immunorheumatology and Tissue Regeneration/RAMSES, Rizzoli Orthopedic Institute, Bologna, Italy
- Medical and Surgical Sciences Department, University of Bologna, Bologna, Italy
| | - Erminia Mariani
- Laboratory of Immunorheumatology and Tissue Regeneration/RAMSES, Rizzoli Orthopedic Institute, Bologna, Italy
- Medical and Surgical Sciences Department, University of Bologna, Bologna, Italy
| |
Collapse
|
23
|
Meiotic recombination in Arabidopsis is catalysed by DMC1, with RAD51 playing a supporting role. PLoS Genet 2013; 9:e1003787. [PMID: 24086145 PMCID: PMC3784562 DOI: 10.1371/journal.pgen.1003787] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 07/26/2013] [Indexed: 11/29/2022] Open
Abstract
Recombination establishes the chiasmata that physically link pairs of homologous chromosomes in meiosis, ensuring their balanced segregation at the first meiotic division and generating genetic variation. The visible manifestation of genetic crossing-overs, chiasmata are the result of an intricate and tightly regulated process involving induction of DNA double-strand breaks and their repair through invasion of a homologous template DNA duplex, catalysed by RAD51 and DMC1 in most eukaryotes. We describe here a RAD51-GFP fusion protein that retains the ability to assemble at DNA breaks but has lost its DNA break repair capacity. This protein fully complements the meiotic chromosomal fragmentation and sterility of Arabidopsis rad51, but not rad51 dmc1 mutants. Even though DMC1 is the only active meiotic strand transfer protein in the absence of RAD51 catalytic activity, no effect on genetic map distance was observed in complemented rad51 plants. The presence of inactive RAD51 nucleofilaments is thus able to fully support meiotic DSB repair and normal levels of crossing-over by DMC1. Our data demonstrate that RAD51 plays a supporting role for DMC1 in meiotic recombination in the flowering plant, Arabidopsis. Recombination ensures coordinated disjunction of pairs of homologous chromosomes and generates genetic exchanges in meiosis and, with some exceptions, involves the co-operation of the RAD51 and DMC1 strand-exchange proteins. We describe here a RAD51-GFP fusion protein that has lost its DNA break repair capacity but retains the ability to assemble at DNA breaks in the plant, Arabidopsis - fully complementing the meiotic chromosomal fragmentation and sterility of rad51 mutants, and this depends upon DMC1. No effect on genetic map distance was observed in complemented rad51 plants even though DMC1 is the only active strand transfer protein. The inactive RAD51 nucleofilaments are thus able to fully support meiotic DSB repair and normal levels of crossing-over by DMC1 in Arabidopsis. The RAD51-GFP protein confers a dominant-negative inhibition of RAD51-dependent mitotic recombination, while remaining fully fertile - a novel and valuable tool for research in this domain. These phenotypes are equivalent to those of the recently reported yeast rad51-II3A mutant, (Cloud et al. 2012), carrying the implication of their probable generality in other eukaryotes and extending them to a species with a very different relation between numbers of meiotic DNA double-strand breaks and crossing-overs (∼2 DSB/CO in yeast; ∼25–30 DSB/CO in Arabidopsis; ∼15 DSB/CO in mice).
Collapse
|
24
|
Crismani W, Portemer V, Froger N, Chelysheva L, Horlow C, Vrielynck N, Mercier R. MCM8 is required for a pathway of meiotic double-strand break repair independent of DMC1 in Arabidopsis thaliana. PLoS Genet 2013; 9:e1003165. [PMID: 23300481 PMCID: PMC3536722 DOI: 10.1371/journal.pgen.1003165] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 10/28/2012] [Indexed: 11/25/2022] Open
Abstract
Mini-chromosome maintenance (MCM) 2–9 proteins are related helicases. The first six, MCM2–7, are essential for DNA replication in all eukaryotes. In contrast, MCM8 is not always conserved in eukaryotes but is present in Arabidopsis thaliana. MCM8 is required for 95% of meiotic crossovers (COs) in Drosophila and is essential for meiosis completion in mouse, prompting us to study this gene in Arabidopsis meiosis. Three allelic Atmcm8 mutants showed a limited level of chromosome fragmentation at meiosis. This defect was dependent on programmed meiotic double-strand break (DSB) formation, revealing a role for AtMCM8 in meiotic DSB repair. In contrast, CO formation was not affected, as shown both genetically and cytologically. The Atmcm8 DSB repair defect was greatly amplified in the absence of the DMC1 recombinase or in mutants affected in DMC1 dynamics (sds, asy1). The Atmcm8 fragmentation defect was also amplified in plants heterozygous for a mutation in either recombinase, DMC1 or RAD51. Finally, in the context of absence of homologous chromosomes (i.e. haploid), mutation of AtMCM8 also provoked a low level of chromosome fragmentation. This fragmentation was amplified by the absence of DMC1 showing that both MCM8 and DMC1 can promote repair on the sister chromatid in Arabidopsis haploids. Altogether, this establishes a role for AtMCM8 in meiotic DSB repair, in parallel to DMC1. We propose that MCM8 is involved with RAD51 in a backup pathway that repairs meiotic DSB without giving CO when the major pathway, which relies on DMC1, fails. Species that reproduce sexually have two copies of each chromosome, inherited from their father and mother. During a special cell division called meiosis, these two chromosomes are mixed by homologous recombination to give genetically unique chromosomes that will be transmitted to the next generation. This recombination process is initiated by DNA breaks that must be repaired efficiently to maintain fertility. Using the model plant Arabidopsis thaliana we revealed here that the gene AtMCM8 is required to repair a subset of these DNA breaks. However MCM8 appears to not be required for recombination with the homologous chromosome. Instead MCM8 appears to be involved in a safety system that operates to repair DNA breaks that have not been used for homologous recombination. Interestingly the equivalent gene also has an essential meiotic function in the fly and the mouse. However the three species require MCM8 for different aspects of meiosis.
Collapse
Affiliation(s)
- Wayne Crismani
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, RD10, Versailles, France
| | - Virginie Portemer
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, RD10, Versailles, France
| | - Nicole Froger
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, RD10, Versailles, France
| | - Liudmila Chelysheva
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, RD10, Versailles, France
| | - Christine Horlow
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, RD10, Versailles, France
| | - Nathalie Vrielynck
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, RD10, Versailles, France
| | - Raphaël Mercier
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, RD10, Versailles, France
- * E-mail:
| |
Collapse
|
25
|
Ruczinski I, Jorgensen TJ, Shugart YY, Schaad YB, Kessing B, Hoffman-Bolton J, Helzlsouer KJ, Kao W, Wheless L, Francis L, Alani RM, Strickland PT, Smith MW, Alberg AJ. A population-based study of DNA repair gene variants in relation to non-melanoma skin cancer as a marker of a cancer-prone phenotype. Carcinogenesis 2012; 33:1692-8. [PMID: 22581838 PMCID: PMC3514896 DOI: 10.1093/carcin/bgs170] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 05/02/2012] [Accepted: 05/08/2012] [Indexed: 11/13/2022] Open
Abstract
For unknown reasons, non-melanoma skin cancer (NMSC) is associated with increased risk of other malignancies. Focusing solely on DNA repair or DNA repair-related genes, this study tested the hypothesis that DNA repair gene variants contribute to the increased cancer risk associated with a personal history of NMSC. From the parent CLUE II cohort study, established in 1989 in Washington County, MD, the study consisted of a cancer-free control group (n 5 2296) compared with three mutually exclusive groups of cancer cases ascertained through 2007: (i) Other (non-NMSC) cancer only (n 5 2349); (ii) NMSC only (n 5 694) and (iii) NMSC plus other cancer (n 5 577). The frequency of minor alleles in 759 DNA repair gene single nucleotide polymorphisms (SNPs) was compared in these four groups. Comparing those with both NMSC and other cancer versus those with no cancer, 10 SNPs had allelic trend P-values <0.01. The two top-ranked SNPs were both within the thymine DNA glycosylase gene (TDG). One was a non-synonymous coding SNP (rs2888805) [per allele odds ratio (OR) 1.40, 95% confidence interval (CI) 1.16-1.70; P-value 5 0.0006] and the other was an intronic SNP in high linkage disequilibrium with rs2888805 (rs4135150). None of the associations had a P-value <6.6310(-5), the threshold for statistical significance after correcting for multiple comparisons. The results pinpoint DNA repair genes most likely to contribute to the NMSC cancer-prone phenotype. A promising lead is genetic variants in TDG, important not only in base excision repair but also in regulating the epigenome and gene expression, which may contribute to the NMSC-associated increase in overall cancer risk.
Collapse
Affiliation(s)
- Ingo Ruczinski
- Department of Biostatistics, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
- These authors contributed equally to this work
| | - Timothy J. Jorgensen
- Department of Radiation Medicine, Georgetown University School of MedicineWashington, DC, USA,
- These authors contributed equally to this work
| | - Yin Yao Shugart
- Division of Intramural Research Program, National Institute of Mental HealthBethesda, MD, USA
| | - Yvette Berthier Schaad
- Department of Epidemiology, The Johns Hopkins University Bloomberg School of Public HealthBaltimore, MD, USA
- Laboratory of Genomic Diversity, SAIC-Frederick, NCI-FrederickFrederick, MD
| | - Bailey Kessing
- Laboratory of Genomic Diversity, SAIC-Frederick, NCI-FrederickFrederick, MD
| | - Judith Hoffman-Bolton
- Department of Epidemiology, The Johns Hopkins University Bloomberg School of Public HealthBaltimore, MD, USA
- George W. Comstock Center for Public Health Research and PreventionWashington County, MD, USA,
| | | | - W.H.Linda Kao
- Department of Epidemiology, The Johns Hopkins University Bloomberg School of Public HealthBaltimore, MD, USA
| | - Lee Wheless
- Hollings Cancer Center and Division of Epidemiology and Biostatistics, Department of Medicine, Medical University of South CarolinaCharleston, SC, USA,
| | - Lesley Francis
- Hollings Cancer Center and Division of Epidemiology and Biostatistics, Department of Medicine, Medical University of South CarolinaCharleston, SC, USA,
| | - Rhoda M. Alani
- Department of Dermatology, Boston University School of MedicineBoston, MA, USA
| | - Paul T. Strickland
- Department of Epidemiology, The Johns Hopkins University Bloomberg School of Public HealthBaltimore, MD, USA
- Department of Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public HealthBaltimore, MD, USA
| | - Michael W. Smith
- Genetics and Genomics Group, Advanced Technology Program, SAIC-Frederick, Inc., NCI-FrederickFrederick, MD, USA
| | - Anthony J. Alberg
- Hollings Cancer Center and Division of Epidemiology and Biostatistics, Department of Medicine, Medical University of South CarolinaCharleston, SC, USA,
| |
Collapse
|
26
|
Llano E, Herrán Y, García-Tuñón I, Gutiérrez-Caballero C, de Álava E, Barbero JL, Schimenti J, de Rooij DG, Sánchez-Martín M, Pendás AM. Meiotic cohesin complexes are essential for the formation of the axial element in mice. J Cell Biol 2012; 197:877-85. [PMID: 22711701 PMCID: PMC3384418 DOI: 10.1083/jcb.201201100] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 05/21/2012] [Indexed: 12/24/2022] Open
Abstract
Cohesin is a conserved multisubunit protein complex that participates in chromosome segregation, DNA damage repair, chromatin regulation, and synaptonemal complex (SC) formation. Yeast, but not mice, depleted of the cohesin subunit Rec8 are defective in the formation of the axial elements (AEs) of the SC, suggesting that, in mammals, this function is not conserved. In this paper, we show that spermatocytes from mice lacking the two meiosis-specific cohesin subunits RAD21L and REC8 were unable to initiate RAD51- but not DMC1-mediated double-strand break repair, were not able to assemble their AEs, and arrested as early as the leptotene stage of prophase I, demonstrating that cohesin plays an essential role in AE assembly that is conserved from yeast to mammals.
Collapse
Affiliation(s)
- Elena Llano
- Instituto de Biología Molecular y Celular del Cáncer, Departamento de Fisiología, and Departamento de Medicina, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, 37007 Salamanca, Spain
| | - Yurema Herrán
- Instituto de Biología Molecular y Celular del Cáncer, Departamento de Fisiología, and Departamento de Medicina, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, 37007 Salamanca, Spain
| | - Ignacio García-Tuñón
- Instituto de Biología Molecular y Celular del Cáncer, Departamento de Fisiología, and Departamento de Medicina, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, 37007 Salamanca, Spain
| | - Cristina Gutiérrez-Caballero
- Instituto de Biología Molecular y Celular del Cáncer, Departamento de Fisiología, and Departamento de Medicina, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, 37007 Salamanca, Spain
| | - Enrique de Álava
- Instituto de Biología Molecular y Celular del Cáncer, Departamento de Fisiología, and Departamento de Medicina, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, 37007 Salamanca, Spain
| | - José Luis Barbero
- Departamento de Proliferación Celular y Desarrollo. Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - John Schimenti
- Center for Vertebrate Genomics, Cornell University, Ithaca, NY 14850
| | - Dirk G. de Rooij
- Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Manuel Sánchez-Martín
- Instituto de Biología Molecular y Celular del Cáncer, Departamento de Fisiología, and Departamento de Medicina, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, 37007 Salamanca, Spain
| | - Alberto M. Pendás
- Instituto de Biología Molecular y Celular del Cáncer, Departamento de Fisiología, and Departamento de Medicina, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
27
|
Krejci L, Altmannova V, Spirek M, Zhao X. Homologous recombination and its regulation. Nucleic Acids Res 2012; 40:5795-818. [PMID: 22467216 PMCID: PMC3401455 DOI: 10.1093/nar/gks270] [Citation(s) in RCA: 456] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Homologous recombination (HR) is critical both for repairing DNA lesions in mitosis and for chromosomal pairing and exchange during meiosis. However, some forms of HR can also lead to undesirable DNA rearrangements. Multiple regulatory mechanisms have evolved to ensure that HR takes place at the right time, place and manner. Several of these impinge on the control of Rad51 nucleofilaments that play a central role in HR. Some factors promote the formation of these structures while others lead to their disassembly or the use of alternative repair pathways. In this article, we review these mechanisms in both mitotic and meiotic environments and in different eukaryotic taxa, with an emphasis on yeast and mammal systems. Since mutations in several proteins that regulate Rad51 nucleofilaments are associated with cancer and cancer-prone syndromes, we discuss how understanding their functions can lead to the development of better tools for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Lumir Krejci
- Department of Biology, Masaryk University, Brno, Czech Republic.
| | | | | | | |
Collapse
|
28
|
Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nat Med 2012; 18:413-21. [PMID: 22366948 PMCID: PMC3296965 DOI: 10.1038/nm.2669] [Citation(s) in RCA: 475] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 01/11/2011] [Indexed: 01/15/2023]
Abstract
Germline stem cells that produce oocytes in vitro and fertilization-competent eggs in vivo have been identified in and isolated from adult mouse ovaries. Here we describe and validate a FACS-based protocol that can be used with adult mouse ovaries and human ovarian cortical tissue to purify rare mitotically-active cells that exhibit a gene expression profile consistent with primitive germ cells. Once established in vitro, these cells can be expanded for months and spontaneously generate 35–50 µm oocytes, as determined by morphology, gene expression and attainment of haploid (1n) status. Injection of the human germline cells, engineered to stably express GFP, into human ovarian cortical biopsies leads to formation of follicles containing GFP-positive oocytes 1–2 weeks after xenotransplantation into immunodeficient female mice. Thus, ovaries of reproductive-age women, like adult mice, possess rare mitotically-active germ cells that can be propagated in vitro as well as generate oocytes in vitro and in vivo.
Collapse
|
29
|
Zangen D, Kaufman Y, Zeligson S, Perlberg S, Fridman H, Kanaan M, Abdulhadi-Atwan M, Abu Libdeh A, Gussow A, Kisslov I, Carmel L, Renbaum P, Levy-Lahad E. XX ovarian dysgenesis is caused by a PSMC3IP/HOP2 mutation that abolishes coactivation of estrogen-driven transcription. Am J Hum Genet 2011; 89:572-9. [PMID: 21963259 DOI: 10.1016/j.ajhg.2011.09.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/01/2011] [Accepted: 09/12/2011] [Indexed: 10/17/2022] Open
Abstract
XX female gonadal dysgenesis (XX-GD) is a rare, genetically heterogeneous disorder characterized by lack of spontaneous pubertal development, primary amenorrhea, uterine hypoplasia, and hypergonadotropic hypogonadism as a result of streak gonads. Most cases are unexplained but thought to be autosomal recessive. We elucidated the genetic basis of XX-GD in a highly consanguineous Palestinian family by using homozygosity mapping and candidate-gene and whole-exome sequencing. Affected females were homozygous for a 3 bp deletion (NM_016556.2, c.600_602del) in the PSMC3IP gene, leading to deletion of a glutamic acid residue (p.Glu201del) in the highly conserved C-terminal acidic domain. Proteasome 26S subunit, ATPase, 3-Interacting Protein (PSMC3IP)/Tat Binding Protein Interacting Protein (TBPIP) is a nuclear, tissue-specific protein with multiple functions. It is critical for meiotic recombination as indicated by the known role of its yeast ortholog, Hop2. Through the C terminus (not present in yeast), PSMC3IP also coactivates ligand-driven transcription mediated by estrogen, androgen, glucocorticoid, progesterone, and thyroid nuclear receptors. In cell lines, the p.Glu201del mutation abolished PSMC3IP activation of estrogen-driven transcription. Impaired estrogenic signaling can lead to ovarian dysgenesis both by affecting the size of the follicular pool created during fetal development and by failing to counteract follicular atresia during puberty. PSMC3IP joins previous genes known to be mutated in XX-GD, the FSH receptor, and BMP15, highlighting the importance of hormonal signaling in ovarian development and maintenance and suggesting a common pathway perturbed in isolated XX-GD. By analogy to other XX-GD genes, PSMC3IP is also a candidate gene for premature ovarian failure, and its role in folliculogenesis should be further investigated.
Collapse
|
30
|
Dunlop MH, Dray E, Zhao W, Tsai MS, Wiese C, Schild D, Sung P. RAD51-associated protein 1 (RAD51AP1) interacts with the meiotic recombinase DMC1 through a conserved motif. J Biol Chem 2011; 286:37328-34. [PMID: 21903585 DOI: 10.1074/jbc.m111.290015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homologous recombination (HR) reactions mediated by the RAD51 recombinase are essential for DNA and replication fork repair, genome stability, and tumor suppression. RAD51-associated protein 1 (RAD51AP1) is an important HR factor that associates with and stimulates the recombinase activity of RAD51. We have recently shown that RAD51AP1 also partners with the meiotic recombinase DMC1, displaying isoform-specific interactions with DMC1. Here, we have characterized the DMC1 interaction site in RAD51AP1 by a series of truncations and point mutations to uncover a highly conserved WVPP motif critical for DMC1 interaction but dispensable for RAD51 association. This RAD51AP1 motif is reminiscent of the FVPP motif in the tumor suppressor protein BRCA2 that mediates DMC1 interaction. These results further implicate RAD51AP1 in meiotic HR via RAD51 and DMC1.
Collapse
Affiliation(s)
- Myun Hwa Dunlop
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Mladenov E, Iliakis G. Induction and repair of DNA double strand breaks: the increasing spectrum of non-homologous end joining pathways. Mutat Res 2011; 711:61-72. [PMID: 21329706 DOI: 10.1016/j.mrfmmm.2011.02.005] [Citation(s) in RCA: 290] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 01/31/2011] [Accepted: 02/06/2011] [Indexed: 04/13/2023]
Abstract
A defining characteristic of damage induced in the DNA by ionizing radiation (IR) is its clustered character that leads to the formation of complex lesions challenging the cellular repair mechanisms. The most widely investigated such complex lesion is the DNA double strand break (DSB). DSBs undermine chromatin stability and challenge the repair machinery because an intact template strand is lacking to assist restoration of integrity and sequence in the DNA molecule. Therefore, cells have evolved a sophisticated machinery to detect DSBs and coordinate a response on the basis of inputs from various sources. A central function of cellular responses to DSBs is the coordination of DSB repair. Two conceptually different mechanisms can in principle remove DSBs from the genome of cells of higher eukaryotes. Homologous recombination repair (HRR) uses as template a homologous DNA molecule and is therefore error-free; it functions preferentially in the S and G2 phases. Non-homologous end joining (NHEJ), on the other hand, simply restores DNA integrity by joining the two ends, is error prone as sequence is only fortuitously preserved and active throughout the cell cycle. The basis of DSB repair pathway choice remains unknown, but cells of higher eukaryotes appear programmed to utilize preferentially NHEJ. Recent work suggests that when the canonical DNA-PK dependent pathway of NHEJ (D-NHEJ), becomes compromised an alternative NHEJ pathway and not HRR substitutes in a quasi-backup function (B-NHEJ). Here, we outline aspects of DSB induction by IR and review the mechanisms of their processing in cells of higher eukaryotes. We place particular emphasis on backup pathways of NHEJ and summarize their increasing significance in various cellular processes, as well as their potential contribution to carcinogenesis.
Collapse
Affiliation(s)
- Emil Mladenov
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Hufelandstr. 55, 45122 Essen, Germany
| | | |
Collapse
|
32
|
Direct observation method of individual single-stranded DNA molecules using fluorescent replication protein A. J Fluoresc 2011; 21:1189-94. [PMID: 21225324 DOI: 10.1007/s10895-010-0797-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 12/28/2010] [Indexed: 02/04/2023]
Abstract
Direct observation studies of single molecules have revealed molecular behaviors usually hidden in the ensemble and time-averaging of bulk experiments. Direct single DNA molecule analysis of DNA metabolism reactions such as DNA replication, repair, and recombination is necessary to fully understand these essential processes. Intercalation of fluorescent dyes such as YOYO-1 and SYTOX Orange has been the standard method for observing single molecules of double-stranded DNA (dsDNA), but effective fluorescent dyes for observing single molecules of single-stranded DNA (ssDNA) have not been found. To facilitate direct single-molecule observations of DNA metabolism reactions, it is necessary to establish methods for discriminating ssDNA and dsDNA. To observe ssDNA directly, we prepared a fusion protein consisting of the 70 kDa DNA-binding domain of replication protein A and enhanced yellow fluorescent protein (RPA-YFP). This fusion protein had ssDNA-binding activity. In our experiments, dsDNA was stained by SYTOX Orange and ssDNA by RPA-YFP, and we succeeded in staining ssDNA and dsDNA by using RPA-YFP and SYTOX Orange simultaneously.
Collapse
|
33
|
Ding DQ, Haraguchi T, Hiraoka Y. From meiosis to postmeiotic events: alignment and recognition of homologous chromosomes in meiosis. FEBS J 2009; 277:565-70. [PMID: 20015081 DOI: 10.1111/j.1742-4658.2009.07501.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recombination of homologous chromosomes is essential for correct reductional segregation of homologous chromosomes, which characterizes meiosis. To accomplish homologous recombination, chromosomes must find their homologous partners and pair with them within the spatial constraints of the nucleus. Although various mechanisms have developed in different organisms, two major steps are involved in the process of pairing: first, alignment of homologous chromosomes to bring them close to each other for recognition; and second, recognition of the homologous partner of each chromosome so that they can form an intimate pair. Here, we discuss the various mechanisms used for alignment and recognition of homologous chromosomes in meiosis.
Collapse
Affiliation(s)
- Da-Qiao Ding
- Kobe Advanced ICT Research Center, National Institute of Information and Communications Technology, Kobe, Japan
| | | | | |
Collapse
|
34
|
Székvölgyi L, Nicolas A. From meiosis to postmeiotic events: homologous recombination is obligatory but flexible. FEBS J 2009; 277:571-89. [PMID: 20015080 DOI: 10.1111/j.1742-4658.2009.07502.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sexual reproduction depends on the success of faithful chromosome transmission during meiosis to yield viable gametes. Central to meiosis is the process of recombination between paternal and maternal chromosomes, which boosts the genetic diversity of progeny and ensures normal homologous chromosome segregation. Imperfections in meiotic recombination are the source of de novo germline mutations, abnormal gametes, and infertility. Thus, not surprisingly, cells have developed a variety of mechanisms and tight controls to ensure sufficient and well-distributed recombination events within their genomes, the details of which remain to be fully elucidated. Local and genome-wide studies of normal and genetically engineered cells have uncovered a remarkable stochasticity in the number and positioning of recombination events per chromosome and per cell, which reveals an impressive level of flexibility. In this minireview, we summarize our contemporary understanding of meiotic recombination and its control mechanisms, and address the seemingly paradoxical and poorly understood diversity of recombination sites. Flexibility in the distribution of meiotic recombination events within genomes may reside in regulation at the chromatin level, with histone modifications playing a recently recognized role.
Collapse
Affiliation(s)
- Lóránt Székvölgyi
- Recombination and Genome Instability Unit, Institut Curie, Centre de Recherche, UMR 3244 CNRS, Universite Pierre et Marie Curie, Paris, France
| | | |
Collapse
|