1
|
Shih JY, Hsu YHH. Peptide Activator Stabilizes DJ-1 Structure and Enhances Its Activity. Int J Mol Sci 2024; 25:11075. [PMID: 39456860 PMCID: PMC11508141 DOI: 10.3390/ijms252011075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
DJ-1 is a vital enzyme involved in the maintenance of mitochondrial health, and its mutation has been associated with an increased risk of Parkinson's disease (PD). Effective regulation of DJ-1 activity is essential for the well-being of mitochondria, and DJ-1 is thus a potential target for PD drug development. In this study, two peptides (15EEMETIIPVDVMRRA29 and 47SRDVVICPDA56) were utilized with the aim of enhancing the activity of DJ-1. The mechanisms underlying the activity enhancement by these two peptides were investigated using hydrogen/deuterium exchange mass spectrometry (HDXMS). The HDXMS results revealed distinct mechanisms. Peptide 1 obstructs the access of solvent to the dimer interface and stabilizes the α/β hydrolase structure, facilitating substrate binding to a stabilized active site. Conversely, peptide 2 induces a destabilization of the α/β hydrolase core, enhancing substrate accessibility and subsequently increasing DJ-1 activity. The binding of these two peptides optimizes the activity site within the dimeric structure. These findings offer valuable insights into the mechanisms underlying the activity enhancement of DJ-1 by the two peptides, potentially aiding the development of new drugs that can enhance the activity of DJ-1 and, consequently, advance PD treatment.
Collapse
Affiliation(s)
| | - Yuan-Hao Howard Hsu
- Department of Chemistry, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung 40704, Taiwan;
| |
Collapse
|
2
|
Wang T, Liu W, Zhang Q, Jiao J, Wang Z, Gao G, Yang H. 4-Oxo-2-Nonenal- and Agitation-Induced Aggregates of α-Synuclein and Phosphorylated α-Synuclein with Distinct Biophysical Properties and Biomedical Applications. Cells 2024; 13:739. [PMID: 38727274 PMCID: PMC11082957 DOI: 10.3390/cells13090739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
α-Synuclein (α-syn) can form oligomers, protofibrils, and fibrils, which are associated with the pathogenesis of Parkinson's disease and other synucleinopathies. Both the lipid peroxidation product 4-oxo-2-nonenal (ONE) and agitation can induce aggregation of α-syn and phosphorylated α-syn. Thus, clarification of the characteristics of different α-syn species could help to select suitable aggregates for diagnosis and elucidate the pathogenesis of diseases. Here, we characterized ONE-induced wild-type (WT) α-syn aggregates (OW), ONE-induced phosphorylated α-syn (p-α-syn) aggregates (OP), agitation-induced α-syn preformed fibrils (PFF), and agitation-induced p-α-syn preformed fibrils (pPFF). Thioflavin T (ThT) dying demonstrated that OW and OP had fewer fibrils than the PFF and pPFF. Transmission electron microscopy revealed that the lengths of PFF and pPFF were similar, but the diameters differed. OW and OP had more compact structures than PFF and pPFF. Aggregation of p-α-syn was significantly faster than WT α-syn. Furthermore, OW and OP were more sodium dodecyl sulfate-stable and proteinase K-resistant, suggesting greater stability and compactness, while aggregates of PFF and pPFF were more sensitive to proteinase K treatment. Both ONE- and agitation-induced aggregates were cytotoxic when added exogenously to SH-SY5Y cells with increasing incubation times, but the agitation-induced aggregates caused cell toxicity in a shorter time and more p-α-syn inclusions. Similarly, p-proteins were more cytotoxic than non-p-proteins. Finally, all four aggregates were used as standard antigens to establish sandwich enzyme-linked immunosorbent assay (ELISA). The results showed that the recognition efficiency of OW and OP was more sensitive than that of PFF and pPFF. The OW- and OP-specific ELISA for detection of p-α-syn and α-syn in plasma samples of Thy1-α-syn transgenic mice showed that the content of aggregates could reflect the extent of disease. ONE and agitation induced the formation of α-syn aggregates with distinct biophysical properties and biomedical applications.
Collapse
Affiliation(s)
- Tie Wang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (T.W.); (W.L.); (Q.Z.); (J.J.); (Z.W.)
- Center of Parkinson’s Disease, Beijing Key Laboratory of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Institute of Brain Disorders, Beijing 100069, China
| | - Weijin Liu
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (T.W.); (W.L.); (Q.Z.); (J.J.); (Z.W.)
- Center of Parkinson’s Disease, Beijing Key Laboratory of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Institute of Brain Disorders, Beijing 100069, China
| | - Qidi Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (T.W.); (W.L.); (Q.Z.); (J.J.); (Z.W.)
- Center of Parkinson’s Disease, Beijing Key Laboratory of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Institute of Brain Disorders, Beijing 100069, China
| | - Jie Jiao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (T.W.); (W.L.); (Q.Z.); (J.J.); (Z.W.)
- Center of Parkinson’s Disease, Beijing Key Laboratory of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Institute of Brain Disorders, Beijing 100069, China
| | - Zihao Wang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (T.W.); (W.L.); (Q.Z.); (J.J.); (Z.W.)
- Center of Parkinson’s Disease, Beijing Key Laboratory of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Institute of Brain Disorders, Beijing 100069, China
| | - Ge Gao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (T.W.); (W.L.); (Q.Z.); (J.J.); (Z.W.)
- Center of Parkinson’s Disease, Beijing Key Laboratory of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Institute of Brain Disorders, Beijing 100069, China
| | - Hui Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (T.W.); (W.L.); (Q.Z.); (J.J.); (Z.W.)
- Center of Parkinson’s Disease, Beijing Key Laboratory of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Institute of Brain Disorders, Beijing 100069, China
| |
Collapse
|
3
|
Lage L, Rodriguez-Perez AI, Villar-Cheda B, Labandeira-Garcia JL, Dominguez-Meijide A. Angiotensin type 1 receptor activation promotes neuronal and glial alpha-synuclein aggregation and transmission. NPJ Parkinsons Dis 2024; 10:37. [PMID: 38368444 PMCID: PMC10874459 DOI: 10.1038/s41531-024-00650-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/02/2024] [Indexed: 02/19/2024] Open
Abstract
The brain renin-angiotensin system (RAS) has been related to dopaminergic degeneration, and high expression of the angiotensin II (AngII) type 1 receptor (AT1) gene is a marker of the most vulnerable neurons in humans. However, it is unknown whether AngII/AT1 overactivation affects α-synuclein aggregation and transmission. In vitro, AngII/AT1 activation increased α-synuclein aggregation in dopaminergic neurons and microglial cells, which was related to AngII-induced NADPH-oxidase activation and intracellular calcium raising. In mice, AngII/AT1 activation was involved in MPTP-induced increase in α-synuclein expression and aggregation, as they significantly decreased in mice treated with the AT1 blocker telmisartan and AT1 knockout mice. Cell co-cultures (transwells) revealed strong transmission of α-synuclein from dopaminergic neurons to astrocytes and microglia. AngII induced a higher α-synuclein uptake by microglial cells and an increase in the transfer of α-synuclein among astroglial cells. However, AngII did not increase the release of α-synuclein by neurons. The results further support brain RAS dysregulation as a major mechanism for the progression of Parkinson's disease, and AT1 inhibition and RAS modulation as therapeutic targets.
Collapse
Affiliation(s)
- Lucia Lage
- Cellular and Molecular Neurobiology of Parkinson's disease, Research Center for Molecular Medicine and Chronic diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana I Rodriguez-Perez
- Cellular and Molecular Neurobiology of Parkinson's disease, Research Center for Molecular Medicine and Chronic diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Begoña Villar-Cheda
- Cellular and Molecular Neurobiology of Parkinson's disease, Research Center for Molecular Medicine and Chronic diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jose L Labandeira-Garcia
- Cellular and Molecular Neurobiology of Parkinson's disease, Research Center for Molecular Medicine and Chronic diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain.
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| | - Antonio Dominguez-Meijide
- Cellular and Molecular Neurobiology of Parkinson's disease, Research Center for Molecular Medicine and Chronic diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain.
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
4
|
Li HY, Liu DS, Zhang YB, Rong H, Zhang XJ. The interaction between alpha-synuclein and mitochondrial dysfunction in Parkinson's disease. Biophys Chem 2023; 303:107122. [PMID: 37839353 DOI: 10.1016/j.bpc.2023.107122] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/18/2023] [Accepted: 10/07/2023] [Indexed: 10/17/2023]
Abstract
Parkinson's disease (PD) is an aging-associated neurodegenerative disorder with the hallmark of abnormal aggregates of alpha-synuclein (α-syn) in Lewy bodies (LBs) and Lewy neurites (LNs). Currently, pathogenic α-syn and mitochondrial dysfunction have been considered as prominent roles that give impetus to the PD onset. This review describes the α-syn pathology and mitochondrial alterations in PD, and focuses on how α-syn interacts with multiple aspects of mitochondrial homeostasis in the pathogenesis of PD.
Collapse
Affiliation(s)
- Hong-Yan Li
- Department of Basic Medical College, Heilongjiang University of Chinese Medicine, Haerbin 150000, PR China
| | - De-Shui Liu
- Department of Pathology, Qiqihar Medical University, Qiqihar 161006, PR China
| | - Ying-Bo Zhang
- Department of Pathology, Qiqihar Medical University, Qiqihar 161006, PR China
| | - Hua Rong
- Department of Pathology, Qiqihar Medical University, Qiqihar 161006, PR China
| | - Xiao-Jie Zhang
- Department of Basic Medical College, Heilongjiang University of Chinese Medicine, Haerbin 150000, PR China; Heilongjiang Nursing College, Haerbin 150000, PR China.
| |
Collapse
|
5
|
Prasertsuksri P, Kraokaew P, Pranweerapaiboon K, Sobhon P, Chaithirayanon K. Neuroprotection of Andrographolide against Neurotoxin MPP +-Induced Apoptosis in SH-SY5Y Cells via Activating Mitophagy, Autophagy, and Antioxidant Activities. Int J Mol Sci 2023; 24:ijms24108528. [PMID: 37239873 DOI: 10.3390/ijms24108528] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Parkinson's disease (PD) is associated with dopaminergic neuron loss and alpha-synuclein aggregation caused by ROS overproduction, leading to mitochondrial dysfunction and autophagy impairment. Recently, andrographolide (Andro) has been extensively studied for various pharmacological properties, such as anti-diabetic, anti-cancer, anti-inflammatory, and anti-atherosclerosis. However, its potential neuroprotective effects on neurotoxin MPP+-induced SH-SY5Y cells, a cellular PD model, remain uninvestigated. In this study, we hypothesized that Andro has neuroprotective effects against MPP+-induced apoptosis, which may be mediated through the clearance of dysfunctional mitochondria by mitophagy and ROS by antioxidant activities. Herein, Andro pretreatment could attenuate MPP+-induced neuronal cell death that was reflected by reducing mitochondrial membrane potential (MMP) depolarization, alpha-synuclein, and pro-apoptotic proteins expressions. Concomitantly, Andro attenuated MPP+-induced oxidative stress through mitophagy, as indicated by increasing colocalization of MitoTracker Red with LC3, upregulations of the PINK1-Parkin pathway, and autophagy-related proteins. On the contrary, Andro-activated autophagy was compromised when pretreated with 3-MA. Furthermore, Andro activated the Nrf2/KEAP1 pathway, leading to increasing genes encoding antioxidant enzymes and activities. This study elucidated that Andro exhibited significant neuroprotective effects against MPP+-induced SH-SY5Y cell death in vitro by enhancing mitophagy and clearance of alpha-synuclein through autophagy, as well as increasing antioxidant capacity. Our results provide evidence that Andro could be considered a potential supplement for PD prevention.
Collapse
Affiliation(s)
| | - Pichnaree Kraokaew
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Kanta Pranweerapaiboon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | |
Collapse
|
6
|
Lee TY, Yang W, Cha DS, Han YT. Synthesis of a natural quinoline alkaloid isolated from the deep-sea-derived fungus and its potential as a therapeutic for Parkinson's disease. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2023; 25:446-455. [PMID: 35980025 DOI: 10.1080/10286020.2022.2104259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/17/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
2-(Quinoline-8-carboxamido)benzoic acid (2-QBA; 1) is a natural quinoline alkaloid isolated from the deep-sea-derived fungus Aspergillus sp. SCSIO06786. Alkaloid 1 was synthesized by an amidation reaction of 8-quinolinecaroxylic acid with methyl anthranilate, followed by hydrolysis. The neuroprotective properties of 1 were evaluated using a Caenorhabditis elegans Parkinson's disease model, which revealed that 1 significantly ameliorated 1-methyl-4-phenylpyridinium (MPP+)-induced dopaminergic neurodegeneration in a dose-dependent manner. MPP+-induced behavioral defects in worms, including impaired locomotion and basal slowing ability, were restored by treatment with 1. We further demonstrated that treatment with 1 modulates the formation of neurotoxic α-synuclein oligomers by suppressing α-synuclein expressions and enhancing proteasome activity. These results suggest that 1 is a promising therapeutic candidate for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Tae Yeon Lee
- College of Pharmacy, Dankook University, Cheonan 31116, South Korea
| | - Wooin Yang
- College of Pharmacy, Woosuk University, Wanju-gun 55338, South Korea
| | - Dong Seok Cha
- College of Pharmacy, Woosuk University, Wanju-gun 55338, South Korea
| | - Young Taek Han
- College of Pharmacy, Dankook University, Cheonan 31116, South Korea
| |
Collapse
|
7
|
Review on the interactions between dopamine metabolites and α-Synuclein in causing Parkinson's disease. Neurochem Int 2023; 162:105461. [PMID: 36460239 DOI: 10.1016/j.neuint.2022.105461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Parkinson's disease (PD) is characterized by an abnormal post-translational modifications (PTM) in amino acid sequence and aggregation of alpha-synuclein (α-Syn) protein. It is generally believed that dopamine (DA) metabolite in dopaminergic (DAergic) neurons promotes the aggregation of toxic α-Syn oligomers and protofibrils, whereas DA inhibits the formation of toxic fibers and even degrades the toxic fibers. Therefore, the study on interaction between DA metabolites and α-Syn oligomers is one of the current hot topics in neuroscience, because this effect may have direct relevance to the selective DAergic neuron loss in PD. Several mechanisms have been reported for DA metabolites induced α-Syn oligomers viz. i) The reactive oxygen species (ROS) released during the auto-oxidation or enzymatic oxidation of DA changes the structure of α-Syn by the oxidation of amino acid residue leading to misfolding, ii) The oxidized DA metabolites directly interact with α-Syn through covalent or non-covalent bonding leading to the formation of oligomers, iii) DA interacts with lipid or autophagy related proteins to decreases the degradation efficiency of α-Syn aggregates. However, there is no clear-cut mechanism proposed for the interaction between DA and α-Syn. However, it is believed that the lysine (Lys) side chain of α-Syn sequence is the initial trigger site for the oligomer formation. Herein, we review different chemical mechanism involved during the interaction of Lys side chain of α-Syn with DA metabolites such as dopamine-o-quinone (DAQ), dopamine-chrome (DAC), dopamine-aldehyde (DOPAL) and neuromelanin. This review also provides the promotive effect of divalent Cu2+ ions on DA metabolites induced α-Syn oligomers and its inhibition effect by antioxidant glutathione (GSH).
Collapse
|
8
|
Sian-Hulsmann J, Riederer P. The Nigral Coup in Parkinson's Disease by α-Synuclein and Its Associated Rebels. Cells 2021; 10:598. [PMID: 33803185 PMCID: PMC8000327 DOI: 10.3390/cells10030598] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/24/2022] Open
Abstract
The risk of Parkinson's disease increases with age. However, the etiology of the illness remains obscure. It appears highly likely that the neurodegenerative processes involve an array of elements that influence each other. In addition, genetic, endogenous, or exogenous toxins need to be considered as viable partners to the cellular degeneration. There is compelling evidence that indicate the key involvement of modified α-synuclein (Lewy bodies) at the very core of the pathogenesis of the disease. The accumulation of misfolded α-synuclein may be a consequence of some genetic defect or/and a failure of the protein clearance system. Importantly, α-synuclein pathology appears to be a common denominator for many cellular deleterious events such as oxidative stress, mitochondrial dysfunction, dopamine synaptic dysregulation, iron dyshomeostasis, and neuroinflammation. These factors probably employ a common apoptotic/or autophagic route in the final stages to execute cell death. The misfolded α-synuclein inclusions skillfully trigger or navigate these processes and thus amplify the dopamine neuron fatalities. Although the process of neuroinflammation may represent a secondary event, nevertheless, it executes a fundamental role in neurodegeneration. Some viral infections produce parkinsonism and exhibit similar characteristic neuropathological changes such as a modest brain dopamine deficit and α-synuclein pathology. Thus, viral infections may heighten the risk of developing PD. Alternatively, α-synuclein pathology may induce a dysfunctional immune system. Thus, sporadic Parkinson's disease is caused by multifactorial trigger factors and metabolic disturbances, which need to be considered for the development of potential drugs in the disorder.
Collapse
Affiliation(s)
- Jeswinder Sian-Hulsmann
- Department of Medical Physiology, University of Nairobi, P.O. Box 30197, 00100 Nairobi, Kenya
| | - Peter Riederer
- Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy Margarete-Hoeppel-Platz 1, University Hospital Wuerzburg, 97080 Wuerzburg, Germany;
- Department Psychiatry, University of Southern Denmark Odense, J.B. Winslows Vey 18, 5000 Odense, Denmark
| |
Collapse
|
9
|
Dose-related biphasic effect of the Parkinson's disease neurotoxin MPTP, on the spread, accumulation, and toxicity of α-synuclein. Neurotoxicology 2021; 84:41-52. [PMID: 33549656 DOI: 10.1016/j.neuro.2021.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Parkinson's disease (PD), the second most common progressive neurodegenerative disorder, is characterized by the abnormal accumulation of intraneuronal inclusions enriched in aggregated α-synuclein (α-syn), known as Lewy bodies (LBs) and Lewy neurites (LNs), and significant loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) of the brain. Recent evidence suggests that the intrastriatal inoculation of α-syn preformed fibrils (PFF) in mice brain triggers endogenous α-syn in interconnected brain regions. 1-methyl, 4-phenyl, 1,2,3,6 tetrahydropyridine (MPTP), a mitochondrial neurotoxin, has been used previously to generate a PD mouse model. However, the common methods of MPTP exposure do not induce LB or α-syn aggregation in mice. In the present study, we evaluated the effect of different doses of MPTP (10 mg/kg.b.wt and/or 25 mg/kg.b.wt) on the spread, accumulation, and toxicity of endogenous α-syn in mice administered an intrastriatal injection of human α-syn PFF. METHODS We inoculated human WT α-syn PFF in mouse striatum. At 6 weeks post PFF injection, we challenged the animal with two different doses of MPTP (10 mg/kg.b.wt and 25 mg/kg.b.wt) once daily for five consecutive days. At 2 weeks from the start of the MPTP regimen, we collected the mice brain and performed immunohistochemical analysis, and Rotarod test to assess motor coordination and muscle strength before and after MPTP injection. RESULTS A single injection of human WT α-syn PFF in the mice striatum induced the propagation of α-syn, occurring as phosphorylated α-synuclein (pS129), towards the SNpc, within a very short time. Injection of a low dose of MPTP (10 mg/kg.b.wt) at 6 weeks post α-syn PFF inoculation further enhanced the spread, whereas a high dose of MPTP (25 mg/kg.b.wt.) reduced the spread. Majority of the accumulated α-syn were proteinase K resistant, as recognized using a conformation-specific α-syn antibody. Injection of α-syn PFF alone caused 12 % reduction in the number of tyrosine hydroxylase positive neurons while α-syn PFF + a low dose of MPTP caused 33 % reduction (loss), compared to the control mice injected with saline. This combination also reduced the motor coordination. Interestingly, a low dose of MPTP alone did not cause any significant reduction in the number of tyrosine hydroxylase positive neurons compared to saline treatment. Animals that received α-syn PFF and a high dose of MPTP showed massive activation of glial cells and decreased spread of α-syn, majority of which were detected in the nucleus. CONCLUSION Our results suggest that a combination of human WT α-syn PFF and a low dose of MPTP increases the pathological conversion and propagation of endogenous α-syn, and neurodegeneration, within a very short time. Our model can be used to study the mechanisms of α-syn propagation and screen for potential drugs against PD.
Collapse
|
10
|
Cyclosporine A Promotes Bone Remodeling in LPS-Related Inflammation via Inhibiting ROS/ERK Signaling: Studies In Vivo and In Vitro. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8836599. [PMID: 33505590 PMCID: PMC7810558 DOI: 10.1155/2021/8836599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/21/2020] [Accepted: 12/26/2020] [Indexed: 02/05/2023]
Abstract
In some inflammatory diseases of bone, osteogenesis and osteoclasis are uncoupled and the balance is usually tipped resulting in bone destruction. The underlying mechanism of osteogenic dysfunction in inflammation still needs further study. This study is aimed at investigating the effects of cyclosporine A (CsA) on bone remodeling in lipopolysaccharide- (LPS-) related inflammation. In vivo, an alveolar bone defect model was established using 10-week-old C57BL/6J mice. The mice were divided into phosphate-buffered saline (PBS), LPS, and LPS+CsA groups. After 3 weeks, micro-CT analysis and histomorphometric evaluation were conducted. In vitro, murine osteoblasts were treated with vehicle medium, LPS, LPS+CsA, LPS+extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitor (LPS+PD98059), and LPS+antioxidant (LPS+EUK134). Cell proliferation, osteogenic behaviors, oxidative stress, and ERK signaling were determined. By these approaches, LPS inhibited bone remodeling and promoted oxidative stress accumulation in alveolar bone defects. When animals were treated with CsA, all LPS-induced biochemical changes ameliorated with a marked protective effect. In vitro, the reactive oxygen species (ROS) levels in mitochondria increased in LPS-treated osteoblasts, with decreased expression of osteogenic differentiation genes. The CsA, PD98059, and EUK134 presented remarkable protective effects against LPS treatment. CsA effectively enhanced bone remodeling and attenuated oxidative stress caused by LPS via inhibiting ROS/ERK signaling. Taken together, the protective effect of CsA and the inhibitory effect of ERK signaling on the maintenance of mitochondrial function and reduction of ROS levels hold promise as a potential novel therapeutic strategy for inflammatory diseases in bones.
Collapse
|
11
|
Sethi R, Roy I. Stabilization of elongated polyglutamine tracts by a helical peptide derived from N-terminal huntingtin. IUBMB Life 2020; 72:1528-1536. [PMID: 32320524 DOI: 10.1002/iub.2288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 01/03/2023]
Abstract
In Huntington's disease, the length of the polyglutamine tract in the mutant protein correlates positively with the formation of aggregates and disease symptoms and severity of the disease. Some disease-modifying factors exist. However, no organized study has been carried out to investigate the effect of polyglutamine length in the mutant protein on the efficacy of a therapeutic strategy. We had shown earlier that the helical peptide arising out of the N-terminal stretch of normal huntingtin is able to inhibit aggregation of a number of proteins, including luciferase, α-synuclein, p53, and Rnq1. In this work, we show that polyglutamine stretches of differing lengths, namely 51Q, 72Q, and 103Q, form a mixture of aggregates at different rates, with the rate increasing in a polyQ length-dependent manner. The helical peptide is able to inhibit the rate of aggregation. The extent of inhibition was different when measuring either total aggregation or only fibrillar aggregates, suggesting that the helical peptide with benign polyQ stretch alters the aggregation landscape of different elongated polyQ lengths differently. Our results suggest that designing a therapeutic approach to inhibit protein aggregation must take note of polyQ length of the protein.
Collapse
Affiliation(s)
- Ratnika Sethi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, India
| |
Collapse
|
12
|
Jagtap AP, Kaltschnee L, Glöggler S. Hyperpolarization of 15N-pyridinium and 15N-aniline derivatives by using parahydrogen: new opportunities to store nuclear spin polarization in aqueous media. Chem Sci 2019; 10:8577-8582. [PMID: 31803432 PMCID: PMC6839503 DOI: 10.1039/c9sc02970b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/30/2019] [Indexed: 01/30/2023] Open
Abstract
Hyperpolarization techniques hold the promise to improve the sensitivity of magnetic resonance imaging (MRI) contrast agents by over 10 000-fold. Among these techniques, para-hydrogen induced polarization (PHIP) allows for generating contrast agents within seconds. Typical hyperpolarized contrast agents are traceable for 2-3 minutes only, thus prolonging tracking-times holds great importance for the development of new ways to diagnose and monitor diseases. Here, we report on the design of perdeuterated 15N-containing molecules with longitudinal relaxation times (T 1) of several minutes. T 1 is a measure for how long hyperpolarization can be stored. In particular, we introduce two new hyperpolarizable families of compounds that we signal enhanced with para-hydrogen: tert-amine aniline derivatives and a quaternary pyridinium compound with 15N-T 1 of about 8 minutes. Especially the latter compound has great potential for applicability since we achieved 15N-polarization up to 8% and the pyridinium motif is contained in a variety of drug molecules and is also used in drug delivery systems.
Collapse
Affiliation(s)
- Anil P Jagtap
- Max-Planck-Institute for Biophysical Chemistry , Am Fassberg 11 , 37077 Göttingen , Germany .
- Center for Biostructural Imaging of Neurodegeneration , Von-Siebold-Str. 3a , 37075 Göttingen , Germany
| | - Lukas Kaltschnee
- Max-Planck-Institute for Biophysical Chemistry , Am Fassberg 11 , 37077 Göttingen , Germany .
- Center for Biostructural Imaging of Neurodegeneration , Von-Siebold-Str. 3a , 37075 Göttingen , Germany
| | - Stefan Glöggler
- Max-Planck-Institute for Biophysical Chemistry , Am Fassberg 11 , 37077 Göttingen , Germany .
- Center for Biostructural Imaging of Neurodegeneration , Von-Siebold-Str. 3a , 37075 Göttingen , Germany
| |
Collapse
|
13
|
Sethi R, Iyer SS, Das E, Roy I. Discrete roles of trehalose and Hsp104 in inhibition of protein aggregation in yeast cells. FEMS Yeast Res 2019; 18:5025658. [PMID: 29860440 DOI: 10.1093/femsyr/foy058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 05/29/2018] [Indexed: 01/21/2023] Open
Abstract
Heat shock response (HSR) is an important element of cellular homeostasis. In yeast, HSR comprises of the heat shock proteins (Hsps) and the osmolytes trehalose and glycerol. The respective roles of trehalose and Hsp104 in regulating protein aggregation remain ambiguous. We report that trehalose and Hsp104 are important during the early stages of protein aggregation, i.e. when the process is still reversible. This corroborates the earlier reported role of trehalose being an inhibitor of protein folding. Under in vitro conditions, trehalose is able to restore the GdHCl-induced loss of ATPase activity of recombinant Hsp104 to almost its original level. As the saturation phase of aggregation approaches, neither of the two components is able to exert any effect. Inactivation of Hsp104 at the stage when oligomers have already been formed increases the rate of formation of aggregates by inhibiting disaggregation of oligomers. In the absence of an active disaggregase, the oligomers are converted to mature irreversible aggregates, accelerating their formation. Our results suggest that the disaccharide may have a marginally stronger influence than Hsp104 in inhibiting protein aggregation in yeast cells.
Collapse
Affiliation(s)
- Ratnika Sethi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Shantanu S Iyer
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Eshita Das
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160062, India
| |
Collapse
|
14
|
Marvian AT, Koss DJ, Aliakbari F, Morshedi D, Outeiro TF. In vitro models of synucleinopathies: informing on molecular mechanisms and protective strategies. J Neurochem 2019; 150:535-565. [PMID: 31004503 DOI: 10.1111/jnc.14707] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/05/2019] [Accepted: 04/12/2019] [Indexed: 02/06/2023]
Abstract
Alpha-synuclein (α-Syn) is a central player in Parkinson's disease (PD) and in a spectrum of neurodegenerative diseases collectively known as synucleinopathies. The protein was first associated with PD just over 20 years ago, when it was found to (i) be a major component of Lewy bodies and (ii) to be also associated with familial forms of PD. The characterization of α-Syn pathology has been achieved through postmortem studies of human brains. However, the identification of toxic mechanisms associated with α-Syn was only achieved through the use of experimental models. In vitro models are highly accessible, enable relatively rapid studies, and have been extensively employed to address α-Syn-associated neurodegeneration. Given the diversity of models used and the outcomes of the studies, a cumulative and comprehensive perspective emerges as indispensable to pave the way for further investigations. Here, we subdivided in vitro models of α-Syn pathology into three major types: (i) models simulating α-Syn fibrillization and the formation of different aggregated structures in vitro, (ii) models based on the intracellular expression of α-Syn, reporting on pathogenic conditions and cellular dysfunctions induced, and (iii) models using extracellular treatment with α-Syn aggregated species, reporting on sites of interaction and their downstream consequences. In summary, we review the underlying molecular mechanisms discovered and categorize protective strategies, in order to pave the way for future studies and the identification of effective therapeutic strategies. This article is part of the Special Issue "Synuclein".
Collapse
Affiliation(s)
- Amir Tayaranian Marvian
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany.,Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - David J Koss
- Institute of Neuroscience, The Medical School, Newcastle University, Newcastle Upon Tyne, UK
| | - Farhang Aliakbari
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.,Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Dina Morshedi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Tiago Fleming Outeiro
- Institute of Neuroscience, The Medical School, Newcastle University, Newcastle Upon Tyne, UK.,Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany.,University Medical Center Göttingen, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
15
|
Carija A, Pinheiro F, Pujols J, Brás IC, Lázaro DF, Santambrogio C, Grandori R, Outeiro TF, Navarro S, Ventura S. Biasing the native α-synuclein conformational ensemble towards compact states abolishes aggregation and neurotoxicity. Redox Biol 2019; 22:101135. [PMID: 30769283 PMCID: PMC6375061 DOI: 10.1016/j.redox.2019.101135] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/18/2018] [Accepted: 02/04/2019] [Indexed: 01/07/2023] Open
Abstract
The aggregation of α-synuclein (α-syn) into amyloid fibrils is a major pathological hallmark of Parkinson's disease (PD) and other synucleinopathies. The mechanisms underlying the structural transition of soluble and innocuous α-syn to aggregated neurotoxic forms remains largely unknown. The disordered nature of α-syn has hampered the use of structure-based protein engineering approaches to elucidate the molecular determinants of this transition. The recent 3D structure of a pathogenic α-syn fibril provides a template for this kind of studies. The structure supports the NAC domain being a critical element in fibril formation, since it constitutes the core of the fibril, delineating a Greek-key motif. Here, we stapled the ends of this motif with a designed disulfide bond and evaluated its impact on the conformation, aggregation and toxicity of α-syn in different environments. The new covalent link biases the native structural ensemble of α-syn toward compact conformations, reducing the population of fully unfolded species. This conformational bias results in a strongly reduced fibril formation propensity both in the absence and in the presence of lipids and impedes the formation of neurotoxic oligomers. Our study does not support the Greek-key motif being already imprinted in early α-syn assemblies, discarding it as a druggable interface to prevent the initiation of fibrillation. In contrast, it suggests the stabilization of native, compact ensembles as a potential therapeutic strategy to avoid the formation of toxic species and to target the early stages of PD.
Collapse
Affiliation(s)
- Anita Carija
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Francisca Pinheiro
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Jordi Pujols
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Inês C Brás
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medicine Göttingen, Waldweg 33, 37073 Göttingen, Germany
| | - Diana Fernandes Lázaro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medicine Göttingen, Waldweg 33, 37073 Göttingen, Germany
| | - Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Italy
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Italy
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medicine Göttingen, Waldweg 33, 37073 Göttingen, Germany; Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany; Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
| | - Susanna Navarro
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
16
|
Matsuo K, Cheng A, Yabuki Y, Takahata I, Miyachi H, Fukunaga K. Inhibition of MPTP-induced α-synuclein oligomerization by fatty acid-binding protein 3 ligand in MPTP-treated mice. Neuropharmacology 2019; 150:164-174. [PMID: 30930168 DOI: 10.1016/j.neuropharm.2019.03.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 10/27/2022]
Abstract
Accumulation and aggregation of α-synuclein (αSyn) triggers dopaminergic (DAergic) neuronal loss in Parkinson's disease (PD). This pathological event is partly facilitated by the presence of long-chain polyunsaturated fatty acids (LC-PUFAs), including arachidonic acid. The intracellular transport and metabolism of LC-PUFAs are mediated by fatty acid-binding proteins (FABPs). We previously reported that heart-type FABP (FABP3) interacts with αSyn, thereby promoting αSyn oligomerization in DAergic neurons in the substantia nigra pars compacta (SNpc) following 1-methyl-1,2,3,6-tetrahydropyridine (MPTP) treatment. This αSyn oligomerization is prevented in Fabp3 gene knock out mice. We document a novel FABP3 ligand, MF1 (4-(2-(1-(2-chlorophenyl)-5-phenyl-1H-pyrazol-3-yl)phenoxy)butanoic acid), that inhibits αSyn accumulation in DA neurons, thereby inhibiting the oligomerization of αSyn, loss of DAergic neurons, and PD-like motor deficits in MPTP-treated mice. Chronic oral administration of MF1 (0.3 or 1.0 mg/kg/day) significantly improved motor impairments and inhibited MPTP-induced accumulation and oligomerization of αSyn in the SNpc, and in turn prevented loss of tyrosine hydroxylase (TH)-positive cells in the SNpc. MF1 administration (0.1, 0.3, or 1.0 mg/kg/day) also restored MPTP-induced cognitive impairments. Although chronic administration of l-DOPA (3,4-dihydroxl-l-phenylalanine; 25 mg/kg/day, i.p.) also improved motor deficits, it failed to improve the cognitive impairments. In addition, l-DOPA failed to inhibit DAergic neuronal loss and αSyn pathologies in the SNpc. In summary, the novel FABP3 ligand MF1 rescues MPTP-induced behavioural and neuropathological features, suggesting that MF1 may be a disease-modifying drug candidate for synucleinopathies.
Collapse
Affiliation(s)
- Kazuya Matsuo
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - An Cheng
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasushi Yabuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Ibuki Takahata
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Hiroyuki Miyachi
- Lead Exploration Unit, Drug Discovery Initiative, The University of Tokyo, Tokyo, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
17
|
A preclinical screen to evaluate pharmacotherapies for the treatment of agitation in dementia. Behav Pharmacol 2018; 28:199-206. [PMID: 28234659 DOI: 10.1097/fbp.0000000000000298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Agitation associated with dementia is frequently reported clinically but has received little attention in preclinical models of dementia. The current study used a 7PA2 CM intracerebroventricular injection model of Alzheimer's disease (AD) to assess acute memory impairment, and a bilateral intrahippocampal (IH) injection model of AD (aggregated Aβ1-42 injections) and a bilateral IH injection model of dementia with Lewy bodies (aggregated NAC61-95 injections) to assess chronic memory impairment in the rat. An alternating-lever cyclic-ratio schedule of operant responding was used for data collection, where incorrect lever perseverations measured executive function (memory) and running response rates (RRR) measured behavioral output (agitation). The results indicate that bilateral IH injections of Aβ1-42 and bilateral IH injections of NAC61-95 decreased memory function and increased RRRs, whereas intracerebroventricular injections of 7PA2 CM decreased memory function but did not increase RRRs. These findings show that using the aggregated peptide IH injection models of dementia to induce chronic neurotoxicity, memory decline was accompanied by elevated behavioral output. This demonstrates that IH peptide injection models of dementia provide a preclinical screen for pharmacological interventions used in the treatment of increased behavioral output (agitation), which also establish detrimental side effects on memory.
Collapse
|
18
|
Kardani J, Sethi R, Roy I. Nicotine slows down oligomerisation of α-synuclein and ameliorates cytotoxicity in a yeast model of Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1454-1463. [DOI: 10.1016/j.bbadis.2017.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/23/2017] [Accepted: 02/02/2017] [Indexed: 11/26/2022]
|
19
|
Metabolic Investigations of the Molecular Mechanisms Associated with Parkinson's Disease. Metabolites 2017; 7:metabo7020022. [PMID: 28538683 PMCID: PMC5487993 DOI: 10.3390/metabo7020022] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by fibrillar cytoplasmic aggregates of α-synuclein (i.e., Lewy bodies) and the associated loss of dopaminergic cells in the substantia nigra. Mutations in genes such as α-synuclein (SNCA) account for only 10% of PD occurrences. Exposure to environmental toxicants including pesticides and metals (e.g., paraquat (PQ) and manganese (Mn)) is also recognized as an important PD risk factor. Thus, aging, genetic alterations, and environmental factors all contribute to the etiology of PD. In fact, both genetic and environmental factors are thought to interact in the promotion of idiopathic PD, but the mechanisms involved are still unclear. In this study, we summarize our findings to date regarding the toxic synergistic effect between α-synuclein and paraquat treatment. We identified an essential role for central carbon (glucose) metabolism in dopaminergic cell death induced by paraquat treatment that is enhanced by the overexpression of α-synuclein. PQ “hijacks” the pentose phosphate pathway (PPP) to increase NADPH reducing equivalents and stimulate paraquat redox cycling, oxidative stress, and cell death. PQ also stimulated an increase in glucose uptake, the translocation of glucose transporters to the plasma membrane, and AMP-activated protein kinase (AMPK) activation. The overexpression of α-synuclein further stimulated an increase in glucose uptake and AMPK activity, but impaired glucose metabolism, likely directing additional carbon to the PPP to supply paraquat redox cycling.
Collapse
|
20
|
Khanam H, Ali A, Asif M, Shamsuzzaman. Neurodegenerative diseases linked to misfolded proteins and their therapeutic approaches: A review. Eur J Med Chem 2016; 124:1121-1141. [DOI: 10.1016/j.ejmech.2016.08.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/02/2016] [Accepted: 08/05/2016] [Indexed: 12/11/2022]
|
21
|
Niu M, Xu R, Wang J, Hou B, Xie A. MiR-133b ameliorates axon degeneration induced by MPP(+) via targeting RhoA. Neuroscience 2016; 325:39-49. [PMID: 27012608 DOI: 10.1016/j.neuroscience.2016.03.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/13/2016] [Accepted: 03/16/2016] [Indexed: 12/20/2022]
Abstract
Increasing evidence suggests that microRNAs (miRs) play a significant role in the pathogenesis of Parkinson's disease (PD). MiR-133b, which is significantly decreased in the PD midbrain, has recently been shown to promote neurite outgrowth and enhance neural functional recovery. However, the role of miR-133b in PD has not been clearly established. Here, using a well-established PD model culture based on the neurotoxin 1-methyl-4-phenyl-pyridinium (MPP(+)), we demonstrated that miR-133b could promote axon outgrowth in dopaminergic neurons (DNs) and ameliorated MPP(+)-induced axon degeneration. Additional experiments suggested that the mechanisms of this miR-133b-mediated effect might rely on RhoA inhibition. We demonstrated that RhoA, an inhibitor of axonal growth, was increased in DNs under MPP(+) treatment, and this increase could be attenuated by miR-133b overexpression. Moreover, we demonstrated that the induced expression of miR-133b could inhibit α-synuclein, which is critically involved in the pathological process of PD. Furthermore, we found that overexpression of miR-133b abrogated the MPP(+)-induced decrease in the Bcl-2/Bax ratio and upregulated phosphorylated Akt (p-Akt), which is a pro-survival kinase. Together these findings reveal novel roles for miR-133b in the pathogenesis of PD and provide new therapeutic avenues for the treatment of the disease.
Collapse
Affiliation(s)
- M Niu
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - R Xu
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - J Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - B Hou
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - A Xie
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
22
|
|
23
|
Kardani J, Roy I. Understanding Caffeine's Role in Attenuating the Toxicity of α-Synuclein Aggregates: Implications for Risk of Parkinson's Disease. ACS Chem Neurosci 2015; 6:1613-25. [PMID: 26167732 DOI: 10.1021/acschemneuro.5b00158] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epidemiological studies report a beneficial relationship between drinking coffee and the risk of developing Parkinson's disease (PD). This is likely due to caffeine, a constituent of coffee, acting as an adenosine A2A receptor antagonist. This study was planned to investigate whether caffeine has any effect on the aggregation of α-synuclein, present in Lewy bodies, the pathological hallmark of PD, which may account for this positive association. Aggregation of recombinant α-synuclein was followed in vitro and in a well-validated yeast proteotoxicity model of PD. Caffeine was found to have twin effects: it accelerated the process of aggregation and also altered the nature of mature aggregates. Aggregates formed in the presence of caffeine displayed amorphous as well as fibrillar morphology. In the presence of caffeine, the toxicity of oligomers and aggregates was diminished, with concomitant reduction in intracellular oxidative stress, decreased oxidative proteome damage, and increased cell survival. Caffeine-treated samples showed improved binding to phospholipids, a property likely to be important in cellular functioning of α-synuclein. Far-UV CD spectroscopy and fluorescence quenching analysis revealed that caffeine induced transient changes in this intrinsically disordered protein, forming a non-native species that enhanced the rate of aggregation of α-synuclein and modified the population of mature aggregates, introducing a higher fraction of amorphous, less toxic species. Increasingly, it is felt that the process of fibrillation itself, along with the nature of mature aggregates, dictates the cytotoxicity of the process. Our results provide a rationale for the observed epidemiological link between drinking coffee and developing PD.
Collapse
Affiliation(s)
- Jay Kardani
- Department
of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector
67, S.A.S. Nagar, Punjab 160
062, India
| | - Ipsita Roy
- Department
of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector
67, S.A.S. Nagar, Punjab 160
062, India
| |
Collapse
|
24
|
Inhibition of Aggregation of Mutant Huntingtin by Nucleic Acid Aptamers In Vitro and in a Yeast Model of Huntington's Disease. Mol Ther 2015; 23:1912-26. [PMID: 26310631 DOI: 10.1038/mt.2015.157] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 08/21/2015] [Indexed: 12/20/2022] Open
Abstract
Elongated polyglutamine stretch in mutant huntingtin (mhtt) correlates well with the pathology of Huntington's disease (HD). Inhibition of aggregation of mhtt is a promising strategy to arrest disease progression. In this work, specific, high-affinity RNA aptamers were selected against monomeric mhtt (51Q-htt). Some of them inhibited its aggregation in vitro by stabilizing the monomer. They also recognized 103Q-htt but not 20Q-htt (nonpathogenic length). Inhibition of aggregation corresponded with reduced leakage of a fluorescent probe from liposomes and diminished oxidative stress in RBCs. The presence of aptamers was able to rescue the sequestration of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by aggregated mhtt. Some of the aptamers were able to enhance the partitioning of mhtt in the soluble fraction in a yeast model of HD. They were also able to rescue endocytotic defect due to aggregation of mhtt. The beneficial effect of a combination of aptamers was enhanced with improvement in cell survival. Since HD is a monogenic autosomal dominant disorder, aptamers may be developed as a viable strategy to slow down the progress of the disease. Since they are nonimmunogenic and nontoxic, aptamers may emerge as strong candidates to reduce protein-protein interaction and hence protein aggregation in protein misfolding disorders in general.
Collapse
|
25
|
Aggregated α-synuclein and complex I deficiency: exploration of their relationship in differentiated neurons. Cell Death Dis 2015; 6:e1820. [PMID: 26181201 PMCID: PMC4650719 DOI: 10.1038/cddis.2015.166] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 12/21/2022]
Abstract
α-Synuclein becomes misfolded and aggregated upon damage by various factors, for example, by reactive oxygen species. These aggregated forms have been proposed to have differential toxicities and their interaction with mitochondria may cause dysfunction within this organelle that contributes to the pathogenesis of Parkinson's disease (PD). In particular, the association of α-synuclein with mitochondria occurs through interaction with mitochondrial complex I and importantly defects of this protein have been linked to the pathogenesis of PD. Therefore, we investigated the relationship between aggregated α-synuclein and mitochondrial dysfunction, and the consequences of this interaction on cell survival. To do this, we studied the effects of α-synuclein on cybrid cell lines harbouring mutations in either mitochondrial complex I or IV. We found that aggregated α-synuclein inhibited mitochondrial complex I in control and complex IV-deficient cells. However, when aggregated α-synuclein was applied to complex I-deficient cells, there was no additional inhibition of mitochondrial function or increase in cell death. This would suggest that as complex I-deficient cells have already adapted to their mitochondrial defect, the subsequent toxic effects of α-synuclein are reduced.
Collapse
|
26
|
Song LK, Ma KL, Yuan YH, Mu Z, Song XY, Niu F, Han N, Chen NH. Targeted Overexpression of α-Synuclein by rAAV2/1 Vectors Induces Progressive Nigrostriatal Degeneration and Increases Vulnerability to MPTP in Mouse. PLoS One 2015; 10:e0131281. [PMID: 26114655 PMCID: PMC4483255 DOI: 10.1371/journal.pone.0131281] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 06/01/2015] [Indexed: 12/12/2022] Open
Abstract
Mutations, duplication and triplication of α-synuclein genes are linked to familial Parkinson's disease (PD), and aggregation of α-synuclein (α-syn) in Lewy bodies (LB) is involved in the pathogenesis of the disease. The targeted overexpression of α-syn in the substantia nigra (SN) mediated by viral vectors may provide a better alternative to recapitulate the neurodegenerative features of PD. Therefore, we overexpressed human wild-type α-syn using rAAV2/1 vectors in the bilateral SN of mouse and examined the effects for up to 12 weeks. Delivery of rAAV-2/1-α-syn caused significant nigrostriatal degeneration including appearance of dystrophic striatal neurites, loss of nigral dopaminergic (DA) neurons and dissolving nigral neuron bodies in a time-dependent manner. In addition, the α-syn overexpressed mice also developed significant deficits in motor function at 12 weeks when the loss of DA neurons exceeded a threshold of 50%. To investigate the sensitivity to neurotoxins in mice overexpressing α-syn, we performed an MPTP treatment with the subacute regimen 8 weeks after rAAV injection. The impact of the combined genetic and environmental insults on DA neuronal loss, striatal dopamine depletion, dopamine turnover and motor dysfunction was markedly greater than that of either alone. Moreover, we observed increased phosphorylation (S129), accumulation and nuclear distribution of α-syn after the combined insults. In summary, these results reveal that the overexpressed α-syn induces progressive nigrostriatal degeneration and increases the susceptibility of DA neurons to MPTP. Therefore, the targeted overexpression of α-syn and the combination with environmental toxins may provide valuable models for understanding PD pathogenesis and developing related therapies.
Collapse
Affiliation(s)
- Lian-Kun Song
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Kai-Li Ma
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zheng Mu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xiu-Yun Song
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Fei Niu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ning Han
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Hunan University of Chinese Medicine, Changsha, 410208, China
- * E-mail:
| |
Collapse
|
27
|
Shao Y, Chan HM. Effects of methylmercury on dopamine release in MN9D neuronal cells. Toxicol Mech Methods 2015; 25:637-44. [DOI: 10.3109/15376516.2015.1053654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
28
|
Xu S, Chan P. Interaction between Neuromelanin and Alpha-Synuclein in Parkinson's Disease. Biomolecules 2015; 5:1122-42. [PMID: 26057626 PMCID: PMC4496713 DOI: 10.3390/biom5021122] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 04/29/2015] [Indexed: 12/27/2022] Open
Abstract
Parkinson's disease (PD) is a very common neurodegenerative disorder characterized by the accumulation of α-synuclein (α-syn) into Lewy body (LB) inclusions and the loss of neuronmelanin (NM) containing dopamine (DA) neurons in the substantia nigra (SN). Pathological α-syn and NM are two prominent hallmarks in this selective and progressive neurodegenerative disease. Pathological α-syn can induce dopaminergic neuron death by various mechanisms, such as inducing oxidative stress and inhibiting protein degradation systems. Therefore, to explore the factors that trigger α-syn to convert from a non-toxic protein to toxic one is a pivotal question to clarify the mechanisms of PD pathogenesis. Many triggers for pathological α-syn aggregation have been identified, including missense mutations in the α-syn gene, higher concentration, and posttranslational modifications of α-Syn. Recently, the role of NM in inducing α-syn expression and aggregation has been suggested as a mechanism for this pigment to modulate neuronal vulnerability in PD. NM may be responsible for PD and age-associated increase and aggregation in α-syn. Here, we reviewed our previous study and other recent findings in the area of interaction between NM and α-syn.
Collapse
Affiliation(s)
- Shengli Xu
- Beijing Institute of Geriatrics, Xuanwu Hospital of Capital University of Medical Sciences, No.45 changchun St., Xicheng District, Beijing 100053, China.
- Parkinson's disease Center of Beijing Institute for Brain Disorders, Beijing 100053, China.
| | - Piu Chan
- Beijing Institute of Geriatrics, Xuanwu Hospital of Capital University of Medical Sciences, No.45 changchun St., Xicheng District, Beijing 100053, China.
- Parkinson's disease Center of Beijing Institute for Brain Disorders, Beijing 100053, China.
| |
Collapse
|
29
|
Kim D, Paik JH, Shin DW, Kim HS, Park CS, Kang JH. What is the Clinical Significance of Cerebrospinal Fluid Biomarkers in Parkinson's disease? Is the Significance Diagnostic or Prognostic? Exp Neurobiol 2014; 23:352-64. [PMID: 25548535 PMCID: PMC4276806 DOI: 10.5607/en.2014.23.4.352] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/18/2014] [Accepted: 11/18/2014] [Indexed: 11/30/2022] Open
Abstract
The clinical diagnostic criteria of Parkinson's disease (PD) have limitations in detecting the disease at early stage and in differentiating heterogeneous clinical progression. The lack of reliable biomarker(s) for early diagnosis and prediction of prognosis is a major hurdle to achieve optimal clinical care of patients and efficient design of clinical trials for disease-modifying therapeutics. Numerous efforts to discover PD biomarkers in CSF were conducted. In this review, we describe the molecular pathogenesis of PD and discuss its implication to develop PD biomarkers in CSF. Next, we summarize the clinical utility of CSF biomarkers including alpha-synuclein for early and differential diagnosis, and prediction of PD progression. Given the heterogeneity in the clinical features of PD and none of the CSF biomarkers for an early diagnosis have been developed, research efforts to develop biomarkers to predict heterogeneous disease progression is on-going. Notably, a rapid cognitive decline followed by the development of dementia is a risk factor of poor prognosis in PD. In connection to this, CSF levels of Alzheimer's disease (AD) biomarkers have received considerable attention. However, we still need long-term longitudinal observational studies employing large cohorts to evaluate the clinical utility of CSF biomarkers reflecting Lewy body pathology and AD pathology in the brain. We believe that current research efforts including the Parkinson's Progression Markers Initiative will resolve the current needs of early diagnosis and/or prediction of disease progression using CSF biomarkers, and which will further accelerate the development of disease-modifying therapeutics and optimize the clinical management of PD patients.
Collapse
Affiliation(s)
- Dana Kim
- Department of Pharmacology, Inha University School of Medicine, Korea. ; Hypoxia-related Disease Research Center, Inha University School of Medicine, Korea
| | - Jin Hui Paik
- Department of Emergency Medicine, Inha University Hospital, Incheon 400-712, Korea
| | - Dong-Woon Shin
- Department of Emergency Medicine, Inje University Ilsan Paik Hospital, Ilsan 411-706, Korea
| | - Hak-Su Kim
- Department of Pharmacology, Inha University School of Medicine, Korea. ; Hypoxia-related Disease Research Center, Inha University School of Medicine, Korea
| | - Chang-Shin Park
- Department of Pharmacology, Inha University School of Medicine, Korea. ; Hypoxia-related Disease Research Center, Inha University School of Medicine, Korea
| | - Ju-Hee Kang
- Department of Pharmacology, Inha University School of Medicine, Korea. ; Hypoxia-related Disease Research Center, Inha University School of Medicine, Korea. ; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
30
|
Chen M, Wang T, Yue F, Li X, Wang P, Li Y, Chan P, Yu S. Tea polyphenols alleviate motor impairments, dopaminergic neuronal injury, and cerebral α-synuclein aggregation in MPTP-intoxicated parkinsonian monkeys. Neuroscience 2014; 286:383-92. [PMID: 25498223 DOI: 10.1016/j.neuroscience.2014.12.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 01/08/2023]
Abstract
Tea polyphenols (TPs) are bioactive flavanol-related catechins that have been shown to protect dopaminergic (DAergic) neurons against neurotoxin-induced injury in mouse Parkinson's disease (PD) models. However, the neuroprotective efficacy of TP has not been investigated in nonhuman PD primates, which can more accurately model the neuropathology and motor impairments of human PD patients. Here, we show that oral administration of TP alleviates motor impairments and DAergic neuronal injury in the substantia nigra in N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated PD monkeys, indicating an association between protection against motor deficits and preservation of DAergic neurons. We also show a significant inhibition of MPTP-induced accumulation of neurotoxic α-synuclein (α-syn) oligomers in the striatum and other brain regions, which may contribute to the neuroprotection and improved motor function conferred by TP. The association between reduced α-syn oligomerization and neuroprotection was confirmed in cultured DAergic cells. The most abundant and bioactive TP in the mixture used in vivo, (-)-epigallocatechin-3-gallate, reduced intracellular levels of α-syn oligomers in neurons treated with α-syn oligomers, 1-methyl-4-phenylpyridiniumion, or both, accompanied by increased cell viability. The present study provides the first evidence that TP can alleviate motor impairments, DAergic neuronal injury, and α-syn aggregation in nonhuman primates.
Collapse
Affiliation(s)
- M Chen
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China; Department of Human Anatomy, School of Basic Medical Sciences, Guilin Medical University, Guilin, China
| | - T Wang
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - F Yue
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China; Key Laboratory of Neurodegenerative Diseases (Capital Medical University), Ministry of Education, Beijing, China
| | - X Li
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China; Key Laboratory of Neurodegenerative Diseases (Capital Medical University), Ministry of Education, Beijing, China
| | - P Wang
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China; Key Laboratory of Neurodegenerative Diseases (Capital Medical University), Ministry of Education, Beijing, China
| | - Y Li
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China; Key Laboratory of Neurodegenerative Diseases (Capital Medical University), Ministry of Education, Beijing, China
| | - P Chan
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China; Key Laboratory of Neurodegenerative Diseases (Capital Medical University), Ministry of Education, Beijing, China; Beijing Institute for Brain Disorders Parkinson's Disease Center, Beijing, China
| | - S Yu
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China; Key Laboratory of Neurodegenerative Diseases (Capital Medical University), Ministry of Education, Beijing, China; Beijing Institute for Brain Disorders Parkinson's Disease Center, Beijing, China.
| |
Collapse
|
31
|
Tavassoly O, Kakish J, Nokhrin S, Dmitriev O, Lee JS. The use of nanopore analysis for discovering drugs which bind to α-synuclein for treatment of Parkinson's disease. Eur J Med Chem 2014; 88:42-54. [DOI: 10.1016/j.ejmech.2014.07.090] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 01/22/2023]
|
32
|
Tavassoly O, Nokhrin S, Dmitriev OY, Lee JS. Cu(II) and dopamine bind to α-synuclein and cause large conformational changes. FEBS J 2014; 281:2738-53. [PMID: 24725464 DOI: 10.1111/febs.12817] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 04/04/2014] [Accepted: 04/09/2014] [Indexed: 01/06/2023]
Abstract
α-Synuclein (AS) is an intrinsically disordered protein that can misfold and aggregate to form Lewy bodies in dopaminergic neurons, a classic hallmark of Parkinson's disease. The binding of Cu(II) and dopamine to AS was evaluated by nanopore analysis with α-hemolysin. In the absence of Cu(II), wild-type AS (1 μM) readily translocated through the pore with a blockade current of--85 pA, but mostly bumping events were observed in the presence of 25 μM Cu(II). A binding site in the N-terminus was confirmed, because Cu(II) had no effect on the event profile of a peptide consisting of the C-terminal 96-140 residues. In the presence of dopamine (25 μM), the translocation events at--85 pA shifted to--80 pA, which also represents translocation events, because the event time decreases with increasing voltage. Events at--80 pA were also observed for the mutant A30P AS in the presence of dopamine. Event profiles for an N-terminal 1-60-residue peptide and a C-terminal 96-140-residue peptide were both altered in the presence of 25 μM dopamine. In contrast, dopamine had little effect on the CD spectrum of AS, and a single binding site with a Ka of 3.5 × 10(3) m(-1) was estimated by isothermal titration calorimetry. Thus, dopamine can interact with both the N-terminus and the C-terminus. Two-dimensional NMR spectroscopy of AS in the presence of dopamine showed that there were significant changes in the spectra in all regions of the protein. According to these findings, a model is presented in which dopamine induces folding between the N-terminus and C-terminus of AS. Partially folding conformations such as this may represent important intermediates in the misfolding of AS that leads to fibrillization.
Collapse
Affiliation(s)
- Omid Tavassoly
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | | |
Collapse
|
33
|
Liu YY, Yang XY, Li Z, Liu ZL, Cheng D, Wang Y, Wen XJ, Hu JY, Liu J, Wang LM, Wang HJ. Characterization of polyethylene glycol-polyethyleneimine as a vector for alpha-synuclein siRNA delivery to PC12 cells for Parkinson's disease. CNS Neurosci Ther 2013; 20:76-85. [PMID: 24279586 DOI: 10.1111/cns.12176] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/15/2013] [Accepted: 08/05/2013] [Indexed: 12/27/2022] Open
Abstract
AIMS Gene therapy targeting the SNCA gene yields promising results in the treatment of Parkinson's disease (PD). The most challenging issue of the RNAi gene therapy strategy is maintaining efficient delivery without inducing significant toxicity and other adverse effects. This study aimed to characterize polyethylene glycol-polyethyleneimine as a vector for alpha-synuclein siRNA delivery to PC12 cells for Parkinson's disease. METHODS The characteristics of PEG-PEI/siSNCA were analyzed via gel retardation assay and assessments of particle size and zeta potential. MTT cytotoxicity assay and flow cytometry were used to detect cytotoxicity and transfection efficiency in PC12 cells. Confocal laser scanning microscopy was employed to examine the intracellular distribution of PEG-PEI/FITC-siSNCA after cellular uptake. RT-PCR and western blotting were used to measure SNCA expression. The MTT cytotoxicity assay was used to study the effect of PEG-PEI/siSNCA on cell viability. The protective effect of PEG-PEI/siSNCA on MPP+-induced apoptosis in PC12 cells was examined via flow cytometry and Hoechst staining. RESULTS PEG-PEI/siSNCA complexes were well-developed; they exhibited appropriate particle sizes and zeta potentials at a mass ratio of 5:1. In vitro, PEG-PEI/siSNCA was associated with low cytotoxicity and high transfection efficiency. Complexes were capable of successfully delivering siSNCA into PC12 cells and releasing it from the endosome. Furthermore, PEG-PEI/siSNCA could effectively suppress SNCA mRNA expression and protected cells from death via apoptosis induced by MPP(+) . CONCLUSIONS Our results demonstrate that PEG-PEI performs well as a vector for alpha-synuclein siRNA delivery into PC12 cells. Additionally, PEG-PEI/siSNCA complexes were suggested to be able to protect cells from death via apoptosis induced by MPP(+) . These findings suggest that PEG-PEI/siSNCA nanoparticles exhibit remarkable potential as a gene delivery system for Parkinson's disease.
Collapse
Affiliation(s)
- Yun-Yun Liu
- Department of Neurology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Deshmukh RS, Chaudhary RK, Roy I. Effect of pesticides on the aggregation of mutant huntingtin protein. Mol Neurobiol 2012; 45:405-14. [PMID: 22415443 DOI: 10.1007/s12035-012-8252-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/28/2012] [Indexed: 01/08/2023]
Abstract
The classical reports on neurodegeneration concentrate on studying disruption of signalling cascades. Although it is now well recognized that misfolding and aggregation of specific proteins are associated with a majority of these diseases, their role in aggravating the symptoms is not so well understood. Huntington's disease (HD) is a neurodegenerative disorder that results from damage to complex II of mitochondria. In this work, we have studied the effect of mitochondrial complex I inhibitors, viz. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and rotenone, and complex II inhibitor, viz. 3-nitropropionic acid, on the aggregation of mutant huntingtin (mthtt) protein, whose misfolding and aggregation results in cellular abnormalities characteristic of HD. All three inhibitors were found to accelerate the aggregation of mthtt in vitro, although the amounts of aggregates formed were different in all cases. Thus, apart from their effect on mitochondrial viability, these neurotoxins are capable of interfering with the protein aggregation process and thus, hastening the onset of the disease.
Collapse
Affiliation(s)
- Ruhi S Deshmukh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | | | | |
Collapse
|