1
|
Branco H, Xavier CPR, Riganti C, Vasconcelos MH. Hypoxia as a critical player in extracellular vesicles-mediated intercellular communication between tumor cells and their surrounding microenvironment. Biochim Biophys Acta Rev Cancer 2025; 1880:189244. [PMID: 39672279 DOI: 10.1016/j.bbcan.2024.189244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
In the past years, increasing attention has been paid to the role of extracellular vesicles (EVs) as mediators of intercellular communication in cancer. These small size particles mediate the intercellular transfer of important bioactive molecules involved in malignant initiation and progression. Hypoxia, or low partial pressure of oxygen, is recognized as a remarkable feature of solid tumors and has been demonstrated to exert a profound impact on tumor prognosis and therapeutic efficacy. Indeed, the high-pitched growth rate and chaotic neovascular architecture that embodies solid tumors results in a profound reduction in oxygen pressure within the tumor microenvironment (TME). In response to oxygen-deprived conditions, tumor cells and their surrounding milieu develop homeostatic adaptation mechanisms that contribute to the establishment of a pro-tumoral phenotype. Latest evidence suggests that the hypoxic microenvironment that surrounds the tumor bulk may be a clincher for the observed elevated levels of circulating EVs in cancer patients. Thus, it is proposed that EVs may play a role in mediating intercellular communication in response to hypoxic conditions. This review focuses on the EVs-mediated crosstalk that is established between tumor cells and their surrounding immune, endothelial, and stromal cell populations, within the hypoxic TME.
Collapse
Affiliation(s)
- Helena Branco
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; Department of Biological Sciences, FFUP - Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Cristina P R Xavier
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116 Gandra, Portugal.
| | - Chiara Riganti
- Department of Oncology, University of Torino, 10126 Torino, Italy; Interdepartmental Research Center for Molecular Biotechnology "G. Tarone", University of Torino, 10126 Torino, Italy
| | - M Helena Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; Department of Biological Sciences, FFUP - Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
2
|
Mason AJ, Deppmann C, Winckler B. Emerging Roles of Neuronal Extracellular Vesicles at the Synapse. Neuroscientist 2024; 30:199-213. [PMID: 36942881 DOI: 10.1177/10738584231160521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Extracellular vesicles (EVs) are secreted from most, if not all, cell types and are implicated in short- and long-distance signaling throughout the body. EVs are also secreted from neurons and represent an emergent neuronal communication platform. Understanding the functional implications of EV signaling to recipient neurons and glia requires understanding the cell biology involved in EV biogenesis, cargo loading, secretion, uptake, and signal transduction in the recipient cell. Here we review these major questions of EV biology while highlighting recent new insights and examples within the nervous system, such as modulating synaptic function or morphogenesis in recipient neurons.
Collapse
Affiliation(s)
- Ashley J Mason
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Christopher Deppmann
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Bettina Winckler
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
3
|
Wang Q, Tan X, Wang Y, Zhang D, Li X, Liu S. The role of extracellular vesicles in non-alcoholic steatohepatitis: Emerging mechanisms, potential therapeutics and biomarkers. J Adv Res 2024:S2090-1232(24)00110-3. [PMID: 38494073 DOI: 10.1016/j.jare.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024] Open
Abstract
Non-alcoholic steatohepatitis (NASH), an emerging global healthcare problem, has become the leading cause of liver transplantation in recent decades. No effective therapies in the clinic have been proven due to the incomplete understanding of the pathogenesis of NASH, and further studies are expected to continue to delve into the mechanisms of NASH. Extracellular vesicles (EVs), which are small lipid membrane vesicles carrying proteins, microRNAs and other molecules, have been identified to play a vital role in cell-to-cell communication and are involved in the development and progression of various diseases. In recent years, there has been increasing interest in the role of EVs in NASH. Many studies have revealed that EVs mediate important pathological processes in NASH, and the role of EVs in NASH is distinct and variable depending on their origin cells and target cells. This review outlines the emerging mechanisms of EVs in the development of NASH and the preclinical evidence related to stem cell-derived EVs as a potential therapeutic strategy for NASH. Moreover, possible strategies involving EVs as clinical diagnostic, staging and prognostic biomarkers for NASH are summarized.
Collapse
Affiliation(s)
- Qianrong Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xiangning Tan
- Department of endocrinology, the Second Affiliated Hospital of University of South China, 421001 Hunan Province, China
| | - Yu Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Danyi Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| | - Shanshan Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
4
|
Zhou X, Jia Y, Mao C, Liu S. Small extracellular vesicles: Non-negligible vesicles in tumor progression, diagnosis, and therapy. Cancer Lett 2024; 580:216481. [PMID: 37972701 DOI: 10.1016/j.canlet.2023.216481] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/26/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
Small extracellular vesicles (sEVs) such as exosomes are nanoscale membranous particles (<200 nm) that have emerged as crucial targets for liquid biopsy and as promising drug delivery vehicles. They play a significant role in tumor progression as intercellular messengers. They can serve as biomarkers for tumor diagnosis and as drug carriers for cancer treatment. This article reviews recent studies on sEVs in oncology and explores their potential as biomarkers and drug delivery vehicles. Following tumorigenesis, sEVs in the tumor microenvironment (TME) and circulatory system undergo modifications to regulate various events in the TME, including angiogenesis, epithelial-mesenchymal transition (EMT), and tumor immunity, with either pro- or anti-tumor effects. sEVs have been investigated for use as diagnostic and prognostic biomarkers for a variety of tumors, including lung cancer, melanoma, breast cancer, prostate cancer, and hepatocellular carcinoma. sEVs can be used for cancer therapy by packaging drugs or proteins into them through pre- and post-isolation modification techniques. The clinical trials of sEVs as biomarkers and drug carriers are also summarized. Finally, the challenges in the use of sEVs are described and the possible approaches to tackling them are suggested. Overall, sEVs will advance the precision cancer medicine and has shown great potential in clinical applications.
Collapse
Affiliation(s)
- Xinru Zhou
- Department of Laboratory Diagnostics, Changhai Hospital, Navy Military Medical University, Shanghai, China
| | - Yin Jia
- Department of Laboratory Diagnostics, Changhai Hospital, Navy Military Medical University, Shanghai, China
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; School of Materials Science & Engineering, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Shanrong Liu
- Department of Laboratory Diagnostics, Changhai Hospital, Navy Military Medical University, Shanghai, China.
| |
Collapse
|
5
|
Wang N, Li J, Hu Z, Ngowi EE, Yan B, Qiao A. Exosomes: New Insights into the Pathogenesis of Metabolic Syndrome. BIOLOGY 2023; 12:1480. [PMID: 38132306 PMCID: PMC10740970 DOI: 10.3390/biology12121480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Exosomes are a subtype of extracellular vesicles (EVs) with a diameter of 30~150 nm (averaging ~100 nm) that are primarily produced through the endosomal pathway, and carry various components such as lipids, proteins, RNA, and other small molecular substances. Exosomes can mediate intercellular communication through the bioactive substances they carry, thus participating in different physiological activities. Metabolic syndrome (MS) is a disease caused by disturbances in the body's metabolism, mainly including insulin resistance (IR), diabetes, obesity, non-alcoholic fatty liver disease (NAFLD), hyperlipidemia, and atherosclerosis (AS). Recent studies have shown that exosomes are closely related to the occurrence and development of MS. Exosomes can act as messengers to mediate signaling transductions between metabolic cells in the organism and play a bidirectional regulatory role in the MS process. This paper mainly reviews the components, biogenesis, biological functions and potential applications of exosomes, and exosomes involved in the pathogenesis of MS as well as their clinical significance in MS diagnosis.
Collapse
Affiliation(s)
- Ning Wang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (N.W.); (J.L.); (Z.H.); (E.E.N.)
| | - Jing Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (N.W.); (J.L.); (Z.H.); (E.E.N.)
| | - Zixuan Hu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (N.W.); (J.L.); (Z.H.); (E.E.N.)
| | - Ebenezeri Erasto Ngowi
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (N.W.); (J.L.); (Z.H.); (E.E.N.)
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 101408, China
- Department of Biological Sciences, Dar es Salaam University College of Education, Dar es Salaam 2329, Tanzania
| | - Baolong Yan
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China;
| | - Aijun Qiao
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (N.W.); (J.L.); (Z.H.); (E.E.N.)
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| |
Collapse
|
6
|
Liu X, Li R, Chen X, Yao J, Wang Q, Zhang J, Jiang Y, Qu Y. SYT7 is a key player in increasing exosome secretion and promoting angiogenesis in non-small-cell lung cancer. Cancer Lett 2023; 577:216400. [PMID: 37774826 DOI: 10.1016/j.canlet.2023.216400] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 10/01/2023]
Abstract
Lung cancer is the leading cause of cancer-related mortality, and non-small cell lung cancer (NSCLC) accounts for approximately 85% of all lung cancer cases. Our previous study confirmed that synaptotagmin 7 (SYT7) promoted NSCLC metastasis in vivo and in vitro. Studies have shown that SYT7 is an important regulatory molecule of exocytosis in various cells. However, the characteristics of SYT7 across cancers and the function of SYT7 in tumor exosome secretion remain unclear. In this study, we conducted systematic pancancer analyses of SYT7, namely, analyses of expression patterns, diagnostic and prognostic values, genetic alterations, methylation, immune infiltration, and potential biological pathways. Furthermore, we demonstrated that SYT7 increased the secretion of exosomes from A549 and H1299 cells, promoting the migration, proliferation, and tube formation of human umbilical vein endothelial cells (HUVECs). Notably, SYT7 promoted angiogenesis by transferring exosomes containing the molecule centrosomal protein of 55 kDa (CEP55) protein to HUVECs. The CEP55 protein levels was downregulated in STAT1 inhibitor-treating SYT7-overexpresion NSCLC cells. We further found that SYT7 activated the mTOR signaling pathway through the downstream molecule CEP55, thereby promoting the invasion and metastasis of NSCLC cells. SYT7 promoted exosome secretion by NSCLC cells through upregulating syntaxin-1a and syntaxin-3. In vivo, SYT7 promoted the tumorigenesis, angiogenesis and metastasis of A549 cells through the exosome pathway. Our study is of great importance for understanding the mechanism of tumor exosome secretion and the role of exosomes in tumor progression.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Rui Li
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xiao Chen
- Department of Respiratory Medicine, Tai'an City Central Hospital, Tai'an, China
| | - Jie Yao
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Qingxiang Wang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jinghong Zhang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yuanyuan Jiang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China.
| | - Yiqing Qu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
7
|
Russo MN, Whaley LA, Norton ES, Zarco N, Guerrero-Cázares H. Extracellular vesicles in the glioblastoma microenvironment: A diagnostic and therapeutic perspective. Mol Aspects Med 2023; 91:101167. [PMID: 36577547 PMCID: PMC10073317 DOI: 10.1016/j.mam.2022.101167] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022]
Abstract
Glioblastoma (GBM), is the most malignant form of gliomas and the most common and lethal primary brain tumor in adults. Conventional cancer treatments have limited to no efficacy on GBM. GBM cells respond and adapt to the surrounding brain parenchyma known as tumor microenvironment (TME) to promote tumor preservation. Among specific TME, there are 3 of particular interest for GBM biology: the perivascular niche, the subventricular zone neurogenic niche, and the immune microenvironment. GBM cells and TME cells present a reciprocal feedback which results in tumor maintenance. One way that these cells can communicate is through extracellular vesicles. These vesicles include exosomes and microvesicles that have the ability to carry both cancerous and non-cancerous cargo, such as miRNA, RNA, proteins, lipids, and DNA. In this review we will discuss the booming topic that is extracellular vesicles, and how they have the novelty to be a diagnostic and targetable vehicle for GBM.
Collapse
Affiliation(s)
- Marissa N Russo
- Neurosurgery Department, Mayo Clinic, Jacksonville, FL, USA; Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Lauren A Whaley
- Neurosurgery Department, Mayo Clinic, Jacksonville, FL, USA; Biology Graduate Program, University of North Florida, Jacksonville, FL, USA
| | - Emily S Norton
- Neurosurgery Department, Mayo Clinic, Jacksonville, FL, USA; Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA; Regenerative Sciences Training Program, Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Natanael Zarco
- Neurosurgery Department, Mayo Clinic, Jacksonville, FL, USA
| | | |
Collapse
|
8
|
Tian W, Niu X, Feng F, Wang X, Wang J, Yao W, Zhang P. The promising roles of exosomal microRNAs in osteosarcoma: A new insight into the clinical therapy. Biomed Pharmacother 2023; 163:114771. [PMID: 37119740 DOI: 10.1016/j.biopha.2023.114771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/18/2023] [Accepted: 04/22/2023] [Indexed: 05/01/2023] Open
Abstract
Osteosarcoma is the most common malignant bone sarcoma in children. Chemotherapy drugs resistance significantly hinders the overall survival of patients. Due to high biocompatibility and immunocompatibility, exosomes have been explored extensively. Multiple parent cells can actively secrete numerous exosomes, and the membrane structure of exosomes can protect miRNAs from degradation. Based on these characteristics, exosomal miRNAs play an important role in the occurrence, development, drug resistance. Therefore, in-depth exploration of exosome biogenesis and role of exosomal miRNAs will provide new strategies and targets for understanding the pathogenesis of osteosarcoma and overcoming chemotherapy drug resistance. Moreover, advancing evidences have showed that engineering modification could attribute stronger targeting to exosomes to deliver cargos to recipient cells more effectively. In this review, we focus on the mechanisms of exosomal miRNAs on the occurrence and development of osteosarcoma and the potential to function as tumor biomarkers for diagnosis and prognosis prediction. In addition, we also summarize recent advances in the clinical application values of engineering exosomes to provide novel ideas and directions for overcoming the chemotherapy resistance in osteosarcoma.
Collapse
Affiliation(s)
- Wen Tian
- Department of Bone and Soft Tissue Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Xiaoying Niu
- Department of Bone and Soft Tissue Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Feifei Feng
- Department of Toxicology, College of Public Health, Zhengzhou University, Henan 450001, China
| | - Xin Wang
- Department of Bone and Soft Tissue Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Jiaqiang Wang
- Department of Bone and Soft Tissue Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Weitao Yao
- Department of Bone and Soft Tissue Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Peng Zhang
- Department of Bone and Soft Tissue Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China.
| |
Collapse
|
9
|
Fathi M, Martinez-Paniagua M, Rezvan A, Montalvo MJ, Mohanty V, Chen K, Mani SA, Varadarajan N. Identifying signatures of EV secretion in metastatic breast cancer through functional single-cell profiling. iScience 2023; 26:106482. [PMID: 37091228 PMCID: PMC10119611 DOI: 10.1016/j.isci.2023.106482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/02/2023] [Accepted: 03/10/2023] [Indexed: 04/25/2023] Open
Abstract
Extracellular vesicles (EVs) regulate the tumor microenvironment by facilitating transport of biomolecules. Despite extensive investigation, heterogeneity in EV secretion among cancer cells and the mechanisms that support EV secretion are not well characterized. We developed an integrated method to identify individual cells with differences in EV secretion and performed linked single-cell RNA-sequencing on cloned single cells from the metastatic breast cancer cells. Differential gene expression analyses identified a four-gene signature of breast cancer EV secretion: HSP90AA1, HSPH1, EIF5, and DIAPH3. We functionally validated this gene signature by testing it across cell lines with different metastatic potential in vitro. Analysis of the TCGA and METABRIC datasets showed that this signature is associated with poor survival, invasive breast cancer types, and poor CD8+ T cell infiltration in human tumors. We anticipate that our method for directly identifying the molecular determinants of EV secretion will have broad applications across cell types and diseases.
Collapse
Affiliation(s)
- Mohsen Fathi
- Chemical and Biomolecular Engineering Department, University of Houston, 4726 Calhoun Road, Houston, TX 77204, USA
| | - Melisa Martinez-Paniagua
- Chemical and Biomolecular Engineering Department, University of Houston, 4726 Calhoun Road, Houston, TX 77204, USA
| | - Ali Rezvan
- Chemical and Biomolecular Engineering Department, University of Houston, 4726 Calhoun Road, Houston, TX 77204, USA
| | - Melisa J. Montalvo
- Chemical and Biomolecular Engineering Department, University of Houston, 4726 Calhoun Road, Houston, TX 77204, USA
| | - Vakul Mohanty
- Department of Bioinformatics and Computational Biology, University of Texas M.D. Anderson Cancer Center, 1400 Pressler Street, Houston, TX, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, University of Texas M.D. Anderson Cancer Center, 1400 Pressler Street, Houston, TX, USA
| | - Sendurai A. Mani
- Department of Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, 2130 W Holcombe Boulevard, Houston, TX 77030, USA
- Department of Pathology and Lab Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Legoretta Cancer Center, Brown University, Providence, RI 021912, USA
| | - Navin Varadarajan
- Chemical and Biomolecular Engineering Department, University of Houston, 4726 Calhoun Road, Houston, TX 77204, USA
- Corresponding author
| |
Collapse
|
10
|
Elangovan A, Venkatesan D, Selvaraj P, Pasha MY, Babu HWS, Iyer M, Narayanasamy A, Subramaniam MD, Valsala Gopalakrishnan A, Kumar NS, Vellingiri B. miRNA in Parkinson's disease: From pathogenesis to theranostic approaches. J Cell Physiol 2023; 238:329-354. [PMID: 36502506 DOI: 10.1002/jcp.30932] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is an age associated neurological disorder which is specified by cardinal motor symptoms such as tremor, stiffness, bradykinesia, postural instability, and non-motor symptoms. Dopaminergic neurons degradation in substantia nigra region and aggregation of αSyn are the classic signs of molecular defects noticed in PD pathogenesis. The discovery of microRNAs (miRNA) predicted to have a pivotal part in various processes regarding regularizing the cellular functions. Studies on dysregulation of miRNA in PD pathogenesis has recently gained the concern where our review unravels the role of miRNA expression in PD and its necessity in clinical validation for therapeutic development in PD. Here, we discussed how miRNA associated with ageing process in PD through molecular mechanistic approach of miRNAs on sirtuins, tumor necrosis factor-alpha and interleukin-6, dopamine loss, oxidative stress and autophagic dysregulation. Further we have also conferred the expression of miRNAs affected by SNCA gene expression, neuronal differentiation and its therapeutic potential with PD. In conclusion, we suggest more rigorous studies should be conducted on understanding the mechanisms and functions of miRNA in PD which will eventually lead to discovery of novel and promising therapeutics for PD.
Collapse
Affiliation(s)
- Ajay Elangovan
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Dhivya Venkatesan
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Priyanka Selvaraj
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Md Younus Pasha
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Harysh Winster Suresh Babu
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India.,Department of Zoology, Disease Proteomics Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Mahalaxmi Iyer
- Livestock Farming, & Bioresources Technology, Tamil Nadu, India
| | - Arul Narayanasamy
- Department of Zoology, Disease Proteomics Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Mohana Devi Subramaniam
- Department of Genetics and Molecular Biology, Vision Research Foundation, Tamil Nadu, Chennai, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bioscience and Technology, Vellore Institute of Technology (VIT), Tamil Nadu, Vellore, India
| | | | - Balachandar Vellingiri
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India.,Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab, Punjab, Bathinda, India
| |
Collapse
|
11
|
Miller K, Wagner MA, Jassey A, Jackson WT. SNAP23 is essential for germination of EV-D68 replication organelles. Virology 2023; 578:117-127. [PMID: 36527930 DOI: 10.1016/j.virol.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022]
Abstract
Picornaviruses rearrange host cell membranes to facilitate their own replication. Here we investigate the Qbc SNARE, SNAP23, which is found at the plasma membrane and plays roles in exocytosis. We found that knockdown of SNAP23 expression inhibits virus replication but not release from cells. Knocking down SNAP23 inhibits viral RNA replication and synthesis of structural proteins. Normal cellular levels of SNAP23 are required for an early step in virus production, prior to or at the stage of virus RNA replication. We report that SNAP23 knockdown generates large, electron-light structures, and that infection of cells with these structures does not alter them, and those cells fail to generate viral RNA replication sites. We suggest that SNAP23 may play a role in maintaining membranes and lipids needed for generating virus replication organelles. Further investigation is needed to determine the precise role of this crucial SNARE protein in EV-D68 replication.
Collapse
Affiliation(s)
- Katelyn Miller
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W Baltimore St, Baltimore, MD, 21201, USA
| | - Michael A Wagner
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W Baltimore St, Baltimore, MD, 21201, USA
| | - Alagie Jassey
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W Baltimore St, Baltimore, MD, 21201, USA
| | - William T Jackson
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W Baltimore St, Baltimore, MD, 21201, USA.
| |
Collapse
|
12
|
Jin Y, Ma L, Zhang W, Yang W, Feng Q, Wang H. Extracellular signals regulate the biogenesis of extracellular vesicles. Biol Res 2022; 55:35. [PMID: 36435789 PMCID: PMC9701380 DOI: 10.1186/s40659-022-00405-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/15/2022] [Indexed: 11/28/2022] Open
Abstract
Extracellular vesicles (EVs) are naturally released membrane vesicles that act as carriers of proteins and RNAs for intercellular communication. With various biomolecules and specific ligands, EV has represented a novel form of information transfer, which possesses extremely outstanding efficiency and specificity compared to the classical signal transduction. In addition, EV has extended the concept of signal transduction to intercellular aspect by working as the collection of extracellular information. Therefore, the functions of EVs have been extensively characterized and EVs exhibit an exciting prospect for clinical applications. However, the biogenesis of EVs and, in particular, the regulation of this process by extracellular signals, which are essential to conduct further studies and support optimal utility, remain unclear. Here, we review the current understanding of the biogenesis of EVs, focus on the regulation of this process by extracellular signals and discuss their therapeutic value.
Collapse
Affiliation(s)
- Yong Jin
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui, People's Republic of China
| | - Lele Ma
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui, People's Republic of China
| | - Wanying Zhang
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui, People's Republic of China
| | - Wen Yang
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui, People's Republic of China.,National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital/Institute, The Second Military Medical University, Shanghai, 20815, China
| | - Qiyu Feng
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui, People's Republic of China.
| | - Hongyang Wang
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui, People's Republic of China. .,National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital/Institute, The Second Military Medical University, Shanghai, 20815, China.
| |
Collapse
|
13
|
Chandrasekera D, Katare R. Exosomal microRNAs in diabetic heart disease. Cardiovasc Diabetol 2022; 21:122. [PMID: 35778763 PMCID: PMC9250231 DOI: 10.1186/s12933-022-01544-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/27/2022] [Indexed: 02/08/2023] Open
Abstract
Diabetes is a metabolic disorder that affects millions of people worldwide. Diabetic heart disease (DHD) comprises coronary artery disease, heart failure, cardiac autonomic neuropathy, peripheral arterial disease, and diabetic cardiomyopathy. The onset and progression of DHD have been attributed to molecular alterations in response to hyperglycemia in diabetes. In this context, microRNAs (miRNAs) have been demonstrated to have a significant role in the development and progression of DHD. In addition to their effects on the host cells, miRNAs can be released into circulation after encapsulation within the exosomes. Exosomes are extracellular nanovesicles ranging from 30 to 180 nm in diameter secreted by all cell types. They carry diverse cargos that are altered in response to various conditions in their parent cells. Exosomal miRNAs have been extensively studied in recent years due to their role and therapeutic potential in DHD. This review will first provide an overview of exosomes, their biogenesis and function, followed by the role of exosomes in cardiovascular disease and then focuses on the known role of exosomes and associated miRNAs in DHD.
Collapse
Affiliation(s)
- Dhananjie Chandrasekera
- Department of Physiology, School of Biomedical Sciences, HeartOtago, University of Otago, 270, Great King Street, Dunedin, New Zealand.
| | - Rajesh Katare
- Department of Physiology, School of Biomedical Sciences, HeartOtago, University of Otago, 270, Great King Street, Dunedin, New Zealand.
| |
Collapse
|
14
|
Guan R, Yang C, Zhang J, Wang J, Chen R, Su P. Dehydroepiandrosterone alleviates hypoxia-induced learning and memory dysfunction by maintaining synaptic homeostasis. CNS Neurosci Ther 2022; 28:1339-1350. [PMID: 35703574 PMCID: PMC9344085 DOI: 10.1111/cns.13869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/30/2022] Open
Abstract
AIMS Hypoxia causes plenty of pathologies in the central nervous system (CNS) including impairment of cognitive and memory function. Dehydroepiandrosterone (DHEA) has been proved to have therapeutic effects on CNS injuries by maintaining the homeostasis of synapses, yet its effect on hypoxia-induced CNS damage remains unknown. METHODS In vivo and in vitro models were established. Concentrations of glutamate and γ GABA were tested by ELISA. Levels of synapse-associated proteins were measured by western blotting. Density of dendritic protrusions of hippocampal neurons was assessed by Golgi staining. Immunofluorescence was adopted to observe the morphology of primary neurons. The novel object recognition test (NORT) and shuttle box test were used to evaluate cognition. RESULTS Dehydroepiandrosterone reversed abnormal elevation of glutamate levels, shortenings of neuronal processes, decreases in the density of dendritic protrusions, downregulation of synaptosome-associated protein (SNAP25), and impaired cognition caused by hypoxia. Hypoxia also resulted in notably downregulation of syntaxin 1A (Stx-1A). Overexpression of Stx-1A dramatically attenuated hypoxia-induced elevation of glutamate. Treatment with DHEA reversed the Stx-1A downregulation caused by hypoxic exposure. CONCLUSION Dehydroepiandrosterone may exert a protective effect on hypoxia-induced memory impairment by maintaining synaptic homeostasis. These findings offer a novel understanding of the therapeutic effect of DHEA on hypoxia-induced cognitive dysfunction.
Collapse
Affiliation(s)
- Ruili Guan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Changhao Yang
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Jianbin Zhang
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Jianyu Wang
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Rui Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Peng Su
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
15
|
Yang C, Kang B, Cao Z, Zhang J, Zhao F, Wang D, Su P, Chen J. Early-Life Pb Exposure Might Exert Synapse-Toxic Effects Via Inhibiting Synapse-Associated Membrane Protein 2 (VAMP2) Mediated by Upregulation of miR-34b. J Alzheimers Dis 2022; 87:619-633. [DOI: 10.3233/jad-215638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Early-life Pb exposure can cause behavioral and cognitive problems and induce symptoms of hyperactivity, impulsivity, and inattention in children. Studies showed that blood lead levels were highly correlated with neuropsychiatric disorders, and effects of neurotoxicity might persist and affect the incidence of neurodegenerative diseases, for example Alzheimer’s disease (AD). Objective: To explore possible mechanisms of developmental Pb-induced neuropsychiatric dysfunctions. Methods: Children were divided into low blood lead level (BLL) group (0–50.00μg/L) and high BLL group (> 50.00μg/L) and blood samples were collected. miRNA array was used to testify miRNA expression landscape between two groups. Correlation analysis and real-time PCR were applied to find miRNAs that altered in Pb and neuropsychiatric diseases. Animal models and cell experiments were used to confirm the effect of miRNAs in response to Pb, and siRNA and luciferase experiments were conducted to examine their effect on neural functions. Results: miRNA array data and correlation analysis showed that miR-34b was the most relevant miRNA among Pb neurotoxicity and neuropsychiatric disorders, and synapse-associated membrane protein 2 (VAMP2) was the target gene regulating synapse function. In vivo and in vitro studies showed Pb exposure injured rats’ cognitive abilities and induced upregulation of miR-34b and downregulation of VAMP2, resulting in decreases of hippocampal synaptic vesicles. Blockage of miR-34b mitigated Pb’s effects on VAMP2 in vitro. Conclusion: Early-life Pb exposure might exert synapse-toxic effects via inhibiting VAMP2 mediated by upregulation of miR-34b and shed a light on the underlying relationship between Pb neurotoxicity and developmental neuropsychiatric disorders.
Collapse
Affiliation(s)
- Changhao Yang
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Beipei Kang
- Department of Clinical Laboratory, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Zipeng Cao
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Jianbin Zhang
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Fang Zhao
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Diya Wang
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Peng Su
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Jingyuan Chen
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
16
|
Soltész B, Buglyó G, Németh N, Szilágyi M, Pös O, Szemes T, Balogh I, Nagy B. The Role of Exosomes in Cancer Progression. Int J Mol Sci 2021; 23:ijms23010008. [PMID: 35008434 PMCID: PMC8744561 DOI: 10.3390/ijms23010008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/05/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Early detection, characterization and monitoring of cancer are possible by using extracellular vesicles (EVs) isolated from non-invasively obtained liquid biopsy samples. They play a role in intercellular communication contributing to cell growth, differentiation and survival, thereby affecting the formation of tumor microenvironments and causing metastases. EVs were discovered more than seventy years ago. They have been tested recently as tools of drug delivery to treat cancer. Here we give a brief review on extracellular vesicles, exosomes, microvesicles and apoptotic bodies. Exosomes play an important role by carrying extracellular nucleic acids (DNA, RNA) in cell-to-cell communication causing tumor and metastasis development. We discuss the role of extracellular vesicles in the pathogenesis of cancer and their practical application in the early diagnosis, follow up, and next-generation treatment of cancer patients.
Collapse
Affiliation(s)
- Beáta Soltész
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (G.B.); (N.N.); (M.S.); (I.B.); (B.N.)
- Correspondence: ; Tel.: +36-52416531
| | - Gergely Buglyó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (G.B.); (N.N.); (M.S.); (I.B.); (B.N.)
| | - Nikolett Németh
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (G.B.); (N.N.); (M.S.); (I.B.); (B.N.)
| | - Melinda Szilágyi
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (G.B.); (N.N.); (M.S.); (I.B.); (B.N.)
| | - Ondrej Pös
- Geneton Ltd., 841 04 Bratislava, Slovakia; (O.P.); (T.S.)
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia
| | - Tomas Szemes
- Geneton Ltd., 841 04 Bratislava, Slovakia; (O.P.); (T.S.)
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia
| | - István Balogh
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (G.B.); (N.N.); (M.S.); (I.B.); (B.N.)
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (G.B.); (N.N.); (M.S.); (I.B.); (B.N.)
| |
Collapse
|
17
|
Liu J, Ren L, Li S, Li W, Zheng X, Yang Y, Fu W, Yi J, Wang J, Du G. The biology, function, and applications of exosomes in cancer. Acta Pharm Sin B 2021; 11:2783-2797. [PMID: 34589397 PMCID: PMC8463268 DOI: 10.1016/j.apsb.2021.01.001] [Citation(s) in RCA: 279] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/30/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
Exosomes are cell-derived nanovesicles with diameters from 30 to 150 nm, released upon fusion of multivesicular bodies with the cell surface. They can transport nucleic acids, proteins, and lipids for intercellular communication and activate signaling pathways in target cells. In cancers, exosomes may participate in growth and metastasis of tumors by regulating the immune response, blocking the epithelial-mesenchymal transition, and promoting angiogenesis. They are also involved in the development of resistance to chemotherapeutic drugs. Exosomes in liquid biopsies can be used as non-invasive biomarkers for early detection and diagnosis of cancers. Because of their amphipathic structure, exosomes are natural drug delivery vehicles for cancer therapy.
Collapse
Key Words
- ABCA3, ATP-binding cassette transporter A3
- APCs, antigen-presenting cells
- Biomarkers
- CAFs, cancer-associated fibroblasts
- CCRCC, clear-cell renal cell carcinoma
- CD-UPRT, cytosine deaminase-uracil phosphoribosyltransferase
- CDH3, cadherin 3
- CRC, colorectal cancer
- DC, dendritic cells
- DEXs, DC-derived exosomes
- DLBCL, diffuse large B-cell lymphoma
- DNM3, dynamin 3
- Del-1, developmental endothelial locus-1
- Drug delivery
- Drug resistance
- ECM, extracellular matrix
- EMT, epithelial–mesenchymal transition
- ESCRT, endosomal sorting complex required for transport
- Exosomes
- GPC1, glypican-1
- HA, hyaluronic acid
- HCC, hepatocellular carcinoma
- HIF1, hypoxia-inducible factor 1
- HTR, hormone therapy-resistant
- HUVECs, human umbilical vein endothelial cells
- ILVs, intraluminal vesicles
- MDSCs, myeloid-derived suppressor cells
- MIF, migration inhibitory factor
- MSC, mesenchymal stem cells
- MVB, multivesicular body
- NKEXOs, natural killer cell-derived exosomes
- NNs, nanoparticles
- NSCLC, non-small cell lung cancer
- PA, phosphatidic acid
- PCC, pheochromocytoma
- PD-L1, programmed cell death receptor ligand 1
- PDAC, pancreatic ductal adenocarcinoma
- PGL, paraganglioma
- PI, phosphatidylinositol
- PS, phosphatidylserine
- PTRF, polymerase I and transcript release factor
- RCC, renal cell carcinoma
- SM, sphingomyelin
- SNARE, soluble NSF-attachment protein receptor
- TEX, tumor-derived exosomes
- TSG101, tumor susceptibility gene 101
- Tumor immunity
- Tumor metastasis
- circRNAs, circular RNAs
- dsDNA, double stranded DNA
- hTERT, human telomerase reverse transcriptase
- lamp2b, lysosome-associated membrane glycoprotein 2b
- lncRNAs, long non-coding RNAs
- miRNA, microRNA
- mtDNA, mitochondrial DNA
- ncRNA, non-coding RNAs
Collapse
Affiliation(s)
- Jinyi Liu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Sha Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Xiangjin Zheng
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yihui Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Weiqi Fu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jie Yi
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Beijing 100730, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
18
|
Exosomes as cell-derivative carriers in the diagnosis and treatment of central nervous system diseases. Drug Deliv Transl Res 2021; 12:1047-1079. [PMID: 34365576 PMCID: PMC8942947 DOI: 10.1007/s13346-021-01026-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2021] [Indexed: 02/08/2023]
Abstract
Exosomes are extracellular vesicles with the diameter ranging from 50 to 100 nm and are found in different body fluids such as blood, cerebrospinal fluid (CSF), urine and saliva. Like in case of various diseases, based on the parent cells, the content of exosomes (protein, mRNA, miRNA, DNA, lipids and metabolites) varies and thus can be utilized as potential biomarker for diagnosis and prognosis of the brain diseases. Furthermore, utilizing the natural potential exosomes to cross the blood–brain barrier and by specifically decorating it with the ligand as per the desired brain sites therapeutics can be delivered to brain parenchyma. This review article conveys the importance of exosomes and their use in the treatment and diagnosis of brain/central nervous system diseases.
Collapse
|
19
|
Wang X, Zhou Y, Ding K. Roles of exosomes in cancer chemotherapy resistance, progression, metastasis and immunity, and their clinical applications (Review). Int J Oncol 2021; 59:44. [PMID: 34013358 PMCID: PMC8143748 DOI: 10.3892/ijo.2021.5224] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022] Open
Abstract
Exosomes are a type of vesicle that are secreted by cells, with a diameter of 40-100 nm, and that appear as a cystic shape under an electron microscope. Exosome cargo includes a variety of biologically active substances such as non-coding RNA, lipids and small molecule proteins. Exosomes can be taken up by neighboring cells upon secretion or by distant cells within the circulatory system, affecting gene expression of the recipient cells. The present review discusses the formation and secretion of exosomes, and how they can remodel the tumor microenvironment, enhancing cancer cell chemotherapy resistance and tumor progression. Exosome-mediated induction of tumor metastasis is also highlighted. More importantly, the review discusses the manner in which exosomes can change the metabolism of cancer cells and the immune system, which may help to devise novel therapeutic approaches for cancer treatment. With the development of nanotechnology, exosomes can also be used as biomarkers and for the delivery of chemical drugs, serving as a tool to diagnose and treat cancer.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| | - Yuan Zhou
- Gruduate School, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Kaiyang Ding
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| |
Collapse
|
20
|
Camblor-Perujo S, Kononenko NL. Brain-specific functions of the endocytic machinery. FEBS J 2021; 289:2219-2246. [PMID: 33896112 DOI: 10.1111/febs.15897] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/29/2021] [Indexed: 12/12/2022]
Abstract
Endocytosis is an essential cellular process required for multiple physiological functions, including communication with the extracellular environment, nutrient uptake, and signaling by the cell surface receptors. In a broad sense, endocytosis is accomplished through either constitutive or ligand-induced invagination of the plasma membrane, which results in the formation of the plasma membrane-retrieved endocytic vesicles, which can either be sent for degradation to the lysosomes or recycled back to the PM. This additional function of endocytosis in membrane retrieval has been adopted by excitable cells, such as neurons, for membrane equilibrium maintenance at synapses. The last two decades were especially productive with respect to the identification of brain-specific functions of the endocytic machinery, which additionally include but not limited to regulation of neuronal differentiation and migration, maintenance of neuron morphology and synaptic plasticity, and prevention of neurotoxic aggregates spreading. In this review, we highlight the current knowledge of brain-specific functions of endocytic machinery with a specific focus on three brain cell types, neuronal progenitor cells, neurons, and glial cells.
Collapse
Affiliation(s)
| | - Natalia L Kononenko
- CECAD Cluster of Excellence, University of Cologne, Germany.,Center for Physiology & Pathophysiology, Medical Faculty, University of Cologne, Germany
| |
Collapse
|
21
|
Chen F, Chen H, Chen Y, Wei W, Sun Y, Zhang L, Cui L, Wang Y. Dysfunction of the SNARE complex in neurological and psychiatric disorders. Pharmacol Res 2021; 165:105469. [PMID: 33524541 DOI: 10.1016/j.phrs.2021.105469] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/30/2020] [Accepted: 01/24/2021] [Indexed: 02/07/2023]
Abstract
The communication between neurons constitutes the basis of all neural activities, and synaptic vesicle exocytosis is the fundamental biological event that mediates most communication between neurons in the central nervous system. The SNARE complex is the core component of the protein machinery that facilitates the fusion of synaptic vesicles with presynaptic terminals and thereby the release of neurotransmitters. In synapses, each release event is dependent on the assembly of the SNARE complex. In recent years, basic research on the SNARE complex has provided a clearer understanding of the mechanism underlying the formation of the SNARE complex and its role in vesicle formation. Emerging evidence indicates that abnormal expression or dysfunction of the SNARE complex in synapse physiology might contribute to abnormal neurotransmission and ultimately to synaptic dysfunction. Clinical research using postmortem tissues suggests that SNARE complex dysfunction is correlated with various neurological diseases, and some basic research has also confirmed the important role of the SNARE complex in the pathology of these diseases. Genetic and pharmacogenetic studies suggest that the SNARE complex and individual proteins might represent important molecular targets in neurological disease. In this review, we summarize the recent progress toward understanding the SNARE complex in regulating membrane fusion events and provide an update of the recent discoveries from clinical and basic research on the SNARE complex in neurodegenerative, neuropsychiatric, and neurodevelopmental diseases.
Collapse
Affiliation(s)
- Feng Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Huiyi Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yanting Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wenyan Wei
- Department of Gerontology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yuanhong Sun
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Lu Zhang
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Yan Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China; Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiao tong University, Xi'an, China.
| |
Collapse
|
22
|
Chen P, Wang L, Fan X, Ning X, Yu B, Ou C, Chen M. Targeted delivery of extracellular vesicles in heart injury. Am J Cancer Res 2021; 11:2263-2277. [PMID: 33500724 PMCID: PMC7797669 DOI: 10.7150/thno.51571] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/18/2020] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EVs) are nanoscale extracellular vesicles derived from endocytosis that are crucial to intercellular communication. EVs possess natural biocompatibility and stability that allow them to cross biological membranes and that protect them from degradation. Recent studies have shown that EVs-mediated crosstalk between different cell types in the heart could play important roles in the maintenance of cardiac homeostasis and the pathogenesis of heart diseases. In particular, EVs secreted by different types of stem cells exhibit cardioprotective effects. However, numerous studies have shown that intravenously injected EVs are quickly cleared by macrophages of the mononuclear phagocyte system (MPS) and preferentially accumulate in MPS organs such as the liver, spleen, and lung. In this review, we discuss exosome biogenesis, the role of EVs in heart diseases, and challenges in delivering EVs to the heart. Furthermore, we extensively discuss the targeted delivery of EVs for treating ischemic heart disease. These understandings will aid in the development of effective treatment strategies for heart diseases.
Collapse
|
23
|
Mo F, Xu Y, Zhang J, Zhu L, Wang C, Chu X, Pan Y, Bai Y, Shao C, Zhang J. Effects of Hypoxia and Radiation-Induced Exosomes on Migration of Lung Cancer Cells and Angiogenesis of Umbilical Vein Endothelial Cells. Radiat Res 2020; 194:71-80. [PMID: 32352864 DOI: 10.1667/rr15555.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/27/2020] [Indexed: 11/03/2022]
Abstract
Numerous studies have shown that exosomes play important roles in tumor biology development. However, the function of exosomal protein in cancer progression under different oxygen condition after irradiation is poorly understood. In this study, non-small cell lung cancer (NSCLC) A549 cells were γ-ray irradiated under normoxic or hypoxic conditions, then the exosomes released from the irradiated cells were collected and co-cultured with nonirradiated A549 cells or human umbilical vein endothelial cells (HUVECs). It was found that the exosomes significantly promoted the proliferation, migration and invasion of A549 cells as well as the proliferation and angiogenesis of HUVECs. Moreover, the exosomes released from hypoxic cells and/or irradiated cells had more powerful driving force in tumor progression compared to that generated from normoxia cells. Meanwhile, the proteins contained in the exosomes derived from A549 cells under different conditions were detected using tandem mass tag (TMT), and their expression profiles were analyzed. It was found that the exosome-derived protein of angiopoietin-like 4 (ANGPTL4) contributed to the migration of A549 cells as well as the angiogenesis of HUVECs, suggesting its potential as an effective diagnostic biomarker of metastasis and even a therapeutic target of lung cancer.
Collapse
Affiliation(s)
- Fang Mo
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Yanwu Xu
- Department of Biochemistry, College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junling Zhang
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Lin Zhu
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Chen Wang
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Xiaofei Chu
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Yan Pan
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Yang Bai
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Jianghong Zhang
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| |
Collapse
|
24
|
Wang X, Thomsen P. Mesenchymal stem cell-derived small extracellular vesicles and bone regeneration. Basic Clin Pharmacol Toxicol 2020; 128:18-36. [PMID: 32780530 PMCID: PMC7820981 DOI: 10.1111/bcpt.13478] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells (MSCs) and MSC‐derived small extracellular vesicles (sEVs) are promising candidates for cell‐based and cell‐free regenerative medicine, respectively. By virtue of their multiple lineage differentiation capacity, MSCs have been implicated as an ideal tool for bone and cartilage regeneration. However, later observations attributed such regenerative effects to MSC‐secreted paracrine factors. Exosomes, endosomal originated sEVs carrying lipid, protein and nucleic acid cargoes, were identified as components of the MSC secretome and propagated the key regenerative and immunoregulatory characteristics of parental MSCs. Here, exosome biogenesis, the molecular composition of exosomes, sEV‐cell interactions and the effects on key bone homeostasis cells are reviewed. MSC‐derived sEVs show to promote neovascularization and bone and cartilage regeneration in preclinical disease models. The mechanisms include the transfer of molecules, including microRNAs, mRNAs and proteins, to other key cells. MSC‐derived sEVs are interesting candidates as biopharmaceuticals for drug delivery and for the engineering of biologically functionalized materials. Although major exploratory efforts have been made for therapeutic development, the secretion, distribution and biological effects of MSC‐derived sEVs in bone and cartilage regeneration are not fully understood. Moreover, techniques for high‐yield production, purity and storage need to be optimized before effective and safe MSC‐derived sEVs therapies are realized.
Collapse
Affiliation(s)
- Xiaoqin Wang
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
25
|
Alzu'bi A, Clowry GJ. Multiple Origins of Secretagogin Expressing Cortical GABAergic Neuron Precursors in the Early Human Fetal Telencephalon. Front Neuroanat 2020; 14:61. [PMID: 32982702 PMCID: PMC7492523 DOI: 10.3389/fnana.2020.00061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/10/2020] [Indexed: 01/31/2023] Open
Abstract
Secretagogin (SCGN) which acts as a calcium signaling sensor, has previously been shown to be expressed by a substantial population of cortical GABAergic neurons at mid-gestation in humans but not in mice. The present study traced SCGN expression in cortical GABAergic neurons in human fetal forebrain from earlier stages than previously studied. Multiple potential origins of SCGN-expressing neurons were identified in the caudal ganglionic eminence (CGE) lateral ganglionic eminence (LGE) septum and preoptic area; these cells largely co-expressed SP8 but not the medial ganglionic eminence marker LHX6. They followed various migration routes to reach their target regions in the neocortex, insular and olfactory cortex (OC) and olfactory bulbs. A robust increase in the number of SCGN-expressing GABAergic cortical neurons was observed in the midgestational period; 58% of DLX2+ neurons expressed SCGN in the cortical wall at 19 post-conceptional weeks (PCW), a higher proportion than expressed calretinin, a marker for GABAergic neurons of LGE/CGE origin. Furthermore, although most SCGN+ neurons co-expressed calretinin in the cortical plate (CP) and deeper layers, in the marginal zone (MZ) SCGN+ and calretinin+ cells formed separate populations. In the adult mouse, it has previously been shown that in the rostral migratory stream (RMS), SCGN, annexin V (ANXA5), and matrix metalloprotease 2 (MMP2) are co-expressed forming a functioning complex that exocytoses MMP2 in response to calcium. In the present study, ANXA5 showed widespread expression throughout the cortical wall, although MMP2 expression was very largely limited to the CP. We found co-expression of these proteins in some SCGN+ neurons in the subventricular zones (SVZ) suggesting a limited role for these cells in remodeling the extracellular matrix, perhaps during cell migration.
Collapse
Affiliation(s)
- Ayman Alzu'bi
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Gavin J Clowry
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
26
|
Extracellular Vesicles: A Therapeutic Option for Liver Fibrosis. Int J Mol Sci 2020; 21:ijms21124255. [PMID: 32549355 PMCID: PMC7352992 DOI: 10.3390/ijms21124255] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/02/2020] [Accepted: 06/11/2020] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous population of small membrane vesicles released by all types of cells in both physiological and pathological conditions. EVs shuttle different types of molecules and are able to modify the behavior of target cells by various mechanisms of action. In this review, we have summarized the papers present in the literature, to our acknowledge, that reported the EV effects on liver diseases. EVs purified from serum, stem cells, and hepatocytes were investigated in different experimental in vivo models of liver injury and in particular of liver fibrosis. Despite the different EV origin and the different types of injury (toxic, ischemic, diet induced, and so on), EVs showed an anti-fibrotic effect. In particular, EVs had the capacities to inhibit activation of hepatic stellate cells, one of the major players of liver fibrosis development; to reduce inflammation and apoptosis; to counteract the oxidative stress; and to increase hepatocyte proliferation, contributing to reducing fibrosis and ameliorating liver function and morphology.
Collapse
|
27
|
Yu H, Sun T, An J, Wen L, Liu F, Bu Z, Cui Y, Feng J. Potential Roles of Exosomes in Parkinson's Disease: From Pathogenesis, Diagnosis, and Treatment to Prognosis. Front Cell Dev Biol 2020; 8:86. [PMID: 32154247 PMCID: PMC7047039 DOI: 10.3389/fcell.2020.00086] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease in the world, after Alzheimer's disease (AD), affecting approximately 1% of people over 65 years of age. Exosomes were once considered to be cellular waste and functionless. However, our understanding about exosome function has increased, and exosomes have been found to carry specific proteins, lipids, functional messenger RNAs (mRNAs), high amounts of non-coding RNAs (including microRNAs, lncRNAs, and circRNAs) and other bioactive substances. Exosomes have been shown to be involved in many physiological processes in vivo, including intercellular communication, cell migration, angiogenesis, and anti-tumor immunity. Moreover, exosomes may be pivotal in the occurrence and progression of various diseases. Therefore, exosomes have several diverse potential applications due to their unique structure and function. For instance, exosomes may be used as biological markers for the diagnosis and prognosis of various diseases, or as a natural carrier of drugs for clinical treatment. Here, we review the potential roles of exosomes in the pathogenesis, diagnosis, treatment, and prognosis of PD.
Collapse
Affiliation(s)
- Haiyang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tong Sun
- Department of Neonatology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing An
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lulu Wen
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fei Liu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhongqi Bu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yueran Cui
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
28
|
Zhu Z, Kalyan BS, Chen L. Therapeutic potential role of exosomes for ischemic stroke. BRAIN SCIENCE ADVANCES 2020. [DOI: 10.1177/2096595820902588] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Exosomes are extracellular vesicles with a diameter of 30–100 nm, which are released into the extracellular space by fusion of multivesicular and plasma membranes. These vesicles actually play a distinct role in cell communication, although they were considered as membrane debris in the past. The endosomal sorting complex required for transport (ESCRT)-dependent and ESCRT-independent mechanisms are currently considered to be involved in the sorting of exosomes, and the release of exosomes is related to the members of Rab protein family and SNARE family. In recent years, the therapeutic potential of exosomes has become apparent. For example, via the direct transplantation of exosomes, the ischemic area after stroke is reduced, and the neurological function is improved significantly. Furthermore, they can be used as effective drug delivery vehicles due to their unique characteristics such as low immunogenicity and nanometer size. In conclusion, exosomes provide a cell-free treatment for ischemic stroke.
Collapse
Affiliation(s)
- Zhihan Zhu
- Department of Neurosurgery, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Bikram Shah Kalyan
- Department of Neurosurgery, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Lukui Chen
- Department of Neurosurgery, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, Guangdong, China
| |
Collapse
|
29
|
Garikipati VNS, Shoja-Taheri F, Davis ME, Kishore R. Extracellular Vesicles and the Application of System Biology and Computational Modeling in Cardiac Repair. Circ Res 2019; 123:188-204. [PMID: 29976687 DOI: 10.1161/circresaha.117.311215] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent literature suggests that extracellular vesicles (EVs), secreted from most cells and containing cell-specific cargo of proteins, lipids, and nucleic acids, are major driver of intracellular communication in normal physiology and pathological conditions. The recent evidence on stem/progenitor cell EVs as potential therapeutic modality mimicking their parental cell function is exciting because EVs could possibly be used as a surrogate for the stem cell-based therapy, and this regimen may overcome certain roadblocks identified with the use of stem/progenitor cell themselves. This review provides a comprehensive update on our understanding on the role of EVs in cardiac repair and emphasizes the applications of stem/progenitor cell-derived EVs as therapeutics and discusses the current challenges associated with the EV therapy.
Collapse
Affiliation(s)
| | - Farnaz Shoja-Taheri
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta (F.S.-T., M.E.D.).,Division of Cardiology, Emory University School of Medicine, Atlanta, GA (F.S.-T., M.E.D).,Children's Heart Research and Outcomes Center, Emory University School of Medicine, Children's Healthcare of Atlanta, GA (F.S.-T., M.E.D)
| | - Michael E Davis
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta (F.S.-T., M.E.D.).,Division of Cardiology, Emory University School of Medicine, Atlanta, GA (F.S.-T., M.E.D).,Children's Heart Research and Outcomes Center, Emory University School of Medicine, Children's Healthcare of Atlanta, GA (F.S.-T., M.E.D)
| | - Raj Kishore
- From the Center for Translational Medicine (V.N.S.G., R.K.) .,Department of Pharmacology (R.K.)
| |
Collapse
|
30
|
Jin Y, Long D, Li J, Yu R, Song Y, Fang J, Yang X, Zhou S, Huang S, Zhao Z. Extracellular vesicles in bone and tooth: A state-of-art paradigm in skeletal regeneration. J Cell Physiol 2019; 234:14838-14851. [PMID: 30847902 DOI: 10.1002/jcp.28303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 02/05/2023]
Abstract
Bone and tooth, fundamental parts of the craniofacial skeleton, are anatomically and developmentally interconnected structures. Notably, pathological processes in these tissues underwent together and progressed in multilevels. Extracellular vesicles (EVs) are cell-released small organelles and transfer proteins and genetic information into cells and tissues. Although EVs have been identified in bone and tooth, particularly EVs have been identified in the bone formation and resorption, the concrete roles of EVs in bone and tooth development and diseases remain elusive. As such, we review the recent progress of EVs in bone and tooth to highlight the novel findings of EVs in cellular communication, tissue homeostasis, and interventions. This will enhance our comprehension on the skeletal biology and shed new light on the modulation of skeletal disorders and the potential of genetic treatment.
Collapse
Affiliation(s)
- Ying Jin
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Long
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Juan Li
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Ruichao Yu
- Department of Pulmonary, Brigham and Women's Hospital, Harvard Medical School, Massachusetts
| | - Yueming Song
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Fang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Xi Yang
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Shu Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, P.R. China
| | - Shishu Huang
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
31
|
Wang M, Gu X, Huang X, Zhang Q, Chen X, Wu J. STX1A gene variations contribute to the susceptibility of children attention-deficit/hyperactivity disorder: a case-control association study. Eur Arch Psychiatry Clin Neurosci 2019; 269:689-699. [PMID: 30976917 DOI: 10.1007/s00406-019-01010-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 03/26/2019] [Indexed: 12/19/2022]
Abstract
It was presumed syntaxin-1A (STX1A) might relate to the pathophysiology of attention-deficit/hyperactivity disorder (ADHD), but the results were inconsistent. The present study aims to confirm whether the STX1A gene is involved in the susceptibility of children ADHD. We genotyped three single nucleotide polymorphisms (SNPs) of STX1A gene using Sequenom MassARRAY technology. A case-control study was performed among Chinese Han population including 754 cases and 772 controls from two different provinces. The Conners Parent Symptom Questionnaire and Integrated Visual and Auditory Continuous Performance Test were used to assess ADHD clinical symptoms. We found for the first time that rs3793243 GG genotype carriers had a lower risk of ADHD compared with AA genotype (OR 0.564, 95% confidence interval (CI) 0.406-0.692, P = 0.001), and rs875342 was also associated with children ADHD (OR 1.806, 95% CI 1.349-2.591, P = 0.001). In addition, the two positive SNPs were also significantly associated with the clinical characteristics of ADHD. Expression quantitative trait loci analysis indicated that rs3793243 might mediate STX1A gene expression. Using a case-control study to explore the association between STX1A gene and children ADHD in Chinese Han population, our results suggest STX1A genetic variants might contribute to the susceptibility of children ADHD.
Collapse
Affiliation(s)
- Min Wang
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, People's Republic of China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xue Gu
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, People's Republic of China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xin Huang
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, People's Republic of China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qi Zhang
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, People's Republic of China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xinzhen Chen
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, People's Republic of China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jing Wu
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, People's Republic of China. .,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
32
|
Xu C, Wang C, Meng Q, Gu Y, Wang Q, Xu W, Han Y, Qin Y, Li J, Jia S, Xu J, Zhou Y. miR‑153 promotes neural differentiation in the mouse hippocampal HT‑22 cell line and increases the expression of neuron‑specific enolase. Mol Med Rep 2019; 20:1725-1735. [PMID: 31257504 PMCID: PMC6625396 DOI: 10.3892/mmr.2019.10421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/06/2019] [Indexed: 01/22/2023] Open
Abstract
MicroRNAs (miRNAs) have been found to play important regulatory roles in certain neurodegenerative diseases. The aim of the present study was to investigate the effect of miRNA-153 (miR-153) on the neural differentiation of HT-22 cells. Overexpression of miR-153 induced the differentiation of HT-22 cells, increasing the number of protrusions and branches, reducing the S phase distribution of the cell cycle, and attenuating the cell proliferation rate as determined using the Cell Counting Kit-8 assay. Furthermore, miR-153 increased the expression of neuron-specific γ-enolase (NSE), neuronal nuclei (NeuN), and N-ethylmaleimide-sensitive fusion attachment protein 23 (SNAP23) and SNAP25 at the transcriptional and protein level by PCR and western blot analysis. Moreover, miR-153 caused obvious upregulation of peroxiredoxin 5 (PRX5), which has been found to protect neural cells from death and apoptosis. miR-153 promoted neural differentiation and protected neural cells by upregulating the neuron markers γ-enolase, neuronal nuclei, and the functional proteins SNAP23, SNAP25 and PRX5. Therefore, miR-153 may be a potential target for the treatment of certain neurodegenerative diseases.
Collapse
Affiliation(s)
- Chunli Xu
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Chen Wang
- School of Life Science and Technology, School of Medicine, Tongji University, Shanghai 200092, P.R. China
| | - Qiuyu Meng
- School of Life Science and Technology, School of Medicine, Tongji University, Shanghai 200092, P.R. China
| | - Yuming Gu
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Qiwei Wang
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Wenjie Xu
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Ying Han
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Yong Qin
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Jiao Li
- Teaching Laboratory Center of Medicine and Life Science, School of Medicine, Tongji University, Shanghai 200092, P.R. China
| | - Song Jia
- Teaching Laboratory Center of Medicine and Life Science, School of Medicine, Tongji University, Shanghai 200092, P.R. China
| | - Jie Xu
- Teaching Laboratory Center of Medicine and Life Science, School of Medicine, Tongji University, Shanghai 200092, P.R. China
| | - Yixin Zhou
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| |
Collapse
|
33
|
Zhu Z, Kalyan BS, Chen L. Therapeutic potential role of exosomes for ischemic stroke. BRAIN SCIENCE ADVANCES 2019. [DOI: 10.26599/bsa.2019.9050013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
34
|
Li LM, Liu ZX, Cheng QY. Exosome plays an important role in the development of hepatocellular carcinoma. Pathol Res Pract 2019; 215:152468. [PMID: 31171380 DOI: 10.1016/j.prp.2019.152468] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/19/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most malignant cancers around the world. However, the early biomarkers for its detection and treatment are limited currently. Exosomes, classified as intercellular messenger shuttling their cargoes between cells, regulate cell differentiation and tissue development. They contain messenger RNA (mRNA), microRNA (miRNA), long non-coding RNA (lncRNA), circular RNA (circRNA), proteins, lipids and transcription factors. Therefore, exosomes play a crucial role in the development of HCC. In this review, we highlight the exosomal cargoes which could serve as biomarkers for the prediction and diagnosis of HCC. Exosomes are involved in metastases of HCC and they show great potential in immunotherapy and drug resistance mechanism. In summary, exosome suggests new clues in clinical application of HCC.
Collapse
Affiliation(s)
- Li-Man Li
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhen-Xian Liu
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qing-Yuan Cheng
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
35
|
Zhang L, Yu D. Exosomes in cancer development, metastasis, and immunity. Biochim Biophys Acta Rev Cancer 2019; 1871:455-468. [PMID: 31047959 DOI: 10.1016/j.bbcan.2019.04.004] [Citation(s) in RCA: 596] [Impact Index Per Article: 99.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/18/2019] [Accepted: 04/18/2019] [Indexed: 12/12/2022]
Abstract
Exosomes play essential roles in intercellular communications. The exosome was discovered in 1983, when it was found that reticulocytes release 50-nm small vesicles carrying transferrin receptors into the extracellular space. Since then, our understanding of the mechanism and function of the exosome has expanded exponentially that has transformed our perspective of inter-cellular exchanges and the molecular mechanisms that underlie disease progression. Cancer cells generally produce more exosomes than normal cells, and exosomes derived from cancer cells have a strong capacity to modify both local and distant microenvironments. In this review, we summarize the functions of exosomes in cancer development, metastasis, and anti-tumor or pro-tumor immunity, plus their application in cancer treatment and diagnosis/prognosis. Although the exosome field has rapidly advanced, we still do not fully understand the regulation and function of exosomes in detail and still face many challenges in their clinical application. Continued discoveries in this field will bring novel insights on intercellular communications involved in various biological functions and disease progression, thus empowering us to effectively tackle accompanying clinical challenges.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
36
|
Alzu’bi A, Homman-Ludiye J, Bourne JA, Clowry GJ. Thalamocortical Afferents Innervate the Cortical Subplate much Earlier in Development in Primate than in Rodent. Cereb Cortex 2019; 29:1706-1718. [PMID: 30668846 PMCID: PMC6418397 DOI: 10.1093/cercor/bhy327] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/16/2018] [Accepted: 11/29/2018] [Indexed: 12/21/2022] Open
Abstract
The current model, based on rodent data, proposes that thalamocortical afferents (TCA) innervate the subplate towards the end of cortical neurogenesis. This implies that the laminar identity of cortical neurons is specified by intrinsic instructions rather than information of thalamic origin. In order to determine whether this mechanism is conserved in the primates, we examined the growth of thalamocortical (TCA) and corticofugal afferents in early human and monkey fetal development. In the human, TCA, identified by secretagogin, calbindin, and ROBO1 immunoreactivity, were observed in the internal capsule of the ventral telencephalon as early as 7-7.5 PCW, crossing the pallial/subpallial boundary (PSB) by 8 PCW before the calretinin immunoreactive corticofugal fibers do. Furthermore, TCA were observed to be passing through the intermediate zone and innervating the presubplate of the dorsolateral cortex, and already by 10-12 PCW TCAs were occupying much of the cortex. Observations at equivalent stages in the marmoset confirmed that this pattern is conserved across primates. Therefore, our results demonstrate that in primates, TCAs innervate the cortical presubplate at earlier stages than previously demonstrated by acetylcholinesterase histochemistry, suggesting that pioneer thalamic afferents may contribute to early cortical circuitry that can participate in defining cortical neuron phenotypes.
Collapse
Affiliation(s)
- Ayman Alzu’bi
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne, UK
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Jihane Homman-Ludiye
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - James A Bourne
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Gavin J Clowry
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne, UK
| |
Collapse
|
37
|
Raja SA, Abbas S, Shah STA, Tariq A, Bibi N, Yousuf A, Khawaja A, Nawaz M, Mehmood A, Khan MJ, Hussain A. Increased expression levels of Syntaxin 1A and Synaptobrevin 2/Vesicle-Associated Membrane Protein-2 are associated with the progression of bladder cancer. Genet Mol Biol 2019; 42:40-47. [PMID: 30672978 PMCID: PMC6428126 DOI: 10.1590/1678-4685-gmb-2017-0339] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 07/09/2018] [Indexed: 01/11/2023] Open
Abstract
Gene expression is tightly regulated in time and space through a multitude of
factors consisting of signaling molecules. Soluble
N-ethylmaleimide-sensitive-factor attachment protein receptors (SNARE) are
membrane proteins responsible for the intercellular trafficking of signals
through endocytosis and exocytosis of vesicles. Altered expression of SNARE
proteins in cellular communication is the major hallmark of cancer phenotypes as
indicated in recent studies. SNAREs play an important role in maintaining cell
growth and epithelial membrane permeability of the bladder and are not only
involved in cancer progression but also metastatic cell invasion through
SNARE-mediated trafficking. Synaptobrevin2/Vesicle associated membrane protein-2
(v-SNARE) and Syntaxin (t-SNARE) form a vesicular docking complex during
endocytosis. Some earlier studies have shown a critical role of SNARE in colon,
lungs, and breast cancer progression and metastasis. In this study, we analyzed
the relative expression of the STX1A and VAMP2
(SYB2) for their possible association in the progression
and metastasis of bladder cancer. The profiling of the genes showed a
significant increase in STX1A and VAMP2
expression (p < 0.001) in high-grade tumor cells compared to
normal and low-grade tumors. These findings suggest that elevated expression of
STX1A and VAMP2 might have caused the
abnormal progression and invasion of cancer cells leading to the transformation
of cells into high-grade tumor in bladder cancer.
Collapse
Affiliation(s)
- Sadaf Azad Raja
- Department of Biosciences, COMSATS Institute of Information Technology Islamabad, Pakistan
| | - Seher Abbas
- Department of Biosciences, COMSATS Institute of Information Technology Islamabad, Pakistan
| | - Syed Tahir Abbas Shah
- Department of Biosciences, COMSATS Institute of Information Technology Islamabad, Pakistan
| | - Aamira Tariq
- Department of Biosciences, COMSATS Institute of Information Technology Islamabad, Pakistan
| | - Nazia Bibi
- Department of Biosciences, COMSATS Institute of Information Technology Islamabad, Pakistan
| | - Arzu Yousuf
- Department of Urology and Kidney Transplant, Shifa International Hospital, Islamabad, Pakistan
| | - Athar Khawaja
- Department of Urology and Kidney Transplant, Shifa International Hospital, Islamabad, Pakistan
| | - Muhammad Nawaz
- Armed Forces Institute of Urology (AFIU), Rawalpindi, Pakistan
| | - Arshad Mehmood
- Armed Forces Institute of Urology (AFIU), Rawalpindi, Pakistan
| | - Muhammad Jadoon Khan
- Department of Biosciences, COMSATS Institute of Information Technology Islamabad, Pakistan
| | - Alamdar Hussain
- Department of Biosciences, COMSATS Institute of Information Technology Islamabad, Pakistan
| |
Collapse
|
38
|
Nazir FH, Becker B, Brinkmalm A, Höglund K, Sandelius Å, Bergström P, Satir TM, Öhrfelt A, Blennow K, Agholme L, Zetterberg H. Expression and secretion of synaptic proteins during stem cell differentiation to cortical neurons. Neurochem Int 2018; 121:38-49. [PMID: 30342961 PMCID: PMC6232556 DOI: 10.1016/j.neuint.2018.10.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/01/2018] [Accepted: 10/17/2018] [Indexed: 11/23/2022]
Abstract
Synaptic function and neurotransmitter release are regulated by specific proteins. Cortical neuronal differentiation of human induced pluripotent stem cells (hiPSC) provides an experimental model to obtain more information about synaptic development and physiology in vitro. In this study, expression and secretion of the synaptic proteins, neurogranin (NRGN), growth-associated protein-43 (GAP-43), synaptosomal-associated protein-25 (SNAP-25) and synaptotagmin-1 (SYT-1) were analyzed during cortical neuronal differentiation. Protein levels were measured in cells, modeling fetal cortical development and in cell-conditioned media which was used as a model of cerebrospinal fluid (CSF), respectively. Human iPSC-derived cortical neurons were maintained over a period of at least 150 days, which encompasses the different stages of neuronal development. The differentiation was divided into the following stages: hiPSC, neuro-progenitors, immature and mature cortical neurons. We show that NRGN was first expressed and secreted by neuro-progenitors while the maximum was reached in mature cortical neurons. GAP-43 was expressed and secreted first by neuro-progenitors and its expression increased markedly in immature cortical neurons. SYT-1 was expressed and secreted already by hiPSC but its expression and secretion peaked in mature neurons. SNAP-25 was first detected in neuro-progenitors and the expression and secretion increased gradually during neuronal stages reaching a maximum in mature neurons. The sensitive analytical techniques used to monitor the secretion of these synaptic proteins during cortical development make these data unique, since the secretion of these synaptic proteins has not been investigated before in such experimental models. The secretory profile of synaptic proteins, together with low release of intracellular content, implies that mature neurons actively secrete these synaptic proteins that previously have been associated with neurodegenerative disorders, including Alzheimer's disease. These data support further studies of human neuronal and synaptic development in vitro, and would potentially shed light on the mechanisms underlying altered concentrations of the proteins in bio-fluids in neurodegenerative diseases.
Collapse
Affiliation(s)
- Faisal Hayat Nazir
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, S-405 30, Gothenburg, Sweden; Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, S-431 80, Mölndal, Sweden.
| | - Bruno Becker
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, S-431 80, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80, Mölndal, Sweden
| | - Ann Brinkmalm
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, S-431 80, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80, Mölndal, Sweden
| | - Kina Höglund
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, S-431 80, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80, Mölndal, Sweden
| | - Åsa Sandelius
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, S-431 80, Mölndal, Sweden
| | - Petra Bergström
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, S-405 30, Gothenburg, Sweden
| | - Tugce Munise Satir
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, S-405 30, Gothenburg, Sweden
| | - Annika Öhrfelt
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, S-431 80, Mölndal, Sweden
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, S-431 80, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80, Mölndal, Sweden
| | - Lotta Agholme
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, S-405 30, Gothenburg, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, S-431 80, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80, Mölndal, Sweden; UCL, Institute of Neurology, Department of Neurodegerative Disease, University College London, Queen Square, London, WC1N 3BG, UK; UK Dementia Research Institute at UCL, London, WC1N 3BG, UK
| |
Collapse
|
39
|
Codispoti B, Marrelli M, Paduano F, Tatullo M. NANOmetric BIO-Banked MSC-Derived Exosome (NANOBIOME) as a Novel Approach to Regenerative Medicine. J Clin Med 2018; 7:jcm7100357. [PMID: 30326618 PMCID: PMC6210357 DOI: 10.3390/jcm7100357] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/28/2018] [Accepted: 10/12/2018] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are well known for their great potential in clinical applications. In fact, MSCs can differentiate into several cell lineages and show paracrine behavior by releasing endogenous factors that stimulate tissue repair and modulate local immune response. Each MSC type is affected by specific biobanking issues-technical issues as well as regulatory and ethical concerns-thus making it quite tricky to safely and commonly use MSC banking for swift regenerative applications. Extracellular vesicles (EVs) include a group of 150⁻1000 nm vesicles that are released by budding from the plasma membrane into biological fluids and/or in the culture medium from varied and heterogenic cell types. EVs consist of various vesicle types that are defined with different nomenclature such as exosomes, shedding vesicles, nanoparticles, microvesicles and apoptotic bodies. Ectosomes, micro- and nanoparticles generally refer to the direct release of single vesicles from the plasma membrane. While many studies describe exosomes as deriving from multivesicular bodies, solid evidence about the origin of EVs is often lacking. Extracellular vesicles represent an important portion of the cell secretome. Their numerous properties can be used for diagnostic, prognostic, and therapeutic uses, so EVs are considered to be innovative and smart theranostic tools. The aim of this review is to investigate the usefulness of exosomes as carriers of the whole information panel characterizing the use of MSCs in regenerative medicine. Our purpose is to make a step forward in the development of the NANOmetric BIO-banked MSC-derived Exosome (NANOBIOME).
Collapse
Affiliation(s)
| | | | | | - Marco Tatullo
- Tecnologica Research Institute, 88900 Crotone, Italy.
| |
Collapse
|
40
|
Wang G, Galli T. Reciprocal link between cell biomechanics and exocytosis. Traffic 2018; 19:741-749. [PMID: 29943478 DOI: 10.1111/tra.12584] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/03/2018] [Accepted: 06/03/2018] [Indexed: 12/16/2022]
Abstract
A cell is able to sense the biomechanical properties of the environment such as the rigidity of the extracellular matrix and adapt its tension via regulation of plasma membrane and underlying actomyosin meshwork properties. The cell's ability to adapt to the changing biomechanical environment is important for cellular homeostasis and also cell dynamics such as cell growth and motility. Membrane trafficking has emerged as an important mechanism to regulate cell biomechanics. In this review, we summarize the current understanding of the role of cell mechanics in exocytosis, and reciprocally, the role of exocytosis in regulating cell mechanics. We also discuss how cell mechanics and membrane trafficking, particularly exocytosis, can work together to regulate cell polarity and motility.
Collapse
Affiliation(s)
- Guan Wang
- Membrane Traffic in Healthy & Diseased Brain, Center of Psychiatry and Neurosciences, INSERM U894, Sorbonne Paris-Cité, Université Paris Descartes, Paris, France
| | - Thierry Galli
- Membrane Traffic in Healthy & Diseased Brain, Center of Psychiatry and Neurosciences, INSERM U894, Sorbonne Paris-Cité, Université Paris Descartes, Paris, France
| |
Collapse
|
41
|
Exocytosis-related genes and response to methylphenidate treatment in adults with ADHD. Mol Psychiatry 2018; 23:1446-1452. [PMID: 28461697 DOI: 10.1038/mp.2017.90] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/10/2017] [Accepted: 02/28/2017] [Indexed: 01/11/2023]
Abstract
Experimental studies have demonstrated that methylphenidate (MPH) modulates the synaptic vesicle trafficking and synaptotagmin-1 (SytI) mRNA levels. SytI is a regulatory protein of the SNARE complex, a neurotransmitter exocytosis mediator. Despite this evidence, most SNARE complex-related genes have never been evaluated in attention-deficit/hyperactivity disorder (ADHD) pharmacogenetics. This study evaluates, for we believe the first time, polymorphisms on the SNARE complex-related genes STX1A (rs2228607), VAMP2 (26bp Ins/Del) and SYT1 (rs1880867 and rs2251214) on the response to immediate-release methylphenidate (IR-MPH) in a naturalistic sample of adults with ADHD. The sample comprised 433 subjects, of which 272 (62.8%) have completed the short-term IR-MPH treatment (at least 30 days). The main outcome measure was the categorical variable of short-term response to IR-MPH based on the Swanson, Nolan and Pelham Rating Scale version 4 (SNAP-IV), and on the clinical global impression-improvement scale. Additional analyses evaluated the percentage of SNAP-IV symptom reduction for each dimension as well as short- and long- (7 years) term treatment persistence. SYT1-rs2251214 was associated with the categorical short-term response to IR-MPH (P=0.006, PFDR=0.028), and with the percentage of inattention and oppositional defiant disorder symptoms reduction (P=0.007, PFDR=0.028 and P=0.017, PFDR=0.048, respectively). SYT1-rs2251214 was also associated with short-term treatment persistence (P=0.018, PFDR=0.048), and with months of treatment (P=0.002, PFDR=0.016) in the long-term protocol. Our findings suggest that SYT1-rs2251214 presents a broad influence in IR-MPH response variability in adults with ADHD, being involved with both symptom response and treatment persistence. If such findings are replicated, SytI could represent a key element in MPH pharmacodynamics in adults with ADHD.
Collapse
|
42
|
Crossreactivity of an Antiserum Directed to the Gram-Negative Bacterium Neisseria gonorrhoeae with the SNARE-Complex Protein Snap23 Correlates to Impaired Exocytosis in SH-SY5Y Cells. J Mol Neurosci 2017; 62:163-180. [PMID: 28462458 DOI: 10.1007/s12031-017-0920-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 04/10/2017] [Indexed: 02/04/2023]
Abstract
Early maternal infections with Neisseria gonorrhoeae (NG) correlate to an increased lifetime schizophrenia risk for the offspring, which might be due to an immune-mediated mechanism. Here, we investigated the interactions of polyclonal antisera to NG (α-NG) with a first trimester prenatal brain multiprotein array, revealing among others the SNARE-complex protein Snap23 as a target antigen for α-NG. This interaction was confirmed by Western blot analysis with a recombinant Snap23 protein, whereas the closely related Snap25 failed to interact with α-NG. Furthermore, a polyclonal antiserum to the closely related bacterium Neisseria meningitidis (α-NM) failed to interact with both proteins. Functionally, in SH-SY5Y cells, α-NG pretreatment interfered with both insulin-induced vesicle recycling, as revealed by uptake of the fluorescent endocytosis marker FM1-43, and insulin-dependent membrane translocation of the glucose transporter GluT4. Similar effects could be observed for an antiserum raised directly to Snap23, whereas a serum to Snap25 failed to do so. In conclusion, Snap23 seems to be a possible immune target for anti-gonococcal antibodies, the interactions of which seem at least in vitro to interfere with vesicle-associated exocytosis. Whether these changes contribute to the correlation between maternal gonococcal infections and psychosis in vivo remains still to be clarified.
Collapse
|
43
|
Wu J, Qu Z, Fei ZW, Wu JH, Jiang CP. Role of stem cell-derived exosomes in cancer. Oncol Lett 2017; 13:2855-2866. [PMID: 28521391 PMCID: PMC5431232 DOI: 10.3892/ol.2017.5824] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 01/10/2017] [Indexed: 12/19/2022] Open
Abstract
Exosomes are small, extracellular membrane- enclosed vesicles that contain a variety of molecules, including proteins, DNA, mRNA and non-coding RNA; these vesicles have been defined as new tools for intercellular communication between cells. Numerous types of cells, including stem cells, secrete exosomes into the extracellular environment, and are significant communicators in the tumor microenvironment. Stem cells are a unique cell population defined by their ability to indefinitely self-renew, differentiate into a variety of cell lines, and form clonal cell populations. Stem cells also secrete large amounts of exosomes, which have demonstrated great potential in a variety of diseases. Increasing evidence has revealed that the mechanism of interaction between stem cells and human tumor cells involves the exchange of biological material through exosomes. In this review, the latest developments in the role of stem cell-derived exosomes in cancer are highlighted.
Collapse
Affiliation(s)
- Junyi Wu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Zhen Qu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Zi-Wei Fei
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Jun-Hua Wu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Chun-Ping Jiang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, P.R. China.,Jiangsu Province's Key Medical Center for Hepatobiliary Surgery, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
44
|
Harkin LF, Lindsay SJ, Xu Y, Alzu'bi A, Ferrara A, Gullon EA, James OG, Clowry GJ. Neurexins 1-3 Each Have a Distinct Pattern of Expression in the Early Developing Human Cerebral Cortex. Cereb Cortex 2017; 27:216-232. [PMID: 28013231 PMCID: PMC5654756 DOI: 10.1093/cercor/bhw394] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/16/2016] [Accepted: 12/02/2016] [Indexed: 12/17/2022] Open
Abstract
Neurexins (NRXNs) are presynaptic terminal proteins and candidate neurodevelopmental disorder susceptibility genes; mutations presumably upset synaptic stabilization and function. However, analysis of human cortical tissue samples by RNAseq and quantitative real-time PCR at 8-12 postconceptional weeks, prior to extensive synapse formation, showed expression of all three NRXNs as well as several potential binding partners. However, the levels of expression were not identical; NRXN1 increased with age and NRXN2 levels were consistently higher than for NRXN3. Immunohistochemistry for each NRXN also revealed different expression patterns at this stage of development. NRXN1 and NRXN3 immunoreactivity was generally strongest in the cortical plate and increased in the ventricular zone with age, but was weak in the synaptogenic presubplate (pSP) and marginal zone. On the other hand, NRXN2 colocalized with synaptophysin in neurites of the pSP, but especially with GAP43 and CASK in growing axons of the intermediate zone. Alternative splicing modifies the role of NRXNs and we found evidence by RNAseq for exon skipping at splice site 4 and concomitant expression of KHDBRS proteins which control this splicing. NRXN2 may play a part in early cortical synaptogenesis, but NRXNs could have diverse roles in development including axon guidance, and intercellular communication between proliferating cells and/or migrating neurons.
Collapse
Affiliation(s)
- Lauren F Harkin
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Parkway Drive, Newcastle upon Tyne NE1 3BZ, UK
- Present address: School of Healthcare Science, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Susan J Lindsay
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Parkway Drive, Newcastle upon Tyne NE1 3BZ, UK
| | - Yaobo Xu
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Parkway Drive, Newcastle upon Tyne NE1 3BZ, UK
- Present address: Wellcome Trust, Sanger Institute, Cambridge, CB10 1SA, UK
| | - Ayman Alzu'bi
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Parkway Drive, Newcastle upon Tyne NE1 3BZ, UK
| | - Alexandra Ferrara
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Parkway Drive, Newcastle upon Tyne NE1 3BZ, UK
| | - Emily A Gullon
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Parkway Drive, Newcastle upon Tyne NE1 3BZ, UK
| | - Owen G James
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Parkway Drive, Newcastle upon Tyne NE1 3BZ, UK
- Present address: MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Gavin J Clowry
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
45
|
Carrière J, Barnich N, Nguyen HTT. Exosomes: From Functions in Host-Pathogen Interactions and Immunity to Diagnostic and Therapeutic Opportunities. Rev Physiol Biochem Pharmacol 2016; 172:39-75. [PMID: 27600934 DOI: 10.1007/112_2016_7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since their first description in the 1980s, exosomes, small endosomal-derived extracellular vesicles, have been involved in innate and adaptive immunity through modulating immune responses and mediating antigen presentation. Increasing evidence has reported the role of exosomes in host-pathogen interactions and particularly in the activation of antimicrobial immune responses. The growing interest concerning exosomes in infectious diseases, their accessibility in various body fluids, and their capacity to convey a rich content (e.g., proteins, lipids, and nucleic acids) to distant recipient cells led the scientific community to consider the use of exosomes as potential new diagnostic and therapeutic tools. In this review, we summarize current understandings of exosome biogenesis and their composition and highlight the function of exosomes as immunomodulators in pathological states such as in infectious disorders. The potential of using exosomes as diagnostic and therapeutic tools is also discussed.
Collapse
Affiliation(s)
- Jessica Carrière
- University of Clermont Auvergne, M2iSH, UMR 1071 INSERM/University of Auvergne, Clermont-Ferrand, 63001, France.,INRA USC 2018, Clermont-Ferrand, 63001, France
| | - Nicolas Barnich
- University of Clermont Auvergne, M2iSH, UMR 1071 INSERM/University of Auvergne, Clermont-Ferrand, 63001, France.,INRA USC 2018, Clermont-Ferrand, 63001, France
| | - Hang Thi Thu Nguyen
- University of Clermont Auvergne, M2iSH, UMR 1071 INSERM/University of Auvergne, Clermont-Ferrand, 63001, France. .,INRA USC 2018, Clermont-Ferrand, 63001, France.
| |
Collapse
|
46
|
Amaya C, Fader CM, Colombo MI. Autophagy and proteins involved in vesicular trafficking. FEBS Lett 2015; 589:3343-53. [PMID: 26450776 DOI: 10.1016/j.febslet.2015.09.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/19/2015] [Accepted: 09/22/2015] [Indexed: 12/16/2022]
Abstract
Autophagy is an intracellular degradation system that, as a basic mechanism it delivers cytoplasmic components to the lysosomes in order to maintain adequate energy levels and cellular homeostasis. This complex cellular process is activated by low cellular nutrient levels and other stress situations such as low ATP levels, the accumulation of damaged proteins or organelles, or pathogen invasion. Autophagy as a multistep process involves vesicular transport events leading to tethering and fusion of autophagic vesicles with several intracellular compartments. This review summarizes our current understanding of the autophagic pathway with emphasis in the trafficking machinery (i.e. Rabs GTPases and SNAP receptors (SNAREs)) involved in specific steps of the pathway.
Collapse
Affiliation(s)
- Celina Amaya
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM)-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Casilla de Correo 56, Centro Universitario, Parque General San Martín, 5500 Mendoza, Argentina
| | - Claudio Marcelo Fader
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM)-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Casilla de Correo 56, Centro Universitario, Parque General San Martín, 5500 Mendoza, Argentina
| | - María Isabel Colombo
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM)-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Casilla de Correo 56, Centro Universitario, Parque General San Martín, 5500 Mendoza, Argentina.
| |
Collapse
|
47
|
Rovaris DL, Mota NR, da Silva BS, Girardi P, Victor MM, Grevet EH, Bau CH, Contini V. Should we keep on? Looking into pharmacogenomics of ADHD in adulthood from a different perspective. Pharmacogenomics 2015; 15:1365-81. [PMID: 25155937 DOI: 10.2217/pgs.14.95] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A considerable proportion of adults with attention-deficit/hyperactivity disorder (ADHD) do not respond to the treatment with methylphenidate. This scenario could be due to inherited interindividual differences that may alter pharmacologic treatment response. In this sense, in 2012 we conducted a systematic search on PUBMED-indexed literature for articles containing information about pharmacogenomics of ADHD in adults. Five studies were found on methylphenidate pharmacogenomics and the only significant association was reported by one particular study. However, this single association with the SLC6A3 gene was not replicated in two subsequent reports. In the present review, although we could not find additional pharmacogenomics studies, we discuss these up-to-date findings and suggest new approaches for this field. Additionally, using systeomic-oriented databases, we provide a broad picture of new possible candidate genes as well as potential gene-gene interactions to be investigated in pharmacogenomics of persistent ADHD.
Collapse
Affiliation(s)
- Diego L Rovaris
- Departament of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Ulloa F, Gonzàlez-Juncà A, Meffre D, Barrecheguren PJ, Martínez-Mármol R, Pazos I, Olivé N, Cotrufo T, Seoane J, Soriano E. Blockade of the SNARE protein syntaxin 1 inhibits glioblastoma tumor growth. PLoS One 2015; 10:e0119707. [PMID: 25803850 PMCID: PMC4372377 DOI: 10.1371/journal.pone.0119707] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 01/15/2015] [Indexed: 11/19/2022] Open
Abstract
Glioblastoma (GBM) is the most prevalent adult brain tumor, with virtually no cure, and with a median overall survival of 15 months from diagnosis despite of the treatment. SNARE proteins mediate membrane fusion events in cells and are essential for many cellular processes including exocytosis and neurotransmission, intracellular trafficking and cell migration. Here we show that the blockade of the SNARE protein Syntaxin 1 (Stx1) function impairs GBM cell proliferation. We show that Stx1 loss-of-function in GBM cells, through ShRNA lentiviral transduction, a Stx1 dominant negative and botulinum toxins, dramatically reduces the growth of GBM after grafting U373 cells into the brain of immune compromised mice. Interestingly, Stx1 role on GBM progression may not be restricted just to cell proliferation since the blockade of Stx1 also reduces in vitro GBM cell invasiveness suggesting a role in several processes relevant for tumor progression. Altogether, our findings indicate that the blockade of SNARE proteins may represent a novel therapeutic tool against GBM.
Collapse
Affiliation(s)
- Fausto Ulloa
- Department of Cell Biology, University of Barcelona, Parc Cientific de Barcelona, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031, Madrid, Spain
- * E-mail:
| | - Alba Gonzàlez-Juncà
- Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, 08035, Barcelona, Spain
- Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Delphine Meffre
- Department of Cell Biology, University of Barcelona, Parc Cientific de Barcelona, 08028, Barcelona, Spain
| | - Pablo José Barrecheguren
- Department of Cell Biology, University of Barcelona, Parc Cientific de Barcelona, 08028, Barcelona, Spain
- Institute for Research in Biomedicine (IRB), Cell and Developmental Biology Program, Barcelona, 08028, Spain
| | - Ramón Martínez-Mármol
- Department of Cell Biology, University of Barcelona, Parc Cientific de Barcelona, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031, Madrid, Spain
| | - Irene Pazos
- Department of Cell Biology, University of Barcelona, Parc Cientific de Barcelona, 08028, Barcelona, Spain
| | - Núria Olivé
- Department of Cell Biology, University of Barcelona, Parc Cientific de Barcelona, 08028, Barcelona, Spain
| | - Tiziana Cotrufo
- Department of Cell Biology, University of Barcelona, Parc Cientific de Barcelona, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031, Madrid, Spain
| | - Joan Seoane
- Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, 08035, Barcelona, Spain
- Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain
| | - Eduardo Soriano
- Department of Cell Biology, University of Barcelona, Parc Cientific de Barcelona, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031, Madrid, Spain
- Vall d´Hebron Institute of Research (VHIR), 08035, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain
| |
Collapse
|
49
|
Colombo M, Raposo G, Théry C. Biogenesis, Secretion, and Intercellular Interactions of Exosomes and Other Extracellular Vesicles. Annu Rev Cell Dev Biol 2014; 30:255-89. [DOI: 10.1146/annurev-cellbio-101512-122326] [Citation(s) in RCA: 3537] [Impact Index Per Article: 321.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Marina Colombo
- Institut Curie, Centre de Recherche, Paris, F-75248 France; ,
- Structure and Membrane Compartments CNRS, UMR144, Paris F-75248, France
- INSERM U932, Paris F-75248, France
- Paris Sciences et Lettres, Paris F-75005, France
| | - Graça Raposo
- Institut Curie, Centre de Recherche, Paris, F-75248 France; ,
- Structure and Membrane Compartments CNRS, UMR144, Paris F-75248, France
- Paris Sciences et Lettres, Paris F-75005, France
| | - Clotilde Théry
- Institut Curie, Centre de Recherche, Paris, F-75248 France; ,
- INSERM U932, Paris F-75248, France
- Paris Sciences et Lettres, Paris F-75005, France
| |
Collapse
|
50
|
Xiao L, Kumazawa Y, Okamura H. Cell death, cavitation and spontaneous multi-differentiation of dental pulp stem cells-derived spheroidsin vitro: A journey to survival and organogenesis. Biol Cell 2014; 106:405-19. [DOI: 10.1111/boc.201400024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 08/25/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Li Xiao
- Department of Pharmacology; School of Life Dentistry at Tokyo, The Nippon Dental University; Chiyoda-ku, Tokyo 102-0071 Japan
| | - Yasuo Kumazawa
- Department of Oral and Maxillofacial Surgery; The Nippon Dental University Hospital; Chiyoda-ku, Tokyo 102-0071 Japan
| | - Hisashi Okamura
- Department of Oral and Maxillofacial Surgery; The Nippon Dental University Hospital; Chiyoda-ku, Tokyo 102-0071 Japan
| |
Collapse
|