1
|
Maccioni R, Travisan C, Badman J, Zerial S, Wagener A, Andrade-Talavera Y, Picciau F, Grassi C, Chen G, Lemoine L, Fisahn A, Jiang R, Fluhrer R, Mentrup T, Schröder B, Nilsson P, Tambaro S. Signal peptide peptidase-like 2b modulates the amyloidogenic pathway and exhibits an Aβ-dependent expression in Alzheimer's disease. Prog Neurobiol 2024; 235:102585. [PMID: 38367747 DOI: 10.1016/j.pneurobio.2024.102585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/25/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
Alzheimer's disease (AD) is a multifactorial disorder driven by abnormal amyloid β-peptide (Aβ) levels. In this study, we investigated the role of presenilin-like signal peptide peptidase-like 2b (SPPL2b) in AD pathophysiology and its potential as a druggable target within the Aβ cascade. Exogenous Aβ42 influenced SPPL2b expression in human cell lines and acute mouse brain slices. SPPL2b and its AD-related substrate BRI2 were evaluated in the brains of AppNL-G-F knock-in AD mice and human postmortem AD brains. An early high cortical expression of SPPL2b was observed, followed by a downregulation in late AD pathology in AppNL-G-F mice, correlating with synaptic loss. To understand the consequences of pathophysiological SPPL2b dysregulation, we found that SPPL2b overexpression significantly increased APP cleavage, while genetic deletion reduced APP cleavage and Aβ production. Notably, postmortem AD brains showed higher levels of SPPL2b's BRI2 substrate compared to healthy control samples. These results strongly support the involvement of SPPL2b in AD pathology. The early Aβ-induced upregulation of SPPL2b may enhance Aβ production in a vicious cycle, further aggravating Aβ pathology. Therefore, SPPL2b emerges as a potential anti-Aβ drug target.
Collapse
Affiliation(s)
- Riccardo Maccioni
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden; Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, United States.
| | - Caterina Travisan
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden; VIB-KU Leuven Center for Brain and Disease Research, Leuven 3001, Belgium.
| | - Jack Badman
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden.
| | - Stefania Zerial
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden; Department of life science, University of Trieste, Trieste 34127, Italy.
| | - Annika Wagener
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden; Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, 69117 Germany.
| | - Yuniesky Andrade-Talavera
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden.
| | - Federico Picciau
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden; Department of Biomedical Sciences, Cytomorphology, University of Cagliari, Cagliari 09042, Italy.
| | - Caterina Grassi
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden; Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy.
| | - Gefei Chen
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 141 52, Sweden.
| | - Laetitia Lemoine
- Department of Neurobiology, Care Sciences, and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge 141 52, Sweden.
| | - André Fisahn
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden.
| | - Richeng Jiang
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden; Department of Otolaryngology Head and Neck Surgery, The First Hospital of Jilin University, Changchun 130021, China.
| | - Regina Fluhrer
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, 86159, Germany.
| | - Torben Mentrup
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden 01307, Germany.
| | - Bernd Schröder
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden 01307, Germany.
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden.
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden.
| |
Collapse
|
2
|
Wu X, Xiao X, Fang H, He C, Wang H, Wang M, Lan P, Wang F, Du Q, Yang H. Elucidating shared biomarkers in gastroesophageal reflux disease and idiopathic pulmonary fibrosis: insights into novel therapeutic targets and the role of angelicae sinensis radix. Front Pharmacol 2024; 15:1348708. [PMID: 38414734 PMCID: PMC10897002 DOI: 10.3389/fphar.2024.1348708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/31/2024] [Indexed: 02/29/2024] Open
Abstract
Background: The etiological underpinnings of gastroesophageal reflux disease (GERD) and idiopathic pulmonary fibrosis (IPF) remain elusive, coupled with a scarcity of effective therapeutic interventions for IPF. Angelicae sinensis radix (ASR, also named Danggui) is a Chinese herb with potential anti-fibrotic properties, that holds promise as a therapeutic agent for IPF. Objective: This study seeks to elucidate the causal interplay and potential mechanisms underlying the coexistence of GERD and IPF. Furthermore, it aims to investigate the regulatory effect of ASR on this complex relationship. Methods: A two-sample Mendelian randomization (TSMR) approach was employed to delineate the causal connection between gastroesophageal reflux disease and IPF, with Phennoscanner V2 employed to mitigate confounding factors. Utilizing single nucleotide polymorphism (SNPs) and publicly available microarray data, we analyzed potential targets and mechanisms related to IPF in GERD. Network pharmacology and molecular docking were employed to explore the targets and efficacy of ASR in treating GERD-related IPF. External datasets were subsequently utilized to identify potential diagnostic biomarkers for GERD-related IPF. Results: The IVW analysis demonstrated a positive causal relationship between GERD and IPF (IVW: OR = 1.002, 95%CI: 1.001, 1.003; p < 0.001). Twenty-five shared differentially expressed genes (DEGs) were identified. GO functional analysis revealed enrichment in neural, cellular, and brain development processes, concentrated in chromosomes and plasma membranes, with protein binding and activation involvement. KEGG analysis unveiled enrichment in proteoglycan, ERBB, and neuroactive ligand-receptor interaction pathways in cancer. Protein-protein interaction (PPI) analysis identified seven hub genes. Network pharmacology analysis demonstrated that 104 components of ASR targeted five hub genes (PDE4B, DRD2, ERBB4, ESR1, GRM8), with molecular docking confirming their excellent binding efficiency. GRM8 and ESR1 emerged as potential diagnostic biomarkers for GERD-related IPF (ESR1: AUCGERD = 0.762, AUCIPF = 0.725; GRM8: AUCGERD = 0.717, AUCIPF = 0.908). GRM8 and ESR1 emerged as potential diagnostic biomarkers for GERD-related IPF, validated in external datasets. Conclusion: This study establishes a causal link between GERD and IPF, identifying five key targets and two potential diagnostic biomarkers for GERD-related IPF. ASR exhibits intervention efficacy and favorable binding characteristics, positioning it as a promising candidate for treating GERD-related IPF. The potential regulatory mechanisms may involve cell responses to fibroblast growth factor stimulation and steroidal hormone-mediated signaling pathways.
Collapse
Affiliation(s)
- Xuanyu Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hanyu Fang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Traditional Chinese Medicine for Pulmonary Diseases, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Cuifang He
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hanyue Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Miao Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peishu Lan
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Quanyu Du
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Han Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Ma T, Jiang J, Shi M, Xu H. Exosomal miRNA-166-5p derived from G-MDSCs promotes proliferation by targeting ITM3E in colorectal cancer. ENVIRONMENTAL TOXICOLOGY 2024; 39:803-814. [PMID: 37792719 DOI: 10.1002/tox.23980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/10/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND The immune milieu of colorectal cancer is a complex phenomenon. It is imperative to investigate the crucial immune factors that promote the progression of colorectal cancer. Immune suppressor cells are granulocytic myeloid-derived suppressor cells (G-MDSCs). However, they also increased cancer growth in other ways that need to be investigated further. METHODS Using flow cytometry, we isolated G-MDSCs from colorectal cancer tissues. Ultracentrifugation was used to separate exosomes from the supernatant of G-MDSCs, and western blotting, transmission electron microscopy (TEM), and flow cytometry were used to confirm their presence. RNA sequencing was used to identify unique miRNAs and transcripts, which were subsequently confirmed by RT-qPCR (real-time quantitative real-time PCR). The CCK-8 test was used to determine the rate of proliferation. Lentiviral vectors were employed to manipulate the expression of miRNAs and genes in order to investigate their role in the development of colorectal cancer. RESULTS Colorectal cancer tissues have been found to contain granulocyte-myeloid-derived suppressor cells (G-MDSCs) that secrete exosomes. These exosomes have been shown to accelerate cancer progression by promoting cell proliferation. Further research has identified microRNA-166-5p as a target from G-MDSC-derived exosomes. This downregulation leads to the inhibition of integral membrane protein 2B (ITM3E) transcription, which in turn activates the PI3K/Akt signaling pathway. This pathway promotes cell proliferation and can be inhibited using deguelin. The accelerated development of colorectal cancer has been further confirmed in mice models. CONCLUSION The primary results of this work show that exosomes produced from G-MDSCs and the miR-166-5p/ITM3E axis have therapeutic and diagnostic promise in colorectal cancer.
Collapse
Affiliation(s)
- Tao Ma
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jinling Jiang
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Min Shi
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Haoping Xu
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Iqbal M, Lewis SL, Padhye S, Jinwal UK. Updates on Aβ Processing by Hsp90, BRICHOS, and Newly Reported Distinctive Chaperones. Biomolecules 2023; 14:16. [PMID: 38254616 PMCID: PMC10812967 DOI: 10.3390/biom14010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Alzheimer's disease (AD) is an extremely devastating neurodegenerative disease, and there is no cure for it. AD is specified as the misfolding and aggregation of amyloid-β protein (Aβ) and abnormalities in hyperphosphorylated tau protein. Current approaches to treat Alzheimer's disease have had some success in slowing down the disease's progression. However, attempts to find a cure have been largely unsuccessful, most likely due to the complexity associated with AD pathogenesis. Hence, a shift in focus to better understand the molecular mechanism of Aβ processing and to consider alternative options such as chaperone proteins seems promising. Chaperone proteins act as molecular caretakers to facilitate cellular homeostasis under standard conditions. Chaperone proteins like heat shock proteins (Hsps) serve a pivotal role in correctly folding amyloid peptides, inhibiting mitochondrial dysfunction, and peptide aggregation. For instance, Hsp90 plays a significant role in maintaining cellular homeostasis through its protein folding mechanisms. In this review, we analyze the most recent studies from 2020 to 2023 and provide updates on Aβ regulation by Hsp90, BRICHOS domain chaperone, and distinctive newly reported chaperones.
Collapse
Affiliation(s)
| | | | | | - Umesh Kumar Jinwal
- Department of Pharmaceutical Sciences, USF-Health Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (M.I.)
| |
Collapse
|
5
|
Bruno R, Boidin-Wichlacz C, Melnyk O, Zeppilli D, Landon C, Thomas F, Cambon MA, Lafond M, Mabrouk K, Massol F, Hourdez S, Maresca M, Jollivet D, Tasiemski A. The diversification of the antimicrobial peptides from marine worms is driven by environmental conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162875. [PMID: 36933721 DOI: 10.1016/j.scitotenv.2023.162875] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/27/2023] [Accepted: 03/11/2023] [Indexed: 05/17/2023]
Abstract
Antimicrobial peptides (AMPs) play a key role in the external immunity of animals, offering an interesting model for studying the influence of the environment on the diversification and evolution of immune effectors. Alvinellacin (ALV), arenicin (ARE) and polaricin (POL, a novel AMP identified here), characterized from three marine worms inhabiting contrasted habitats ('hot' vents, temperate and polar respectively), possess a well conserved BRICHOS domain in their precursor molecule despite a profound amino acid and structural diversification of the C-terminal part containing the core peptide. Data not only showed that ARE, ALV and POL display an optimal bactericidal activity against the bacteria typical of the habitat where each worm species lives but also that this killing efficacy is optimal under the thermochemical conditions encountered by their producers in their environment. Moreover, the correlation between species habitat and the cysteine contents of POL, ARE and ALV led us to investigate the importance of disulfide bridges in their biological efficacy as a function of abiotic pressures (pH and temperature). The construction of variants using non-proteinogenic residues instead of cysteines (α-aminobutyric acid variants) leading to AMPs devoid of disulfide bridges, provided evidence that the disulfide pattern of the three AMPs allows for a better bactericidal activity and suggests an adaptive way to sustain the fluctuations of the worm's environment. This work shows that the external immune effectors exemplified here by BRICHOS AMPs are evolving under strong diversifying environmental pressures to be structurally shaped and more efficient/specific under the ecological niche of their producer.
Collapse
Affiliation(s)
- Renato Bruno
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Céline Boidin-Wichlacz
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Oleg Melnyk
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Daniela Zeppilli
- Univ. Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280 Plouzané, France
| | - Céline Landon
- Center for Molecular Biophysics, CNRS, UPR 4301, Orleans, France
| | - Frédéric Thomas
- CREEC/(CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Marie-Anne Cambon
- Univ. Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280 Plouzané, France
| | - Mickael Lafond
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille F-13013, France
| | - Kamel Mabrouk
- Aix-Marseille Univ, CNRS, UMR 7273, ICR, Marseille F-13013, France
| | - François Massol
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Stéphane Hourdez
- Sorbonne Université, LECOB, UMR 8222, Observatoire Océanologique de Banyuls, 1 Avenue Pierre Fabre, 66650, Banyuls-sur-Mer, France
| | - Marc Maresca
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille F-13013, France
| | - Didier Jollivet
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier CS90074, Roscoff F-29688, France
| | - Aurélie Tasiemski
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.
| |
Collapse
|
6
|
Tomasso A, Koopmans T, Lijnzaad P, Bartscherer K, Seifert AW. An ERK-dependent molecular switch antagonizes fibrosis and promotes regeneration in spiny mice ( Acomys). SCIENCE ADVANCES 2023; 9:eadf2331. [PMID: 37126559 PMCID: PMC10132760 DOI: 10.1126/sciadv.adf2331] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Although most mammals heal injured tissues and organs with scarring, spiny mice (Acomys) naturally regenerate skin and complex musculoskeletal tissues. Now, the core signaling pathways driving mammalian tissue regeneration are poorly characterized. Here, we show that, while immediate extracellular signal-regulated kinase (ERK) activation is a shared feature of scarring (Mus) and regenerating (Acomys) injuries, ERK activity is only sustained at high levels during complex tissue regeneration. Following ERK inhibition, ear punch regeneration in Acomys shifted toward fibrotic repair. Using single-cell RNA sequencing, we identified ERK-responsive cell types. Loss- and gain-of-function experiments prompted us to uncover fibroblast growth factor and ErbB signaling as upstream ERK regulators of regeneration. The ectopic activation of ERK in scar-prone injuries induced a pro-regenerative response, including cell proliferation, extracellular matrix remodeling, and hair follicle neogenesis. Our data detail an important distinction in ERK activity between regenerating and poorly regenerating adult mammals and open avenues to redirect fibrotic repair toward regenerative healing.
Collapse
Affiliation(s)
- Antonio Tomasso
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany
- Cells in Motion Cluster of Excellence-International Max Planck Research School (CiM-IMPRS Graduate Program), Münster 48149, Germany
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Uppsalalaan 8, Utrecht 3584CT, Netherlands
- Department of Biology/Chemistry, Osnabrück University, Barbarastrasse 11, Osnabrück 49076, Germany
- Department of Biology, University of Kentucky, 101 T.H. Morgan Building, Lexington, KY 40506, USA
| | - Tim Koopmans
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Uppsalalaan 8, Utrecht 3584CT, Netherlands
- Department of Biology/Chemistry, Osnabrück University, Barbarastrasse 11, Osnabrück 49076, Germany
| | - Philip Lijnzaad
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584 CS, Netherlands
| | - Kerstin Bartscherer
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany
- Cells in Motion Cluster of Excellence-International Max Planck Research School (CiM-IMPRS Graduate Program), Münster 48149, Germany
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Uppsalalaan 8, Utrecht 3584CT, Netherlands
- Department of Biology/Chemistry, Osnabrück University, Barbarastrasse 11, Osnabrück 49076, Germany
| | - Ashley W Seifert
- Department of Biology, University of Kentucky, 101 T.H. Morgan Building, Lexington, KY 40506, USA
| |
Collapse
|
7
|
Braun JEA. Extracellular chaperone networks and the export of J-domain proteins. J Biol Chem 2023; 299:102840. [PMID: 36581212 PMCID: PMC9867986 DOI: 10.1016/j.jbc.2022.102840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022] Open
Abstract
An extracellular network of molecular chaperones protects a diverse array of proteins that reside in or pass through extracellular spaces. Proteins in the extracellular milieu face numerous challenges that can lead to protein misfolding and aggregation. As a checkpoint for proteins that move between cells, extracellular chaperone networks are of growing clinical relevance. J-domain proteins (JDPs) are ubiquitous molecular chaperones that are known for their essential roles in a wide array of fundamental cellular processes through their regulation of heat shock protein 70s. As the largest molecular chaperone family, JDPs have long been recognized for their diverse functions within cells. Some JDPs are elegantly selective for their "client proteins," some do not discriminate among substrates and others act cooperatively on the same target. The realization that JDPs are exported through both classical and unconventional secretory pathways has fueled investigation into the roles that JDPs play in protein quality control and intercellular communication. The proposed functions of exported JDPs are diverse. Studies suggest that export of DnaJB11 enhances extracellular proteostasis, that intercellular movement of DnaJB1 or DnaJB6 enhances the proteostasis capacity in recipient cells, whereas the import of DnaJB8 increases resistance to chemotherapy in recipient cancer cells. In addition, the export of DnaJC5 and concurrent DnaJC5-dependent ejection of dysfunctional and aggregation-prone proteins are implicated in the prevention of neurodegeneration. This review provides a brief overview of the current understanding of the extracellular chaperone networks and outlines the first wave of studies describing the cellular export of JDPs.
Collapse
Affiliation(s)
- Janice E A Braun
- Department of Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
8
|
Sanchez-Pulido L, Ponting CP. OAF: a new member of the BRICHOS family. BIOINFORMATICS ADVANCES 2022; 2:vbac087. [PMID: 36699367 PMCID: PMC9714404 DOI: 10.1093/bioadv/vbac087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/03/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Summary The 10 known BRICHOS domain-containing proteins in humans have been linked to an unusually long list of pathologies, including cancer, obesity and two amyloid-like diseases. BRICHOS domains themselves have been described as intramolecular chaperones that act to prevent amyloid-like aggregation of their proteins' mature polypeptides. Using structural comparison of coevolution-based AlphaFold models and sequence conservation, we identified the Out at First (OAF) protein as a new member of the BRICHOS family in humans. OAF is an experimentally uncharacterized protein that has been proposed as a candidate biomarker for clinical management of coronavirus disease 2019 infections. Our analysis revealed how structural comparison of AlphaFold models can discover remote homology relationships and lead to a better understanding of BRICHOS domain molecular mechanism. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Luis Sanchez-Pulido
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Chris P Ponting
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
9
|
Martins F, Santos I, da Cruz E Silva OAB, Tambaro S, Rebelo S. The role of the integral type II transmembrane protein BRI2 in health and disease. Cell Mol Life Sci 2021; 78:6807-6822. [PMID: 34480585 PMCID: PMC11072861 DOI: 10.1007/s00018-021-03932-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/07/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
BRI2 is a type II transmembrane protein ubiquitously expressed whose physiological function remains poorly understood. Although several recent important advances have substantially impacted on our understanding of BRI2 biology and function, providing valuable information for further studies on BRI2. These findings have contributed to a better understanding of BRI2 biology and the underlying signaling pathways involved. In turn, these might provide novel insights with respect to neurodegeneration processes inherent to BRI2-related pathologies, namely Familial British and Danish dementias, Alzheimer's disease, ITM2B-related retinal dystrophy, and multiple sclerosis. In this review, we provided a state-of-the-art outline of BRI2 biology, both in physiological and pathological conditions, and discuss the proposed molecular underlying mechanisms. Overall, the BRI2 knowledge here reviewed is of extreme importance and may contribute to propose BRI2 and/or BRI2 proteolytic fragments as novel therapeutic targets for neurodegenerative diseases, such as Alzheimer's disease.
Collapse
Affiliation(s)
- Filipa Martins
- Neuroscience and Signaling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Isabela Santos
- Neuroscience and Signaling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Odete A B da Cruz E Silva
- Neuroscience and Signaling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 141 83, Huddinge, Sweden.
| | - Sandra Rebelo
- Neuroscience and Signaling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
10
|
Schob S, Puchta J, Winter K, Michalski D, Mages B, Martens H, Emmer A, Hoffmann KT, Gaunitz F, Meinicke A, Krause M, Härtig W. Surfactant protein C is associated with perineuronal nets and shows age-dependent changes of brain content and hippocampal deposits in wildtype and 3xTg mice. J Chem Neuroanat 2021; 118:102036. [PMID: 34626771 DOI: 10.1016/j.jchemneu.2021.102036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 01/15/2023]
Abstract
Surfactant protein C (SP-C) modulates cerebrospinal fluid (CSF) rheology. During ageing, its declining levels are accompanied by an increased burden of white matter lesions. Pulmonary SP-C intermediates harbouring the BRICHOS-domain prevent protein misfolding in the lungs. Thus, cerebral SP-C intermediates may counteract cerebral β-amyloidosis, a hallmark of Alzheimer's disease (AD). However, data on the molecular neuroanatomy of SP-C and its alterations in wildtype and triple transgenic (3xTg) mice, featuring essential elements of AD-neuropathology, are lacking. Therefore, this study investigated SP-C-containing structures in murine forebrains and their spatial relationships with vascular, glial and neuronal components of the neurovascular unit. Fluorescence labelling demonstrated neuronal SP-C in the medial habenula, the indusium griseum and the hippocampus. Glial counterstaining elucidated astrocytes in the corpus callosum co-expressing SP-C and S100β. Notably, perineuronal nets were associated with SP-C in the nucleus reticularis thalami, the lateral hypothalamus and the retrosplenial cortex. In the hippocampus of aged 3xTg mice, an increased number of dot-like depositions containing SP-C and Reelin, but devoid of BRICHOS-immunoreactivity were observed apart from AD-like lesions. Wildtype and 3xTg mice revealed an age-dependent increase of such deposits markedly pronounced in about 24-month-old 3xTg mice. SP-C levels of the intracellular and extracellular compartments in each group revealed an inverse correlation of SP-C and Reelin, with reduced SP-C and increased Reelin in an age-dependent fashion especially in 3xTg mice. Taken together, extracellular SP-C, as modulator of glymphatic clearance and potential ligand of PNs, declines in 3xTg mice, which show an accumulation of extracellular Reelin depositions during ageing.
Collapse
Affiliation(s)
- Stefan Schob
- Department of Neuroradiology, Clinic and Policlinic of Radiology, University Hospital Halle, Ernst-Grube-Str. 40, 06120 Halle/Saale, Germany.
| | - Joana Puchta
- Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstr.19, 04103 Leipzig, Germany; Institute of Neuroradiology, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany
| | - Karsten Winter
- Institute for Anatomy, University of Leipzig, Liebigstr. 13, 04103 Leipzig, Germany
| | - Dominik Michalski
- Department of Neurology, University of Leipzig, Liebigstr. 13, 04103 Leipzig, Germany
| | - Bianca Mages
- Institute for Anatomy, University of Leipzig, Liebigstr. 13, 04103 Leipzig, Germany
| | - Henrik Martens
- Synaptic Systems GmbH, Rudolf-Wissell-Str. 28a, 37079 Göttingen, Germany
| | - Alexander Emmer
- Department of Neurology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle/Saale, Germany
| | - Karl-Titus Hoffmann
- Institute of Neuroradiology, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany
| | - Frank Gaunitz
- Department of Neurosurgery, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany
| | - Anton Meinicke
- Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstr.19, 04103 Leipzig, Germany; Institute of Neuroradiology, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany
| | - Matthias Krause
- Department of Neurosurgery, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany
| | - Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstr.19, 04103 Leipzig, Germany
| |
Collapse
|
11
|
Gastrokine 2 Regulates the Antitumor Effect of JAK2/STAT3 Pathway in Gastric Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:1343808. [PMID: 34381519 PMCID: PMC8352702 DOI: 10.1155/2021/1343808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/21/2021] [Indexed: 11/18/2022]
Abstract
GKN2 (gastrokine 2) mainly plays a regulatory role in gastric mucosal defense and cell protection mechanisms, and its role in gastric cancer has not been thoroughly elucidated. Immunohistochemistry was used to detect GKN2 and TFF1 expressions in 90 gastric cancer tissues, 48 neoplastic resection margins, and 22 normal gastric mucosa epithelia. It showed that the downregulation of GKN2 and TFF1 expressions in gastric cancer tissues was significantly different from that in adjacent normal gastric tissues and distal gastric mucosal tissues. Nevertheless, correlation analysis showed that GKN2 expression in gastric cancer tissues was independent of TFF1 expression. After overexpression of GKN2 was constructed in human gastric cancer cell line MKN28 with the Ad-GFP-GKN2 transfected, cell viability was measured by CCK-8 assay, and migration and invasion ability were analyzed by transwell migration assay and transwell invasion assay. It indicated that overexpression of GKN2 significantly reduced the viability of MKN28 and SGC7901 cells. Overexpression of GKN2 could also inhibit the migration and invasion ability in MKN28 and SGC7901 cells. In addition, upregulation of GKN2 can inactivate the JAK2/STAT3 pathway. Our data suggest that GKN2 and TFF1 play the antitumor role in gastric carcinoma, and TFF1 may not interact or cooperate with GKN2. GKN2 overexpression can inhibit the growth and metastasis by downregulating the JAK2/STAT3 pathway in gastric cancer cells.
Collapse
|
12
|
Tigro H, Kronqvist N, Abelein A, Galan-Acosta L, Chen G, Landreh M, Lyashkov A, Aon MA, Ferrucci L, Shimmo R, Johansson J, Moaddel R. The synthesis and characterization of Bri2 BRICHOS coated magnetic particles and their application to protein fishing: Identification of novel binding proteins. J Pharm Biomed Anal 2021; 198:113996. [PMID: 33690096 PMCID: PMC10644258 DOI: 10.1016/j.jpba.2021.113996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 10/22/2022]
Abstract
Human integral membrane protein 2B (ITM2B or Bri2) is a member of the BRICHOS family, proteins that efficiently prevent Aβ42 aggregation via a unique mechanism. The identification of novel Bri2 BRICHOS client proteins could help elucidate signaling pathways and determine novel targets to prevent or cure amyloid diseases. To identify Bri2 BRICHOS interacting partners, we carried out a 'protein fishing' experiment using recombinant human (rh) Bri2 BRICHOS-coated magnetic particles, which exhibit essentially identical ability to inhibit Aβ42 fibril formation as free rh Bri2 BRICHOS, in combination with proteomic analysis on homogenates of SH-SY5Y cells. We identified 70 proteins that had more significant interactions with rh Bri2 BRICHOS relative to the corresponding control particles. Three previously identified Bri2 BRICHOS interacting proteins were also identified in our 'fishing' experiments. The binding affinity of Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), the top 'hit', was calculated and was identified as a strong interacting partner. Enrichment analysis of the retained proteins identified three biological pathways: Rho GTPase, heat stress response and pyruvate, cysteine and methionine metabolism.
Collapse
Affiliation(s)
- Helene Tigro
- School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Nina Kronqvist
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183, Huddinge, Sweden
| | - Axel Abelein
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183, Huddinge, Sweden
| | - Lorena Galan-Acosta
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183, Huddinge, Sweden
| | - Gefei Chen
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183, Huddinge, Sweden
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Alexey Lyashkov
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, MD, 21224, United States
| | - Miguel A Aon
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, MD, 21224, United States
| | - Luigi Ferrucci
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, MD, 21224, United States
| | - Ruth Shimmo
- School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183, Huddinge, Sweden
| | - Ruin Moaddel
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, MD, 21224, United States.
| |
Collapse
|
13
|
Lim JH, Beg MMA, Ahmad K, Shaikh S, Ahmad SS, Chun HJ, Choi D, Lee WJ, Jin JO, Kim J, Jan AT, Lee EJ, Choi I. IgLON5 Regulates the Adhesion and Differentiation of Myoblasts. Cells 2021; 10:417. [PMID: 33671182 PMCID: PMC7922608 DOI: 10.3390/cells10020417] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/06/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023] Open
Abstract
IgLON5 is a cell adhesion protein belonging to the immunoglobulin superfamily and has important cellular functions. The objective of this study was to determine the role played by IgLON5 during myogenesis. We found IgLON5 expression progressively increased in C2C12 myoblasts during transition from the adhesion to differentiation stage. IgLON5 knockdown (IgLON5kd) cells exhibited reduced cell adhesion, myotube formation, and maturation and reduced expressions of different types of genes, including those coding for extracellular matrix (ECM) components (COL1a1, FMOD, DPT, THBS1), cell membrane proteins (ITM2a, CDH15), and cytoskeletal protein (WASP). Furthermore, decreased IgLON5 expression in FMODkd, DPTkd, COL1a1kd, and ITM2akd cells suggested that IgLON5 and these genes mutually control gene expression during myogenesis. IgLON5 immunoneutralization resulted in significant reduction in the protein level of myogenic markers (MYOD, MYOG, MYL2). IgLON5 expression was higher in the CTX-treated gastrocnemius mice muscles (day 7), which confirmed increase expression of IgLON5 during muscle. Collectively, these results suggest IgLON5 plays an important role in myogenesis, muscle regeneration, and that proteins in ECM and myoblast membranes form an interactive network that establishes an essential microenvironment that ensures muscle stem cell survival.
Collapse
Affiliation(s)
- Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (J.H.L.); (M.M.A.B.); (S.S.); (S.S.A.); (H.J.C.); (D.C.); (J.-O.J.); (J.K.)
| | - Mirza Masroor Ali Beg
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (J.H.L.); (M.M.A.B.); (S.S.); (S.S.A.); (H.J.C.); (D.C.); (J.-O.J.); (J.K.)
| | - Khurshid Ahmad
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea;
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (J.H.L.); (M.M.A.B.); (S.S.); (S.S.A.); (H.J.C.); (D.C.); (J.-O.J.); (J.K.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea;
| | - Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (J.H.L.); (M.M.A.B.); (S.S.); (S.S.A.); (H.J.C.); (D.C.); (J.-O.J.); (J.K.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea;
| | - Hee Jin Chun
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (J.H.L.); (M.M.A.B.); (S.S.); (S.S.A.); (H.J.C.); (D.C.); (J.-O.J.); (J.K.)
| | - Dukhwan Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (J.H.L.); (M.M.A.B.); (S.S.); (S.S.A.); (H.J.C.); (D.C.); (J.-O.J.); (J.K.)
| | - Woo-Jong Lee
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon 38822, Korea;
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (J.H.L.); (M.M.A.B.); (S.S.); (S.S.A.); (H.J.C.); (D.C.); (J.-O.J.); (J.K.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea;
| | - Jihoe Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (J.H.L.); (M.M.A.B.); (S.S.); (S.S.A.); (H.J.C.); (D.C.); (J.-O.J.); (J.K.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea;
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India;
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (J.H.L.); (M.M.A.B.); (S.S.); (S.S.A.); (H.J.C.); (D.C.); (J.-O.J.); (J.K.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea;
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (J.H.L.); (M.M.A.B.); (S.S.); (S.S.A.); (H.J.C.); (D.C.); (J.-O.J.); (J.K.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea;
| |
Collapse
|
14
|
Ahmed R, Melacini G. A biophysical toolset to probe the microscopic processes underlying protein aggregation and its inhibition by molecular chaperones. Biophys Chem 2021; 269:106508. [PMID: 33310607 DOI: 10.1016/j.bpc.2020.106508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 10/22/2022]
Abstract
Given the breadth and depth of the scientific contributions of Sir Christopher Dobson, with over 870 publications to date, it is inconceivable to convey in a single review the impact of his work and its legacy. This review therefore primarily focuses on his contributions to the development of strategies for preventing aberrant protein misfolding. The first section of this review highlights his seminal work on the elucidation of the microscopic nucleation processes underlying protein aggregation. Next, we discuss the specific inhibition of these steps by candidate drugs and biologics, with a particular emphasis on the role of molecular chaperones. In the final section, we review how protein aggregation principles can be exploited for the rational design of novel and more potent aggregation inhibitors. These milestones serve as excellent examples of the profound impact of Dobson's seminal work on fundamental science and its translation into drug discovery.
Collapse
Affiliation(s)
- Rashik Ahmed
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Giuseppe Melacini
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4M1, Canada; Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada.
| |
Collapse
|
15
|
Zhou JH, Yao ZX, Zheng Z, Yang J, Wang R, Fu SJ, Pan XF, Liu ZH, Wu K. G-MDSCs-Derived Exosomal miRNA-143-3p Promotes Proliferation via Targeting of ITM2B in Lung Cancer. Onco Targets Ther 2020; 13:9701-9719. [PMID: 33061450 PMCID: PMC7533249 DOI: 10.2147/ott.s256378] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022] Open
Abstract
Background The immune environment of lung cancer is complex, and the critical immune factors that promote lung cancer progression need to be explored. Granulocytic myeloid-derived suppressor cells (G-MDSCs) are regarded as immune suppressing cells. However, they also promote tumor progression through other ways, which needs to be explored further. Therefore, we sought to study the regulatory mechanisms underlying the cancer promoting function of G-MDSCs in lung cancer. Methods G-MDSCs were isolated from lung cancer tissues using flow cytometry. Exosomes were separated from the G-MDSCs supernatant by ultracentrifugation and verified using flow cytometry, Western blot, and transmission electron microscopy (TEM). RNA sequencing was used to identify the differential miRNAs and genes. Real-time quantitative real-time PCR (RT-qPCR) confirmed these results. The proliferation rate was assessed using the CCK-8 assay. Lentiviral vectors were used to alter the expression of the miRNAs and genes to analyze their effects on lung cancer progression. Results G-MDSCs secreted more exosomes in the lung cancer tissues, which promoted cancer progression by accelerating proliferation. Micro RNA-143-3p (miR-143-3p) increased in G-MDSCs derived exosomes and downregulated integral membrane protein 2B (ITM2B) by targeting the 3ʹ-untranslated region (UTR) region. Overexpression of miR-143-3p enhanced proliferation by inhibiting transcription of ITM2B to activate the PI3K/Akt signaling pathway, which can be blocked by deguelin. This phenomenon was further confirmed by accelerated tumor growth and worse prognosis in mice. Conclusion The key findings of this study highlight the potential of the G-MDSC-derived exosomes and the miR-143-3p/ITM2B axis as therapeutic targets and clinical indicators of lung cancer.
Collapse
Affiliation(s)
- Jian-Hua Zhou
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Zhi-Xian Yao
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, People's Republic of China
| | - Zhong Zheng
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, People's Republic of China
| | - Jun Yang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Rui Wang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Shi-Jie Fu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Xu-Feng Pan
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Zhi-Hong Liu
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, People's Republic of China
| | - Ke Wu
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
16
|
Chaplot K, Jarvela TS, Lindberg I. Secreted Chaperones in Neurodegeneration. Front Aging Neurosci 2020; 12:268. [PMID: 33192447 PMCID: PMC7481362 DOI: 10.3389/fnagi.2020.00268] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis, or proteostasis, is a combination of cellular processes that govern protein quality control, namely, protein translation, folding, processing, and degradation. Disruptions in these processes can lead to protein misfolding and aggregation. Proteostatic disruption can lead to cellular changes such as endoplasmic reticulum or oxidative stress; organelle dysfunction; and, if continued, to cell death. A majority of neurodegenerative diseases involve the pathologic aggregation of proteins that subverts normal neuronal function. While prior reviews of neuronal proteostasis in neurodegenerative processes have focused on cytoplasmic chaperones, there is increasing evidence that chaperones secreted both by neurons and other brain cells in the extracellular - including transsynaptic - space play important roles in neuronal proteostasis. In this review, we will introduce various secreted chaperones involved in neurodegeneration. We begin with clusterin and discuss its identification in various protein aggregates, and the use of increased cerebrospinal fluid (CSF) clusterin as a potential biomarker and as a potential therapeutic. Our next secreted chaperone is progranulin; polymorphisms in this gene represent a known genetic risk factor for frontotemporal lobar degeneration, and progranulin overexpression has been found to be effective in reducing Alzheimer's- and Parkinson's-like neurodegenerative phenotypes in mouse models. We move on to BRICHOS domain-containing proteins, a family of proteins containing highly potent anti-amyloidogenic activity; we summarize studies describing the biochemical mechanisms by which recombinant BRICHOS protein might serve as a therapeutic agent. The next section of the review is devoted to the secreted chaperones 7B2 and proSAAS, small neuronal proteins which are packaged together with neuropeptides and released during synaptic activity. Since proteins can be secreted by both classical secretory and non-classical mechanisms, we also review the small heat shock proteins (sHsps) that can be secreted from the cytoplasm to the extracellular environment and provide evidence for their involvement in extracellular proteostasis and neuroprotection. Our goal in this review focusing on extracellular chaperones in neurodegenerative disease is to summarize the most recent literature relating to neurodegeneration for each secreted chaperone; to identify any common mechanisms; and to point out areas of similarity as well as differences between the secreted chaperones identified to date.
Collapse
Affiliation(s)
| | | | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| |
Collapse
|
17
|
Mandal AK, Mount DB. Interaction Between ITM2B and GLUT9 Links Urate Transport to Neurodegenerative Disorders. Front Physiol 2019; 10:1323. [PMID: 31695625 PMCID: PMC6818471 DOI: 10.3389/fphys.2019.01323] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/03/2019] [Indexed: 11/13/2022] Open
Abstract
Hyperuricemia plays a critical causative role in gout. In contrast, hyperuricemia has a protective effect in neurodegenerative disorders, including Alzheimer's Disease. Genetic variation in the SLC2A9 gene, encoding the urate transporter GLUT9, exerts the largest single-gene effect on serum uric acid (SUA). We report here the identification of two GLUT9-interacting proteins, integral membrane protein 2B (ITM2B) and transmembrane protein 85 (TMEM85), isolated from a human kidney cDNA library using the dual-membrane yeast two-hybrid system. ITM2B is a ubiquitously expressed, N-glycosylated transmembrane regulatory protein, involved in familial dementias and retinal dystrophy; the function of TMEM85 is less defined. Using coimmunoprecipitation, we confirmed the physical interaction between ITM2B or TMEM85 and N-terminal GLUT9 isoforms (GLUT9a and GLUT9b) in transfected HEK 293T cells and Xenopus oocytes, wherein ITM2B but not TMEM85 inhibited GLUT9-mediated urate uptake. Additionally, co-expression of ITM2B with GLUT9 in oocytes inhibited N-glycosylation of GLUT9a more than GLUT9b and stimulated urate efflux by both isoforms. However, urate uptake by N-glycosylation and N-terminal deletion GLUT9 mutants was efficiently inhibited by ITM2B, indicating that neither N-glycosylation nor the N terminus is necessary for functional interaction of GLUT9 with ITM2B. Notably, ITM2B variants linked to familial Danish dementia and retinal dystrophy significantly attenuated the inhibition of GLUT9-mediated urate influx. We propose ITM2B as a potential regulatory link between urate homeostasis and neurodegenerative disorders.
Collapse
Affiliation(s)
- Asim K. Mandal
- Renal Divisions, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - David B. Mount
- Renal Divisions, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- VA Boston Healthcare System, Boston, MA, United States
| |
Collapse
|
18
|
Bruno R, Maresca M, Canaan S, Cavalier JF, Mabrouk K, Boidin-Wichlacz C, Olleik H, Zeppilli D, Brodin P, Massol F, Jollivet D, Jung S, Tasiemski A. Worms' Antimicrobial Peptides. Mar Drugs 2019; 17:md17090512. [PMID: 31470685 PMCID: PMC6780910 DOI: 10.3390/md17090512] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 12/20/2022] Open
Abstract
Antimicrobial peptides (AMPs) are natural antibiotics produced by all living organisms. In metazoans, they act as host defense factors by eliminating microbial pathogens. But they also help to select the colonizing bacterial symbionts while coping with specific environmental challenges. Although many AMPs share common structural characteristics, for example having an overall size between 10-100 amino acids, a net positive charge, a γ-core motif, or a high content of cysteines, they greatly differ in coding sequences as a consequence of multiple parallel evolution in the face of pathogens. The majority of AMPs is specific of certain taxa or even typifying species. This is especially the case of annelids (ringed worms). Even in regions with extreme environmental conditions (polar, hydrothermal, abyssal, polluted, etc.), worms have colonized all habitats on Earth and dominated in biomass most of them while co-occurring with a large number and variety of bacteria. This review surveys the different structures and functions of AMPs that have been so far encountered in annelids and nematodes. It highlights the wide diversity of AMP primary structures and their originality that presumably mimics the highly diverse life styles and ecology of worms. From the unique system that represents marine annelids, we have studied the effect of abiotic pressures on the selection of AMPs and demonstrated the promising sources of antibiotics that they could constitute.
Collapse
Affiliation(s)
- Renato Bruno
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France.
| | - Marc Maresca
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2, F-13013 Marseille, France
| | - Stéphane Canaan
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, F-13009 Marseille, France
| | | | - Kamel Mabrouk
- Aix-Marseille Univ, CNRS, UMR7273, ICR, F-13013Marseille, France
| | - Céline Boidin-Wichlacz
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Hamza Olleik
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2, F-13013 Marseille, France
| | - Daniela Zeppilli
- IFREMER Centre Brest REM/EEP/LEP, ZI de la Pointe du Diable, CS10070, F-29280Plouzané, France
| | - Priscille Brodin
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - François Massol
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Didier Jollivet
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier CS90074, F-29688 Roscoff, France
| | - Sascha Jung
- Department of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Aurélie Tasiemski
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France.
| |
Collapse
|
19
|
Weiß A, Krause M, Stockert A, Richter C, Puchta J, Bhogal P, Hoffmann KT, Emmer A, Quäschling U, Scherlach C, Härtig W, Schob S. Rheologically Essential Surfactant Proteins of the CSF Interacting with Periventricular White Matter Changes in Hydrocephalus Patients - Implications for CSF Dynamics and the Glymphatic System. Mol Neurobiol 2019; 56:7863-7871. [PMID: 31127529 DOI: 10.1007/s12035-019-01648-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/13/2019] [Indexed: 10/26/2022]
Abstract
Surfactant proteins (SP) are multi-systemic proteins playing crucial roles in the regulation of rheological properties of physiological fluids, host defense, and the clearance of potentially harmful metabolites. Hydrocephalus patients suffer from disturbed central nervous system (CNS) fluid homeostasis and exhibit remarkably altered SP concentrations within the cerebrospinal fluid (CSF). A connection between CSF-SPs, CSF flow, and ventricular dilatation, a morphological hallmark of hydrocephalus, has been reported previously. However, currently there are no studies investigating the link between rheologically active SPs and periventricular white matter changes caused by impaired CSF microcirculation in hydrocephalic conditions. Thus, the aim of this study was to assess their possible relationships. The present study included 47 individuals (27 healthy subjects and 20 hydrocephalus patients). CSF specimens were analyzed for concentrations of SP-A, SP-C, and SP-D by using enzyme-linked immunosorbent assays (ELISAs). Axial T2w turbo inversion recovery magnitude (TIRM) magnetic resonance imaging was employed in all cases. Using a custom-made MATLAB-based tool for quantification of magnetic resonance signal intensities in the brain, parameters related to disturbed deep white matter CSF microcirculation were estimated (TIRM signal intensity (SI)-mean, minimum, maximum, median, mode, standard deviation, and percentiles, p10th, p25th, p75th, p90th, as well as kurtosis, skewness, and entropy of the SI distribution). Subsequently, statistical analysis was performed (IBM SPSS 24™) to identify differences between hydrocephalic patients and healthy individuals and to further investigate the connections between CSF-SP changes and deep white matter signal intensities. SP-A (0.38 ± 0.23 vs. 0.76 ± 0.49 ng/ml) and SP-C (0.54 ± 0.28 vs. 1.27 ± 1.09 ng/ml) differed between healthy controls and hydrocephalus patients in a statistically significant manner. Also, corresponding quantification of white matter signal intensities revealed statistically significant differences between hydrocephalus patients and healthy individuals: SImean (370.41 ± 188.15 vs. 222.27 ± 99.86, p = 0.001), SImax (1115.30 ± 700.12 vs. 617.00 ± 459.34, p = 0.005), SImedian (321.40 ± 153.17 vs. 209.52 ± 84.86, p = 0.001), SImode (276.55 ± 125.63 vs. 197.26 ± 78.51, p = 0.011), SIstd (157.09 ± 110.07 vs. 81.71 ± 64.94, p = 0.005), SIp10 (229.10 ± 104.22 vs. 140.00 ± 63.12, p = 0.001), SIp25 (266.95 ± 122.62 vs. 175.63 ± 71.42, p = 0.002), SIp75 (428.80 ± 226.88 vs. 252.19 ± 110.91, p = 0.001), SIp90 (596.47 ± 345.61 vs. 322.06 ± 176.00, p = 0.001), skewness (1.19 ± 0.68 vs. 0.43 ± 1.19, p = 0.014), and entropy (5.36 ± 0.37 vs. 4.92 ± 0.51, p = 0.002). There were no differences regarding SP-D levels in hydrocephalus patients vs. healthy controls. In the acute hydrocephalic subgroup, correlations were as follows: SP-A showed a statistically significant correlation with SImax (r = 0.670, p = 0.024), SIstd (r = 0.697, p = 0.017), SIp90 (r = 0.621, p = 0.041), and inverse correlation with entropy (r = - 0.700, p = 0.016). SP-C correlated inversely with entropy (r = - 0.686, p = 0.020). For the chronic hydrocephalus subgroup, the following correlations were identified: SP-A correlated with kurtosis of the TIRM histogram (r = - 0.746, p = 0.021). SP-C correlated with SImean (r = - 0.688, p = 0.041), SImax (r = - 0.741, p = 0.022), SImedian (r = - 0.716, p = 0.030), SImode (r = - 0.765, p = 0.016), SIstd (r = - 0.671, p = 0.048), SIp25 (r = - 0.740, p = 0.023), SIp75 (r = - 0.672, p = 0.048), and SIp90 (r = - 0.667, p = 0.050). SP-D apparently does not play a major role in CSF fluid physiology. SP-A and SP-C are involved in different aspects of CNS fluid physiology. SP-A appears to play an essential compensatory role in acute hydrocephalus and seems less involved in chronic hydrocephalus. In contrary, SP-C profile and white matter changes are remarkably connected in CSF of chronic hydrocephalus patients. Considering the association between CSF flow phenomena, white matter changes, and SP-C profiles, the latter may especially contribute to the regulation of paravascular glymphatic physiology.
Collapse
Affiliation(s)
- Alexander Weiß
- Department of Neuroradiology, University Hospital Leipzig, Liebigstrasse 20, 04103, Leipzig, Germany
| | - Matthias Krause
- Department of Neurosurgery, University Hospital Leipzig, Leipzig, Germany
| | - Anika Stockert
- Department of Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Cindy Richter
- Department of Neuroradiology, University Hospital Leipzig, Liebigstrasse 20, 04103, Leipzig, Germany
| | - Joana Puchta
- Department of Neuroradiology, University Hospital Leipzig, Liebigstrasse 20, 04103, Leipzig, Germany.,Paul Flechsig Institute for Brain Research, University Leipzig, Leipzig, Germany
| | - Pervinder Bhogal
- Department of Interventional Neuroradiology, Royal London Hospital, London, UK
| | - Karl-Titus Hoffmann
- Department of Neuroradiology, University Hospital Leipzig, Liebigstrasse 20, 04103, Leipzig, Germany
| | - Alexander Emmer
- Department for Neurology, University Hospital Halle-Wittenberg, Halle, Germany
| | - Ulf Quäschling
- Department of Neuroradiology, University Hospital Leipzig, Liebigstrasse 20, 04103, Leipzig, Germany
| | - Cordula Scherlach
- Department of Neuroradiology, University Hospital Leipzig, Liebigstrasse 20, 04103, Leipzig, Germany
| | - Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, University Leipzig, Leipzig, Germany
| | - Stefan Schob
- Department of Neuroradiology, University Hospital Leipzig, Liebigstrasse 20, 04103, Leipzig, Germany.
| |
Collapse
|
20
|
Loera-Valencia R, Piras A, Ismail MAM, Manchanda S, Eyjolfsdottir H, Saido TC, Johansson J, Eriksdotter M, Winblad B, Nilsson P. Targeting Alzheimer's disease with gene and cell therapies. J Intern Med 2018; 284:2-36. [PMID: 29582495 DOI: 10.1111/joim.12759] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) causes dementia in both young and old people affecting more than 40 million people worldwide. The two neuropathological hallmarks of the disease, amyloid beta (Aβ) plaques and neurofibrillary tangles consisting of protein tau are considered the major contributors to the disease. However, a more complete picture reveals significant neurodegeneration and decreased cell survival, neuroinflammation, changes in protein and energy homeostasis and alterations in lipid and cholesterol metabolism. In addition, gene and cell therapies for severe neurodegenerative disorders have recently improved technically in terms of safety and efficiency and have translated to the clinic showing encouraging results. Here, we review broadly current data within the field for potential targets that could modify AD through gene and cell therapy strategies. We envision that not only Aβ will be targeted in a disease-modifying treatment strategy but rather that a combination of treatments, possibly at different intervention times may prove beneficial in curing this devastating disease. These include decreased tau pathology, neuronal growth factors to support neurons and modulation of neuroinflammation for an appropriate immune response. Furthermore, cell based therapies may represent potential strategies in the future.
Collapse
Affiliation(s)
- R Loera-Valencia
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
| | - A Piras
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
| | - M A M Ismail
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden.,Theme Neuro, Diseases of the Nervous System Patient Flow, Karolinska University Hospital, Huddinge, Sweden
| | - S Manchanda
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
| | - H Eyjolfsdottir
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden.,Theme Aging, Karolinska University Hospital, Huddinge, Sweden
| | - T C Saido
- RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - J Johansson
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
| | - M Eriksdotter
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden.,Theme Aging, Karolinska University Hospital, Huddinge, Sweden
| | - B Winblad
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden.,Theme Aging, Karolinska University Hospital, Huddinge, Sweden
| | - P Nilsson
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
21
|
Wallin C, Hiruma Y, Wärmländer SKTS, Huvent I, Jarvet J, Abrahams JP, Gräslund A, Lippens G, Luo J. The Neuronal Tau Protein Blocks in Vitro Fibrillation of the Amyloid-β (Aβ) Peptide at the Oligomeric Stage. J Am Chem Soc 2018; 140:8138-8146. [DOI: 10.1021/jacs.7b13623] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Cecilia Wallin
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories, Stockholm University, 10691 Stockholm, Sweden
| | - Yoshitaka Hiruma
- Divisions of Biochemistry, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Sebastian K. T. S. Wärmländer
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories, Stockholm University, 10691 Stockholm, Sweden
| | - Isabelle Huvent
- Unité de Glycobiologie Structurale et Fonctionnelle, CNRS UMR 8576, Université de Lille, 59655 Villeneuve d’Ascq, France
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories, Stockholm University, 10691 Stockholm, Sweden
| | - Jan Pieter Abrahams
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232 Villigen, Switzerland
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories, Stockholm University, 10691 Stockholm, Sweden
| | - Guy Lippens
- Laboratoire d’Ingénierie des Systèmes Biologiques et des Procédés, CNRS, Institut National des Sciences Appliquées, Institut National de Recherche Agronomique, Université de Toulouse, 31077 Toulouse, France
| | - Jinghui Luo
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232 Villigen, Switzerland
| |
Collapse
|
22
|
Song M, Song K, Kim S, Lee J, Hwang S, Han C. Caenorhabditis elegans BRICHOS Domain-Containing Protein C09F5.1 Maintains Thermotolerance and Decreases Cytotoxicity of Aβ 42 by Activating the UPR. Genes (Basel) 2018; 9:E160. [PMID: 29534049 PMCID: PMC5867881 DOI: 10.3390/genes9030160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/05/2018] [Accepted: 03/09/2018] [Indexed: 11/16/2022] Open
Abstract
Caenorhabditis elegans C09F5.1 is a nematode-specific gene that encodes a type II transmembrane protein containing the BRICHOS domain. The gene was isolated as a heat-sensitive mutant, but the function of the protein remained unclear. We examined the expression pattern and subcellular localization of C09F5.1 as well as its roles in thermotolerance and chaperone function. Expression of C09F5.1 under heat shock conditions was induced in a heat shock factor 1 (HSF-1)-dependent manner. However, under normal growth conditions, most cells types exposed to mechanical stimuli expressed C09F5.1. Knockdown of C09F5.1 expression or deletion of the N-terminal domain decreased thermotolerance. The BRICHOS domain of C09F5.1 did not exhibit chaperone function unlike those of other proteins containing this domain, but the domain was essential for the proper subcellular localization of the protein. Intact C09F5.1 was localized to the Golgi body, but the N-terminal domain of C09F5.1 (C09F5.1-NTD) was retained in the ER. C09F5.1-NTD delayed paralysis by beta-amyloid (1-42) protein (Aβ42) in Alzheimer's disease model worms (CL4176) and activated the unfolded protein response (UPR) by interacting with Aβ42. An intrinsically disordered region (IDR) located at the N-terminus of C09F5.1 may be responsible for the chaperone function of C09F5.1-NTD. Taken together, the data suggest that C09F5.1 triggers the UPR by interacting with abnormal proteins.
Collapse
Affiliation(s)
- Myungchul Song
- Department of Life Science, Sogang University, Seoul 04107, Korea.
| | - Kyunghee Song
- Department of Life Science, Sogang University, Seoul 04107, Korea.
- LG Household & Health Care, Daejeon 34114, Korea.
| | - Sunghee Kim
- Department of Life Science, Sogang University, Seoul 04107, Korea.
- Department of Medicine, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea.
| | - Jinyoung Lee
- Department of Life Science, Sogang University, Seoul 04107, Korea.
- Amorepacific R&D Center, Yongin 17074, Korea.
| | - Sueyun Hwang
- Department of Chemical Engineering, Hankyung National University, Anseong 17579, Korea.
| | - Chingtack Han
- Department of Life Science, Sogang University, Seoul 04107, Korea.
| |
Collapse
|
23
|
BRICHOS domain of Bri2 inhibits islet amyloid polypeptide (IAPP) fibril formation and toxicity in human beta cells. Proc Natl Acad Sci U S A 2018; 115:E2752-E2761. [PMID: 29507232 PMCID: PMC5866560 DOI: 10.1073/pnas.1715951115] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Accumulation of islet amyloid polypeptide (IAPP)-containing amyloid fibrils is the main pathological finding in pancreatic islets in type 2 diabetes. The formation of these IAPP amyloid fibrils is considered toxic and may constitute a major cause for the loss of insulin-producing beta cells. The protein domain BRICHOS is present in several different proproteins and possesses antiamyloid chaperone activity. This study demonstrates expression of the BRICHOS-containing protein Bri2 in human pancreatic beta cells and its colocalization with IAPP. The Bri2 BRICHOS domain effectively prevents IAPP from forming fibrils and protects cells from the toxicity associated with IAPP fibrillation. It is concluded that the Bri2 BRICHOS domain may act as an endogenous inhibitor of IAPP amyloid formation in pancreatic beta cells. Aggregation of islet amyloid polypeptide (IAPP) into amyloid fibrils in islets of Langerhans is associated with type 2 diabetes, and formation of toxic IAPP species is believed to contribute to the loss of insulin-producing beta cells. The BRICHOS domain of integral membrane protein 2B (Bri2), a transmembrane protein expressed in several peripheral tissues and in the brain, has recently been shown to prevent fibril formation and toxicity of Aβ42, an amyloid-forming peptide in Alzheimer disease. In this study, we demonstrate expression of Bri2 in human islets and in the human beta-cell line EndoC-βH1. Bri2 colocalizes with IAPP intracellularly and is present in amyloid deposits in patients with type 2 diabetes. The BRICHOS domain of Bri2 effectively inhibits fibril formation in vitro and instead redirects IAPP into formation of amorphous aggregates. Reduction of endogenous Bri2 in EndoC-βH1 cells with siRNA increases sensitivity to metabolic stress leading to cell death while a concomitant overexpression of Bri2 BRICHOS is protective. Also, coexpression of IAPP and Bri2 BRICHOS in lateral ventral neurons of Drosophila melanogaster results in an increased cell survival. IAPP is considered to be the most amyloidogenic peptide known, and described findings identify Bri2, or in particular its BRICHOS domain, as an important potential endogenous inhibitor of IAPP aggregation and toxicity, with the potential to be a possible target for the treatment of type 2 diabetes.
Collapse
|
24
|
Papot C, Massol F, Jollivet D, Tasiemski A. Antagonistic evolution of an antibiotic and its molecular chaperone: how to maintain a vital ectosymbiosis in a highly fluctuating habitat. Sci Rep 2017; 7:1454. [PMID: 28469247 PMCID: PMC5431198 DOI: 10.1038/s41598-017-01626-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 03/30/2017] [Indexed: 12/25/2022] Open
Abstract
Evolution of antimicrobial peptides (AMPs) has been shown to be driven by recurrent duplications and balancing/positive selection in response to new or altered bacterial pathogens. We use Alvinella pompejana, the most eurythermal animal known on Earth, to decipher the selection patterns acting on AMP in an ecological rather than controlled infection approach. The preproalvinellacin multigenic family presents the uniqueness to encode a molecular chaperone (BRICHOS) together with an AMP (alvinellacin) that controls the vital ectosymbiosis of Alvinella. In stark contrast to what is observed in the context of the Red queen paradigm, we demonstrate that exhibiting a vital and highly conserved ecto-symbiosis in the face of thermal fluctuations has led to a peculiar selective trend promoting the adaptive diversification of the molecular chaperone of the AMP, but not of the AMP itself. Because BRICHOS stabilizes beta-stranded peptides, this polymorphism likely represents an eurythermal adaptation to stabilize the structure of alvinellacin, thus hinting at its efficiency to select and control the epibiosis across the range of temperatures experienced by the worm; Our results fill some knowledge gaps concerning the function of BRICHOS in invertebrates and offer perspectives for studying immune genes in an evolutionary ecological framework.
Collapse
Affiliation(s)
- Claire Papot
- University Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, SPICI group, F-59000, Lille, France
| | - François Massol
- University Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, SPICI group, F-59000, Lille, France
| | - Didier Jollivet
- AD2M, ABICE team, Université Pierre et Marie Curie-CNRS, UMR7144, Station Biologique de Roscoff, 29682, Roscoff, France
| | - Aurélie Tasiemski
- University Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, SPICI group, F-59000, Lille, France.
| |
Collapse
|
25
|
Garringer HJ, Sammeta N, Oblak A, Ghetti B, Vidal R. Amyloid and intracellular accumulation of BRI 2. Neurobiol Aging 2016; 52:90-97. [PMID: 28131015 DOI: 10.1016/j.neurobiolaging.2016.12.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/29/2016] [Accepted: 12/18/2016] [Indexed: 01/07/2023]
Abstract
Familial British dementia (FBD) and familial Danish dementia (FDD) are caused by mutations in the BRI2 gene. These diseases are characterized clinically by progressive dementia and ataxia and neuropathologically by amyloid deposits and neurofibrillary tangles. Herein, we investigate BRI2 protein accumulation in FBD, FDD, Alzheimer disease and Gerstmann-Sträussler-Scheinker disease. In FBD and FDD, we observed reduced processing of the mutant BRI2 pro-protein, which was found accumulating intracellularly in the Golgi of neurons and glial cells. In addition, we observed an accumulation of a mature form of BRI2 protein in dystrophic neurites, surrounding amyloid cores. Accumulation of BRI2 was also observed in dystrophic neurites of Alzheimer disease and Gerstmann-Sträussler-Scheinker disease cases. Although it remains to be determined whether intracellular accumulation of BRI2 may lead to cell damage in these degenerative diseases, our study provides new insights into the role of mutant BRI2 in the pathogenesis of FBD and FDD and implicates BRI2 as a potential indicator of neuritic damage in diseases characterized by cerebral amyloid deposition.
Collapse
Affiliation(s)
- Holly J Garringer
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Neeraja Sammeta
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Adrian Oblak
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ruben Vidal
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
26
|
Ankarcrona M, Winblad B, Monteiro C, Fearns C, Powers ET, Johansson J, Westermark GT, Presto J, Ericzon BG, Kelly JW. Current and future treatment of amyloid diseases. J Intern Med 2016; 280:177-202. [PMID: 27165517 PMCID: PMC4956553 DOI: 10.1111/joim.12506] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There are more than 30 human proteins whose aggregation appears to cause degenerative maladies referred to as amyloid diseases or amyloidoses. These disorders are named after the characteristic cross-β-sheet amyloid fibrils that accumulate systemically or are localized to specific organs. In most cases, current treatment is limited to symptomatic approaches and thus disease-modifying therapies are needed. Alzheimer's disease is a neurodegenerative disorder with extracellular amyloid β-peptide (Aβ) fibrils and intracellular tau neurofibrillary tangles as pathological hallmarks. Numerous clinical trials have been conducted with passive and active immunotherapy, and small molecules to inhibit Aβ formation and aggregation or to enhance Aβ clearance; so far such clinical trials have been unsuccessful. Novel strategies are therefore required and here we will discuss the possibility of utilizing the chaperone BRICHOS to prevent Aβ aggregation and toxicity. Type 2 diabetes mellitus is symptomatically treated with insulin. However, the underlying pathology is linked to the aggregation and progressive accumulation of islet amyloid polypeptide as fibrils and oligomers, which are cytotoxic. Several compounds have been shown to inhibit islet amyloid aggregation and cytotoxicity in vitro. Future animal studies and clinical trials have to be conducted to determine their efficacy in vivo. The transthyretin (TTR) amyloidoses are a group of systemic degenerative diseases compromising multiple organ systems, caused by TTR aggregation. Liver transplantation decreases the generation of misfolded TTR and improves the quality of life for a subgroup of this patient population. Compounds that stabilize the natively folded, nonamyloidogenic, tetrameric conformation of TTR have been developed and the drug tafamidis is available as a promising treatment.
Collapse
Affiliation(s)
- M Ankarcrona
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - B Winblad
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - C Monteiro
- Department of Chemistry, The Skaggs Institute for Chemical Biology, La Jolla, CA, USA.,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - C Fearns
- Department of Chemistry, The Skaggs Institute for Chemical Biology, La Jolla, CA, USA.,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - E T Powers
- Department of Chemistry, The Skaggs Institute for Chemical Biology, La Jolla, CA, USA
| | - J Johansson
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - G T Westermark
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - J Presto
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - B-G Ericzon
- Division of Transplantation Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - J W Kelly
- Department of Chemistry, The Skaggs Institute for Chemical Biology, La Jolla, CA, USA.,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
27
|
Gastrointestinal Factor GDDR Attenuates Epithelial-Mesenchymal Transition in Gastric Cancer via Inhibiting AKT Signal. Dig Dis Sci 2016; 61:1941-9. [PMID: 27017226 DOI: 10.1007/s10620-016-4115-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/04/2016] [Indexed: 12/09/2022]
Abstract
BACKGROUND The gastric dramatic down-related gene (GDDR) is an abundantly expressed secretory protein in normal gastric epithelia, while its expression is distinctly decreased in gastric cancer. However, the role of GDDR in gastric cancer remains poorly understood. AIMS This study aims to detect the expression and clinical significance of GDDR in gastric cancer and investigate its effects on epithelial-mesenchymal transition. METHODS The expression of GDDR in gastric cancer was examined by immunohistochemistry, immunoblotting, and Western blotting. The relationships between GDDR expression and clinicopathological factors were evaluated. The effects of GDDR on epithelial-mesenchymal transition of gastric cancer cells were investigated in vitro. RESULTS GDDR was absent in gastric cancer tissue or dramatically downregulated in gastric cancer cell lines. Loss of GDDR expression in gastric cancer was strongly correlated with clinicopathological factors, such as tumor differentiation (p = 0.037), T stage (p < 0.001), lymph node metastasis (p = 0.008) and TNM stage (p < 0.001). Patients with decreased GDDR expression presented shortened overall survival (p = 0.033). Functional studies demonstrated that GDDR elevation augmented cell-cell adhesion and suppressed cell motility, concomitant with increased expression of E-cadherin and decreased expression of β-catenin and vimentin. Conversely, GDDR depletion increased cell motility, concomitant with decreased expression of E-cadherin and increased expression of β-catenin and vimentin. Moreover, GDDR had an inhibitory effect on PI3K/Akt signaling pathway. CONCLUSIONS Our findings suggested that GDDR expression was significantly associated with the progression of gastric cancer and GDDR may function as a tumor suppressor via inhibiting the epithelial-mesenchymal transition.
Collapse
|
28
|
Zhou W, Wang Y. Candidate genes of idiopathic pulmonary fibrosis: current evidence and research. Appl Clin Genet 2016; 9:5-13. [PMID: 26893575 PMCID: PMC4745857 DOI: 10.2147/tacg.s61999] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a group of common and lethal forms of idiopathic interstitial pulmonary disease. IPF is characterized by a progressive decline in lung function with a median survival of 2-3 years after diagnosis. Although the pathogenesis of the disease remains unknown, genetic predisposition could play a causal role in IPF. A set of genes have been identified as candidate genes of IPF in the past 20 years. However, the recent technological advances that allow for the analysis of millions of polymorphisms in different subjects have deepened the understanding of the genetic complexity of IPF susceptibility. Genome-wide association studies and whole-genome sequencing continue to reveal the genetic loci associated with IPF risk. In this review, we describe candidate genes on the basis of their functions and aim to gain a better understanding of the genetic basis of IPF. The discovered candidate genes may help to clarify pivotal aspects in the diagnosis, prognosis, and therapies of IPF.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, People’s Republic of China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Yaping Wang
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, People’s Republic of China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| |
Collapse
|
29
|
BRICHOS binds to a designed amyloid-forming β-protein and reduces proteasomal inhibition and aggresome formation. Biochem J 2015; 473:167-78. [PMID: 26578816 DOI: 10.1042/bj20150920] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/17/2015] [Indexed: 01/05/2023]
Abstract
The BRICHOS domain is associated with proliferative, degenerative and amyloid diseases, and it has been shown to inhibit fibril formation and toxicity of the Alzheimer's disease-associated amyloid β-peptide. ProSP-C (prosurfactant protein C) BRICHOS binds to stretches of hydrophobic amino acid residues, which are unfolded or in β-strand conformation, suggesting that it may have broad anti-amyloid activity. We have studied the effect of the proSP-C BRICHOS domain on the designed amyloidogenic β-sheet proteins β17 and β23. β17 expressed in the secretory pathway of HEK (human embryonic kidney)-293 cells forms intracellular inclusions, whereas β23 is rapidly degraded. Co-expression of BRICHOS leads to a reduction in β17 inclusion size and increased levels of soluble β17 and β23. Furthermore, BRICHOS interacts with the β-proteins intracellularly, reduces their ubiquitination and decreases aggresome formation and proteasomal inhibition. Collectively, these data suggest that BRICHOS is capable of delaying the aggregation process and toxicity of amyloidogenic proteins in a generic manner.
Collapse
|
30
|
Abstract
Here we review the similarities between a rare inherited disorder, familial British dementia (FBD), and the most common of all late-life neurological conditions, Alzheimer's diseases (AD). We describe the symptoms, pathology and genetics of FBD, the biology of the BRI2 protein and mouse models of FBD and familial Danish dementia. In particular, we focus on the evolving recognition of the importance of protein oligomers and aberrant processing of the amyloid β-protein precursor (APP) - themes that are common to both FBD and AD. The initial discovery that FBD is phenotypically similar to AD, but associated with the deposition of an amyloid peptide (ABri) distinct from the amyloid β-protein (Aβ) led many to assume that amyloid production alone is sufficient to initiate disease and that ABri is the molecular equivalent of Aβ. Parallel with work on Aβ, studies of ABri producing animal models and in vitro ABri toxicity experiments caused a revision of the amyloid hypothesis and a focus on soluble oligomers of Aβ and ABri. Contemporaneous other studies suggested that loss of the ABri precursor protein (BRI2) may underlie the cognitive deficits in FBD. In this regard it is important to note that BRI2 has been shown to interact with and regulate the processing of APP, and that mutant BRI2 leads to altered cleavage of APP. A synthesis of these results suggests that a “two-hit mechanism” better explains FBD than earlier toxic gain of function and toxic loss of function models. The lessons learned from the study of FBD imply that the molecular pathology of AD is also likely to involve both aberrant aggregation (in AD, Aβ) and altered APP processing. With regard to FBD, we propose that the C-terminal 11 amino acid of FBD-BRI2 interfere with both the normal function of BRI2 and promotes the production of cystine cross-linked toxic ABri oligomers. In this scenario, loss of BRI2 function leads to altered APP processing in as yet underappreciated ways. Given the similarities between FBD and AD it seems likely that study of the structure of ABri oligomers and FBD-induced changes in APP metabolites will further our understanding of AD.
Collapse
Affiliation(s)
- Adam Cantlon
- Laboratory for Neurodegenerative Research, School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Republic of Ireland ; Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Carlo Sala Frigerio
- Laboratory for Neurodegenerative Research, School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Republic of Ireland
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| |
Collapse
|
31
|
Mulugeta S, Nureki SI, Beers MF. Lost after translation: insights from pulmonary surfactant for understanding the role of alveolar epithelial dysfunction and cellular quality control in fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol 2015; 309:L507-25. [PMID: 26186947 PMCID: PMC4572416 DOI: 10.1152/ajplung.00139.2015] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/10/2015] [Indexed: 01/08/2023] Open
Abstract
Dating back nearly 35 years ago to the Witschi hypothesis, epithelial cell dysfunction and abnormal wound healing have reemerged as central concepts in the pathophysiology of idiopathic pulmonary fibrosis (IPF) in adults and in interstitial lung disease in children. Alveolar type 2 (AT2) cells represent a metabolically active compartment in the distal air spaces responsible for pulmonary surfactant biosynthesis and function as a progenitor population required for maintenance of alveolar integrity. Rare mutations in surfactant system components have provided new clues to understanding broader questions regarding the role of AT2 cell dysfunction in the pathophysiology of fibrotic lung diseases. Drawing on data generated from a variety of model systems expressing disease-related surfactant component mutations [surfactant proteins A and C (SP-A and SP-C); the lipid transporter ABCA3], this review will examine the concept of epithelial dysfunction in fibrotic lung disease, provide an update on AT2 cell and surfactant biology, summarize cellular responses to mutant surfactant components [including endoplasmic reticulum (ER) stress, mitochondrial dysfunction, and intrinsic apoptosis], and examine quality control pathways (unfolded protein response, the ubiquitin-proteasome system, macroautophagy) that can be utilized to restore AT2 homeostasis. This integrated response and its derangement will be placed in the context of cell stress and quality control signatures found in patients with familial or sporadic IPF as well as non-surfactant-related AT2 cell dysfunction syndromes associated with a fibrotic lung phenotype. Finally, the need for targeted therapeutic strategies for pulmonary fibrosis that address epithelial ER stress, its downstream signaling, and cell quality control are discussed.
Collapse
Affiliation(s)
- Surafel Mulugeta
- Pulmonary, Allergy, and Critical Care Division; Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; and
| | - Shin-Ichi Nureki
- Department of Respiratory Medicine and Infectious Diseases, Oita University, Yufu, Oita, Japan
| | - Michael F Beers
- Pulmonary, Allergy, and Critical Care Division; Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; and
| |
Collapse
|
32
|
Landreh M, Rising A, Presto J, Jörnvall H, Johansson J. Specific chaperones and regulatory domains in control of amyloid formation. J Biol Chem 2015; 290:26430-6. [PMID: 26354437 DOI: 10.1074/jbc.r115.653097] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many proteins can form amyloid-like fibrils in vitro, but only about 30 amyloids are linked to disease, whereas some proteins form physiological amyloid-like assemblies. This raises questions of how the formation of toxic protein species during amyloidogenesis is prevented or contained in vivo. Intrinsic chaperoning or regulatory factors can control the aggregation in different protein systems, thereby preventing unwanted aggregation and enabling the biological use of amyloidogenic proteins. The molecular actions of these chaperones and regulators provide clues to the prevention of amyloid disease, as well as to the harnessing of amyloidogenic proteins in medicine and biotechnology.
Collapse
Affiliation(s)
- Michael Landreh
- From the Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 5QY, United Kingdom
| | - Anna Rising
- the Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Karolinska Institutet - Novum, 141 57 Huddinge, Sweden, the Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, The Biomedical Centre, Box 575, 751 23 Uppsala, Sweden
| | - Jenny Presto
- the Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Karolinska Institutet - Novum, 141 57 Huddinge, Sweden
| | - Hans Jörnvall
- the Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, SE-171 77 Stockholm, Sweden, and
| | - Jan Johansson
- the Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Karolinska Institutet - Novum, 141 57 Huddinge, Sweden, the Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, The Biomedical Centre, Box 575, 751 23 Uppsala, Sweden, the Institute of Mathematics and Natural Sciences, Tallinn University, Narva mnt 25, 101 20 Tallinn, Estonia
| |
Collapse
|
33
|
Rippa E, Altieri F, Di Stadio CS, Miselli G, Lamberti A, Federico A, Quagliariello V, Papale F, Guerra G, Arcari P. Ectopic expression of gastrokine 1 in gastric cancer cells up-regulates tight and adherens junction proteins network. Pathol Res Pract 2015; 211:577-83. [PMID: 26008777 DOI: 10.1016/j.prp.2015.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/30/2015] [Accepted: 04/17/2015] [Indexed: 01/02/2023]
Abstract
Gastrokine 1 (GKN1) is a stomach-specific protein important in the replenishment of the surface lumen epithelial cell layer and in maintaining mucosal integrity. A role in cell proliferation and differentiation has also been hypothesized. Despite these findings, the function(s) as well as the cellular localization of GKN1 in the cellular machinery are currently not clarified. The investigation of subcellular localization of GKN1 in gastric cancer cells can provide insights into its potential cellular roles. Subcellular fractions of gastric cancer cells (AGS) transfected with full-length GKN1 (flGKN1) or incubated with recombinant GKN1 (rGKN1) lacking the first 20 amino acids at N-terminal were analyzed by Western blot and confocal microscopy and compared with those from normal gastric tissue. Wild type GKN1 (wtGKN1) and flGKN1 were revealed in the cytoplasm and in the membrane fractions of gastric cells, whereas rGKN1 was revealed in the cytoplasmic fractions, but a high amount was detected in the membrane pellet of the AGS lysate. The cellular distribution of GKN1 was also confirmed by confocal microscopy. The purified protein was also used to highlight its possible association with actin through confocal microscopy, pelleting assay, and size-exclusion chromatography. GKN1 co-localizes with actin in normal gastric tissue, but no direct interaction was observed between the two proteins in vitro. Most likely, GKN1 indirectly participates in actin stabilization since its overexpression in gastric cancer cells strongly increases the expression of tight and adherens junction proteins.
Collapse
Affiliation(s)
- Emilia Rippa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Filomena Altieri
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Chiara Stella Di Stadio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Giuseppina Miselli
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Annalisa Lamberti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Antonella Federico
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy; CNR, Institute of Experimental Endocrinology and Oncology G. Salvatore, Naples, Italy
| | - Vincenzo Quagliariello
- Department of Anesthesia, Surgical and Emergency Sciences, Second University of Naples, Naples, Italy
| | - Ferdinando Papale
- Department of Anesthesia, Surgical and Emergency Sciences, Second University of Naples, Naples, Italy
| | - Germano Guerra
- Department of Medicine and Health Science, University of Molise, Isernia, Italy
| | - Paolo Arcari
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy; CEINGE, Advanced Biotechnology Scarl, Naples, Italy.
| |
Collapse
|
34
|
Biverstål H, Dolfe L, Hermansson E, Leppert A, Reifenrath M, Winblad B, Presto J, Johansson J. Dissociation of a BRICHOS trimer into monomers leads to increased inhibitory effect on Aβ42 fibril formation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:835-43. [PMID: 25891900 DOI: 10.1016/j.bbapap.2015.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/17/2015] [Accepted: 04/09/2015] [Indexed: 11/18/2022]
Abstract
The BRICHOS domain is associated with human amyloid disease, and it efficiently prevents amyloid fibril formation of the amyloid β-peptide (Aβ) in vitro and in vivo. Recombinant human prosurfactant protein C (proSP-C) BRICHOS domain forms a homotrimer as observed by x-ray crystallography, analytical ultracentrifugation, native polyacrylamide gel electrophoresis, analytical size exclusion chromatography and electrospray mass spectrometry. It was hypothesized that the trimer is an inactive storage form, as a putative substrate-binding site identified in the monomer, is buried in the subunit interface of the trimer. We show here increased dissociation of the BRICHOS trimer into monomers, by addition of detergents or of bis-ANS, known to bind to the putative substrate-binding site, or by introducing a Ser to Arg mutation expected to interfere with trimer formation. This leads to increased capacity to delay Aβ(42) fibril formation. Cross-linking of the BRICHOS trimer with glutaraldehyde, in contrast, renders it unable to affect Aβ(42) fibril formation. Moreover, proSP-C BRICHOS expressed in HEK293 cells is mainly monomeric, as detected by proximity ligation assay. Finally, proteolytic cleavage of BRICHOS in a loop region that is cleaved during proSP-C biosynthesis results in increased capacity to delay Aβ(42) fibril formation. These results indicate that modulation of the accessibility of the substrate-binding site is a means to regulate BRICHOS activity.
Collapse
Affiliation(s)
- Henrik Biverstål
- Karolinska Institutet, Department of NVS, Center for Alzheimer Research, Division of Neurogeriatrics, 141 57 Huddinge, Sweden.
| | - Lisa Dolfe
- Karolinska Institutet, Department of NVS, Center for Alzheimer Research, Division of Neurogeriatrics, 141 57 Huddinge, Sweden
| | - Erik Hermansson
- Karolinska Institutet, Department of NVS, Center for Alzheimer Research, Division of Neurogeriatrics, 141 57 Huddinge, Sweden
| | - Axel Leppert
- Karolinska Institutet, Department of NVS, Center for Alzheimer Research, Division of Neurogeriatrics, 141 57 Huddinge, Sweden
| | - Mara Reifenrath
- Karolinska Institutet, Department of NVS, Center for Alzheimer Research, Division of Neurogeriatrics, 141 57 Huddinge, Sweden
| | - Bengt Winblad
- Karolinska Institutet, Department of NVS, Center for Alzheimer Research, Division of Neurogeriatrics, 141 57 Huddinge, Sweden
| | - Jenny Presto
- Karolinska Institutet, Department of NVS, Center for Alzheimer Research, Division of Neurogeriatrics, 141 57 Huddinge, Sweden
| | - Jan Johansson
- Karolinska Institutet, Department of NVS, Center for Alzheimer Research, Division of Neurogeriatrics, 141 57 Huddinge, Sweden; Department of Anatomy, Physiology and Biochemistry, The Biomedical Centre, Swedish University of Agricultural Sciences, Box 575, 751 23 Uppsala, Sweden; Institute of Mathematics and Natural Sciences, Tallinn University, Narva mnt 25, Tallinn 101 20, Estonia
| |
Collapse
|
35
|
Del Campo M, Oliveira CR, Scheper W, Zwart R, Korth C, Müller-Schiffmann A, Kostallas G, Biverstal H, Presto J, Johansson J, Hoozemans JJ, Pereira CF, Teunissen CE. BRI2 ectodomain affects Aβ42 fibrillation and tau truncation in human neuroblastoma cells. Cell Mol Life Sci 2015; 72:1599-611. [PMID: 25336154 PMCID: PMC11113771 DOI: 10.1007/s00018-014-1769-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD) is pathologically characterized by the presence of misfolded proteins such as amyloid beta (Aβ) in senile plaques, and hyperphosphorylated tau and truncated tau in neurofibrillary tangles (NFT). The BRI2 protein inhibits Aβ aggregation via its BRICHOS domain and regulates critical proteins involved in initiating the amyloid cascade, which has been hypothesized to be central in AD pathogenesis. We recently detected the deposition of BRI2 ectodomain associated with Aβ plaques and concomitant changes in its processing enzymes in early stages of AD. Here, we aimed to investigate the effects of recombinant BRI2 ectodomain (rBRI276-266) on Aβ aggregation and on important molecular pathways involved in early stages of AD, including the unfolded protein response (UPR), phosphorylation and truncation of tau, as well as apoptosis. We found that rBRI276-266 delays Aβ fibril formation, although less efficiently than the BRI2 BRICHOS domain (BRI2 residues 113-231). In human neuroblastoma SH-SY5Y cells, rBRI276-266 slightly decreased cell viability and increased up to two-fold the Bax/Bcl-2 ratio and the subsequent activity of caspases 3 and 9, indicating activation of apoptosis. rBRI276-266 upregulated the chaperone BiP but did not modify the mRNA expression of other UPR markers (CHOP and Xbp-1). Strikingly, rBRI276-266 induced the activation of GSK3β but not the phosphorylation of tau. However, exposure to rBRI276-266 significantly induced the truncation of tau, indicating that BRI2 ectodomain can contribute to NFT formation. Since BRI2 can also regulate the metabolism of Aβ, the current data suggests that BRI2 ectodomain is a potential nexus between Aβ, tau pathology and neurodegeneration.
Collapse
Affiliation(s)
- M Del Campo
- Neurochemistry Laboratory, Department of Clinical Chemistry, VU University Medical Center (VUmc), Room PK1 Br016, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Cohen SIA, Arosio P, Presto J, Kurudenkandy FR, Biverstal H, Dolfe L, Dunning C, Yang X, Frohm B, Vendruscolo M, Johansson J, Dobson CM, Fisahn A, Knowles TPJ, Linse S. A molecular chaperone breaks the catalytic cycle that generates toxic Aβ oligomers. Nat Struct Mol Biol 2015; 22:207-213. [PMID: 25686087 PMCID: PMC4595974 DOI: 10.1038/nsmb.2971] [Citation(s) in RCA: 318] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 01/08/2015] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease is an increasingly prevalent neurodegenerative disorder whose pathogenesis has been associated with aggregation of the amyloid-β peptide (Aβ42). Recent studies have revealed that once Aβ42 fibrils are generated, their surfaces effectively catalyze the formation of neurotoxic oligomers. Here we show that a molecular chaperone, a human Brichos domain, can specifically inhibit this catalytic cycle and limit human Aβ42 toxicity. We demonstrate in vitro that Brichos achieves this inhibition by binding to the surfaces of fibrils, thereby redirecting the aggregation reaction to a pathway that involves minimal formation of toxic oligomeric intermediates. We verify that this mechanism occurs in living mouse brain tissue by cytotoxicity and electrophysiology experiments. These results reveal that molecular chaperones can help maintain protein homeostasis by selectively suppressing critical microscopic steps within the complex reaction pathways responsible for the toxic effects of protein misfolding and aggregation.
Collapse
Affiliation(s)
- Samuel I. A. Cohen
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Paolo Arosio
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Jenny Presto
- Karolinska Institutet, Dept NVS, Center for Alzheimer Research, Division for Neurogeriatrics, 141 86 Stockholm, Sweden
| | - Firoz Roshan Kurudenkandy
- Karolinska Institutet, Dept NVS, Center for Alzheimer Research, Division for Neurogeriatrics, 141 86 Stockholm, Sweden
| | - Henrik Biverstal
- Karolinska Institutet, Dept NVS, Center for Alzheimer Research, Division for Neurogeriatrics, 141 86 Stockholm, Sweden
| | - Lisa Dolfe
- Karolinska Institutet, Dept NVS, Center for Alzheimer Research, Division for Neurogeriatrics, 141 86 Stockholm, Sweden
| | - Christopher Dunning
- Department of Biochemistry and Structural Biology, Lund University, Box 124, SE221 00 Lund, Sweden
| | - Xiaoting Yang
- Department of Biochemistry and Structural Biology, Lund University, Box 124, SE221 00 Lund, Sweden
| | - Birgitta Frohm
- Department of Biochemistry and Structural Biology, Lund University, Box 124, SE221 00 Lund, Sweden
| | - Michele Vendruscolo
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Jan Johansson
- Karolinska Institutet, Dept NVS, Center for Alzheimer Research, Division for Neurogeriatrics, 141 86 Stockholm, Sweden
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, The Biomedical Centre, Box 575, SE751 23 Uppsala, Sweden
- Institute of Mathematics and Natural Sciences, Tallinn University, Narva mnt 25, 101 20 Tallinn, Estonia P. O. Box 124, SE221 00 Lund, Sweden
| | - Christopher M. Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - André Fisahn
- Karolinska Institutet, Dept NVS, Center for Alzheimer Research, Division for Neurogeriatrics, 141 86 Stockholm, Sweden
| | - Tuomas P. J. Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Sara Linse
- Department of Biochemistry and Structural Biology, Lund University, Box 124, SE221 00 Lund, Sweden
| |
Collapse
|
37
|
Adjeroh D, Jiang Y, Jiang BH, Lin J. Network analysis of circular permutations in multidomain proteins reveals functional linkages for uncharacterized proteins. Cancer Inform 2015; 13:109-24. [PMID: 25741177 PMCID: PMC4338801 DOI: 10.4137/cin.s14059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/23/2014] [Accepted: 09/24/2014] [Indexed: 01/19/2023] Open
Abstract
Various studies have implicated different multidomain proteins in cancer. However, there has been little or no detailed study on the role of circular multidomain proteins in the general problem of cancer or on specific cancer types. This work represents an initial attempt at investigating the potential for predicting linkages between known cancer-associated proteins with uncharacterized or hypothetical multidomain proteins, based primarily on circular permutation (CP) relationships. First, we propose an efficient algorithm for rapid identification of both exact and approximate CPs in multidomain proteins. Using the circular relations identified, we construct networks between multidomain proteins, based on which we perform functional annotation of multidomain proteins. We then extend the method to construct subnetworks for selected cancer subtypes, and performed prediction of potential link-ages between uncharacterized multidomain proteins and the selected cancer types. We include practical results showing the performance of the proposed methods.
Collapse
Affiliation(s)
- Donald Adjeroh
- Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV, USA
| | - Yue Jiang
- Faculty of Software, Fujian Normal University, Fuzhou, Fujian, China
| | - Bing-Hua Jiang
- Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jie Lin
- Faculty of Software, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
38
|
Alberton P, Dex S, Popov C, Shukunami C, Schieker M, Docheva D. Loss of tenomodulin results in reduced self-renewal and augmented senescence of tendon stem/progenitor cells. Stem Cells Dev 2014; 24:597-609. [PMID: 25351164 PMCID: PMC4333258 DOI: 10.1089/scd.2014.0314] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tenomodulin (Tnmd) is a well-known gene marker for the tendon and ligament lineage, but its exact functions in these tissues still remain elusive. In this study, we investigated Tnmd loss of function in mouse tendon stem/progenitor cells (mTSPC) by implicating a previously established Tnmd knockout (KO) mouse model. mTSPC were isolated from control and Tnmd KO tail tendons and their stemness features, such as gene marker profile, multipotential, and self-renewal, were compared. Immunofluorescence and reverse transcriptase-polymerase chain reaction analyses for stem cell-, tenogenic-, osteogenic-, and chondrogenic-related genes confirmed their stemness and lineage specificity and demonstrated no profound differences between the two genotypes. Multipotential was not significantly affected since both cell types differentiated successfully into adipogenic, osteogenic, and chondrogenic lineages. In contrast, self-renewal assays validated that Tnmd KO TSPC exhibit significantly reduced proliferative potential, which was also reflected in lower Cyclin D1 levels. When analyzing possible cellular mechanisms behind the observed decreased self-renewability of Tnmd KO TSPC, we found that cellular senescence plays a major role, starting earlier and cumulating more in Tnmd KO compared with control TSPC. This was accompanied with augmented expression of the cell cycle inhibitor p53. Finally, the proliferative effect of Tnmd in TSPC was confirmed with transient transfection of Tnmd cDNA into Tnmd KO TSPC, which rescued their proliferative deficit. Taken together, we can report that loss of Tnmd affects significantly the self-renewal and senescence properties, but not the multipotential of TSPC.
Collapse
Affiliation(s)
- Paolo Alberton
- 1 Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU) , Munich, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Altieri F, Di Stadio CS, Severino V, Sandomenico A, Minopoli G, Miselli G, Di Maro A, Ruvo M, Chambery A, Quagliariello V, Masullo M, Rippa E, Arcari P. Anti-amyloidogenic property of human gastrokine 1. Biochimie 2014; 106:91-100. [DOI: 10.1016/j.biochi.2014.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/10/2014] [Indexed: 10/24/2022]
|
40
|
Hawkins A, Guttentag SH, Deterding R, Funkhouser WK, Goralski JL, Chatterjee S, Mulugeta S, Beers MF. A non-BRICHOS SFTPC mutant (SP-CI73T) linked to interstitial lung disease promotes a late block in macroautophagy disrupting cellular proteostasis and mitophagy. Am J Physiol Lung Cell Mol Physiol 2014; 308:L33-47. [PMID: 25344067 DOI: 10.1152/ajplung.00217.2014] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mutation of threonine for isoleucine at codon 73 (I73T) in the human surfactant protein C (hSP-C) gene (SFTPC) accounts for a significant portion of SFTPC mutations associated with interstitial lung disease (ILD). Cell lines stably expressing tagged primary translation product of SP-C isoforms were generated to test the hypothesis that deposition of hSP-C(I73T) within the endosomal system promotes disruption of a key cellular quality control pathway, macroautophagy. By fluorescence microscopy, wild-type hSP-C (hSP-C(WT)) colocalized with exogenously expressed human ATP binding cassette class A3 (hABCA3), an indicator of normal trafficking to lysosomal-related organelles. In contrast, hSP-C(I73T) was dissociated from hABCA3 but colocalized to the plasma membrane as well as the endosomal network. Cells expressing hSP-C(I73T) exhibited increases in size and number of cytosolic green fluorescent protein/microtubule-associated protein 1 light-chain 3 (LC3) vesicles, some of which colabeled with red fluorescent protein from the gene dsRed/hSP-C(I73T). By transmission electron microscopy, hSP-C(I73T) cells contained abnormally large autophagic vacuoles containing organellar and proteinaceous debris, which phenocopied ultrastructural changes in alveolar type 2 cells in a lung biopsy from a SFTPC I73T patient. Biochemically, hSP-C(I73T) cells exhibited increased expression of Atg8/LC3, SQSTM1/p62, and Rab7, consistent with a distal block in autophagic vacuole maturation, confirmed by flux studies using bafilomycin A1 and rapamycin. Functionally, hSP-C(I73T) cells showed an impaired degradative capacity for an aggregation-prone huntingtin-1 reporter substrate. The disruption of autophagy-dependent proteostasis was accompanied by increases in mitochondria biomass and parkin expression coupled with a decrease in mitochondrial membrane potential. We conclude that hSP-C(I73T) induces an acquired block in macroautophagy-dependent proteostasis and mitophagy, which could contribute to the increased vulnerability of the lung epithelia to second-hit injury as seen in ILD.
Collapse
Affiliation(s)
- Arie Hawkins
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Susan H Guttentag
- Department of Pediatrics; Monroe Carell Jr. Children's Hospital, Vanderbilt University, Nashville, Tennessee
| | - Robin Deterding
- Department of Pediatrics; University of Colorado School of Medicine, Denver, Colorado
| | - William K Funkhouser
- Department of Pathology and Lab Medicine; University of North Carolina, Chapel Hill, North Carolina
| | - Jennifer L Goralski
- Departments of Medicine and Pediatrics; University of North Carolina, Chapel Hill, North Carolina
| | - Shampa Chatterjee
- Institute for Environmental Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Surafel Mulugeta
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania;
| | - Michael F Beers
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
41
|
Tasiemski A, Jung S, Boidin-Wichlacz C, Jollivet D, Cuvillier-Hot V, Pradillon F, Vetriani C, Hecht O, Sönnichsen FD, Gelhaus C, Hung CW, Tholey A, Leippe M, Grötzinger J, Gaill F. Characterization and function of the first antibiotic isolated from a vent organism: the extremophile metazoan Alvinella pompejana. PLoS One 2014; 9:e95737. [PMID: 24776651 PMCID: PMC4002450 DOI: 10.1371/journal.pone.0095737] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/30/2014] [Indexed: 01/06/2023] Open
Abstract
The emblematic hydrothermal worm Alvinella pompejana is one of the most thermo tolerant animal known on Earth. It relies on a symbiotic association offering a unique opportunity to discover biochemical adaptations that allow animals to thrive in such a hostile habitat. Here, by studying the Pompeii worm, we report on the discovery of the first antibiotic peptide from a deep-sea organism, namely alvinellacin. After purification and peptide sequencing, both the gene and the peptide tertiary structures were elucidated. As epibionts are not cultivated so far and because of lethal decompression effects upon Alvinella sampling, we developed shipboard biological assays to demonstrate that in addition to act in the first line of defense against microbial invasion, alvinellacin shapes and controls the worm's epibiotic microflora. Our results provide insights into the nature of an abyssal antimicrobial peptide (AMP) and into the manner in which an extremophile eukaryote uses it to interact with the particular microbial community of the hydrothermal vent ecosystem. Unlike earlier studies done on hydrothermal vents that all focused on the microbial side of the symbiosis, our work gives a view of this interaction from the host side.
Collapse
Affiliation(s)
- Aurélie Tasiemski
- Université de Lille1-CNRS UMR8198, Laboratoire GEPV, Ecoimmunology of Marine Annelids (EMA), Villeneuve d'Ascq, France
| | - Sascha Jung
- Institute of Biochemistry, Christian-Albrechts-Universität, Kiel, Germany
| | - Céline Boidin-Wichlacz
- Université de Lille1-CNRS UMR8198, Laboratoire GEPV, Ecoimmunology of Marine Annelids (EMA), Villeneuve d'Ascq, France
| | - Didier Jollivet
- Université Pierre et Marie Curie-CNRS UMR7144, Laboratoire AD2M, Adaptation et Biologie des Invertébrés en Conditions Extrêmes (ABICE), Station Biologique, Roscoff, France
| | - Virginie Cuvillier-Hot
- Université de Lille1-CNRS UMR8198, Laboratoire GEPV, Ecoimmunology of Marine Annelids (EMA), Villeneuve d'Ascq, France
| | | | - Costantino Vetriani
- Department of Biochemistry and Microbiology and Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Oliver Hecht
- Institute of Biochemistry, Christian-Albrechts-Universität, Kiel, Germany
| | - Frank D. Sönnichsen
- Otto Diels Institute for Organic Chemistry, Christian-Albrechts-Universität, Kiel, Germany
| | - Christoph Gelhaus
- Institute of Zoology, Zoophysiology, Christian-Albrechts-Universität, Kiel, Germany
| | - Chien-Wen Hung
- Division of Systematic Proteome Research, Institute for Experimental Medicine, Christian-Albrechts-Universität, Kiel, Germany
| | - Andreas Tholey
- Division of Systematic Proteome Research, Institute for Experimental Medicine, Christian-Albrechts-Universität, Kiel, Germany
| | - Matthias Leippe
- Institute of Zoology, Zoophysiology, Christian-Albrechts-Universität, Kiel, Germany
| | - Joachim Grötzinger
- Institute of Biochemistry, Christian-Albrechts-Universität, Kiel, Germany
| | - Françoise Gaill
- Université Pierre et Marie Curie-Muséum National d'Histoires Naturelles CNRS BOREA IRD, Paris, France
| |
Collapse
|
42
|
Del Campo M, Hoozemans JJM, Dekkers LL, Rozemuller AJ, Korth C, Müller-Schiffmann A, Scheltens P, Blankenstein MA, Jimenez CR, Veerhuis R, Teunissen CE. BRI2-BRICHOS is increased in human amyloid plaques in early stages of Alzheimer's disease. Neurobiol Aging 2014; 35:1596-604. [PMID: 24524963 DOI: 10.1016/j.neurobiolaging.2014.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/31/2013] [Accepted: 01/08/2014] [Indexed: 10/25/2022]
Abstract
BRI2 protein binds amyloid precursor protein to halt amyloid-β production and inhibits amyloid-β aggregation via its BRICHOS-domain suggesting a link between BRI2 and Alzheimer's disease (AD). Here, we investigate the possible involvement of BRI2 in human AD pathogenesis. BRI2 containing BRICHOS-domain was increased up to 3-fold in AD hippocampus (p = 0.003, n = 14/group). Immunohistochemistry showed BRI2 deposits associated with amyloid-β plaques in early pathologic stages (Braak-III; Thal-2/3). We observed a decrease in the protein levels of ADAM10 (p = 0.02) and furin (p = 0.066), as well as an increase in SPPL2b (p < 0.0001) in AD hippocampus. Because these enzymes are involved in BRI2 processing, their changes may lead to aberrant processing of BRI2 promoting its deposition and likely affecting BRI2 function. Loss of BRI2 function in AD was supported by the decreased presence of BRI2-amyloid precursor protein complexes in the hippocampus of AD patients compared with control subjects. In conclusion, our data obtained from human samples indicate that in early stages of AD there is an increased deposition of BRI2, which likely leads to impaired BRI2 function thereby influencing AD pathophysiology.
Collapse
Affiliation(s)
- Marta Del Campo
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, the Netherlands; Neurochemistry Laboratory, VU University Medical Center, Amsterdam, the Netherlands; Alzheimer Center, VU University Medical Center, Amsterdam, the Netherlands.
| | - Jeroen J M Hoozemans
- Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands
| | - Lois-Lee Dekkers
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, the Netherlands; Neurochemistry Laboratory, VU University Medical Center, Amsterdam, the Netherlands
| | | | - Carsten Korth
- Department of Neuropathology, Heinrich Heine University Medical School, Düsseldorf, Germany
| | | | - Philip Scheltens
- Alzheimer Center, VU University Medical Center, Amsterdam, the Netherlands
| | - Marinus A Blankenstein
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, the Netherlands; Neurochemistry Laboratory, VU University Medical Center, Amsterdam, the Netherlands
| | - Connie R Jimenez
- Department of Medical Oncology and OncoProteomics Laboratory, VU University Medical Center, Amsterdam, the Netherlands
| | - Robert Veerhuis
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, the Netherlands; Neurochemistry Laboratory, VU University Medical Center, Amsterdam, the Netherlands; Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands; Department of Psychiatry, VU University Medical Center, Amsterdam, the Netherlands
| | - Charlotte E Teunissen
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, the Netherlands; Neurochemistry Laboratory, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
43
|
Cacabelos R, Cacabelos P, Torrellas C, Tellado I, Carril JC. Pharmacogenomics of Alzheimer's disease: novel therapeutic strategies for drug development. Methods Mol Biol 2014; 1175:323-556. [PMID: 25150875 DOI: 10.1007/978-1-4939-0956-8_13] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a major problem of health and disability, with a relevant economic impact on our society. Despite important advances in pathogenesis, diagnosis, and treatment, its primary causes still remain elusive, accurate biomarkers are not well characterized, and the available pharmacological treatments are not cost-effective. As a complex disorder, AD is a polygenic and multifactorial clinical entity in which hundreds of defective genes distributed across the human genome may contribute to its pathogenesis. Diverse environmental factors, cerebrovascular dysfunction, and epigenetic phenomena, together with structural and functional genomic dysfunctions, lead to amyloid deposition, neurofibrillary tangle formation, and premature neuronal death, the major neuropathological hallmarks of AD. Future perspectives for the global management of AD predict that genomics and proteomics may help in the search for reliable biomarkers. In practical terms, the therapeutic response to conventional drugs (cholinesterase inhibitors, multifactorial strategies) is genotype-specific. Genomic factors potentially involved in AD pharmacogenomics include at least five categories of gene clusters: (1) genes associated with disease pathogenesis; (2) genes associated with the mechanism of action of drugs; (3) genes associated with drug metabolism (phase I and II reactions); (4) genes associated with drug transporters; and (5) pleiotropic genes involved in multifaceted cascades and metabolic reactions. The implementation of pharmacogenomic strategies will contribute to optimize drug development and therapeutics in AD and related disorders.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Chair of Genomic Medicine, Camilo José Cela University, 28692, Villanueva de la Cañada, Madrid, Spain,
| | | | | | | | | |
Collapse
|
44
|
Knight SD, Presto J, Linse S, Johansson J. The BRICHOS Domain, Amyloid Fibril Formation, and Their Relationship. Biochemistry 2013; 52:7523-31. [DOI: 10.1021/bi400908x] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Stefan D. Knight
- Department
of Cell and Molecular Biology, Uppsala University, 751 05 Uppsala, Sweden
| | - Jenny Presto
- KI-Alzheimer’s Disease Research
Center, NVS Department, Karolinska Institutet, S-141 86 Stockholm, Sweden
| | - Sara Linse
- Department
of Biochemistry and Structural Biology, Lund University, Chemical Centre, P.O.
Box 124, SE221 00 Lund, Sweden
| | - Jan Johansson
- KI-Alzheimer’s Disease Research
Center, NVS Department, Karolinska Institutet, S-141 86 Stockholm, Sweden
- Department
of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, The Biomedical Centre, 751 23 Uppsala, Sweden
- Institute
of Mathematics and Natural Sciences, Tallinn University, Narva mnt
25, 101 20 Tallinn, Estonia
| |
Collapse
|
45
|
Thurm T, Kaltenborn E, Kern S, Griese M, Zarbock R. SFTPC mutations cause SP-C degradation and aggregate formation without increasing ER stress. Eur J Clin Invest 2013; 43:791-800. [PMID: 23701443 DOI: 10.1111/eci.12107] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 04/21/2013] [Indexed: 01/11/2023]
Abstract
BACKGROUND Mutations in the gene encoding surfactant protein C (SP-C) cause familial and sporadic interstitial lung disease (ILD), which is associated with considerable morbidity and mortality. Unfortunately, effective therapeutic options are still lacking due to a very limited understanding of pathomechanisms. Knowledge of mutant SP-C proprotein (proSP-C) trafficking, processing, intracellular degradation and aggregation is a crucial prerequisite for the development of specific therapies to correct aberrant trafficking and processing of proSP-C and to hinder accumulation of cytotoxic aggregates. MATERIALS AND METHODS To identify possible starting points for therapeutic intervention, we stably transfected A549 alveolar epithelial cells with several proSP-C mutations previously found in patients suffering from ILD. Effects of mutant proSP-C were assessed by Western blotting, immunofluorescence and Congo red staining. RESULTS A group of mutations (p.I73T, p.L110R, p.A116D and p.L188Q) resulted in aberrant proSP-C products, which were at least partially trafficked to lamellar bodies. Another group of mutations (p.P30L and p.P115L) was arrested in the endoplasmic reticulum (ER). Except for p.I73T, all mutations led to accumulation of intracellular Congo red-positive aggregates. Enhanced ER stress was detectable in none of these stably transfected cells. CONCLUSIONS Different SP-C mutations have unique consequences for alveolar epithelial cell biology. As these cannot be predicted based upon the localization of the mutation, our data emphasize the importance of studying individual mutations in detail in order to develop mutation-specific therapies.
Collapse
Affiliation(s)
- Tobias Thurm
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | |
Collapse
|
46
|
Kropski JA, Lawson WE, Young LR, Blackwell TS. Genetic studies provide clues on the pathogenesis of idiopathic pulmonary fibrosis. Dis Model Mech 2013; 6:9-17. [PMID: 23268535 PMCID: PMC3529334 DOI: 10.1242/dmm.010736] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and often fatal lung disease for which there is no known treatment. Although the traditional paradigm of IPF pathogenesis emphasized chronic inflammation as the primary driver of fibrotic remodeling, more recent insights have challenged this view. Linkage analysis and candidate gene approaches have identified four genes that cause the inherited form of IPF, familial interstitial pneumonia (FIP). These four genes encode two surfactant proteins, surfactant protein C (encoded by SFTPC) and surfactant protein A2 (SFTPA2), and two components of the telomerase complex, telomerase reverse transcriptase (TERT) and the RNA component of telomerase (TERC). In this review, we discuss how investigating these mutations, as well as genetic variants identified in other inherited disorders associated with pulmonary fibrosis, are providing new insights into the pathogenesis of common idiopathic interstitial lung diseases, particularly IPF. Studies in this area have highlighted key roles for epithelial cell injury and dysfunction in the development of lung fibrosis. In addition, genetic approaches have uncovered the importance of several processes – including endoplasmic reticulum stress and the unfolded protein response, DNA-damage and -repair pathways, and cellular senescence – that might provide new therapeutic targets in fibrotic lung diseases.
Collapse
Affiliation(s)
- Jonathan A Kropski
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | | | | |
Collapse
|
47
|
Geahlen JH, Lapid C, Thorell K, Nikolskiy I, Huh WJ, Oates EL, Lennerz JKM, Tian X, Weis VG, Khurana SS, Lundin SB, Templeton AR, Mills JC. Evolution of the human gastrokine locus and confounding factors regarding the pseudogenicity of GKN3. Physiol Genomics 2013; 45:667-83. [PMID: 23715263 DOI: 10.1152/physiolgenomics.00169.2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In a screen for genes expressed specifically in gastric mucous neck cells, we identified GKN3, the recently discovered third member of the gastrokine family. We present confirmatory mouse data and novel porcine data showing that mouse GKN3 expression is confined to mucous cells of the corpus neck and antrum base and is prominently expressed in metaplastic lesions. GKN3 was proposed originally to be expressed in some human populations and a pseudogene in others. To investigate that hypothesis, we studied human GKN3 evolution in the context of its paralogous genomic neighbors, GKN1 and GKN2. Haplotype analysis revealed that GKN3 mimics GKN2 in patterns of exonic SNP allocation, whereas GKN1 appeared to be more stringently selected. GKN3 showed signatures of both directional selection and population based selective sweeps in humans. One such selective sweep includes SNP rs10187256, originally identified as an ancestral tryptophan to premature STOP codon mutation. The derived (nonancestral) allele went to fixation in Asia. We show that another SNP, rs75578132, identified 5 bp downstream of rs10187256, exhibits a second selective sweep in almost all Europeans, some Latinos, and some Africans, possibly resulting from a reintroduction of European genes during African colonization. Finally, we identify a mutation that would destroy the splice donor site in the putative exon3-intron3 boundary, which occurs in all human genomes examined to date. Our results highlight a stomach-specific human genetic locus, which has undergone various selective sweeps across European, Asian, and African populations and thus reflects geographic and ethnic patterns in genome evolution.
Collapse
Affiliation(s)
- Jessica H Geahlen
- Division of Gastroenterology, Department of Medicine, School of Medicine, Washington University, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Sörgjerd KM, Zako T, Sakono M, Stirling PC, Leroux MR, Saito T, Nilsson P, Sekimoto M, Saido TC, Maeda M. Human prefoldin inhibits amyloid-β (Aβ) fibrillation and contributes to formation of nontoxic Aβ aggregates. Biochemistry 2013; 52:3532-42. [PMID: 23614719 DOI: 10.1021/bi301705c] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Amyloid-β (Aβ) peptides represent key players in the pathogenesis of Alzheimer's disease (AD), and mounting evidence indicates that soluble Aβ oligomers mediate the toxicity. Prefoldin (PFD) is a molecular chaperone that prevents aggregation of misfolded proteins. Here we investigated the role of PFD in Aβ aggregation. First, we demonstrated that PFD is expressed in mouse brain by Western blotting and immunohistochemistry and found that PFD is upregulated in AD model APP23 transgenic mice. Then we investigated the effect of recombinant human PFD (hPFD) on Aβ(1-42) aggregation in vitro and found that hPFD inhibited Aβ fibrillation and induced formation of soluble Aβ oligomers. Interestingly, cell viability measurements using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that Aβ oligomers formed by hPFD were 30-40% less toxic to cultured rat pheochromocytoma (PC12) cells or primary cortical neurons from embryonic C57BL/6CrSlc mice than previously reported Aβ oligomers (formed by archaeal PFD) and Aβ fibrils (p < 0.001). Thioflavin T measurements and immunoblotting indicated different structural properties for the different Aβ oligomers. Our findings show a relation between cytotoxicity of Aβ oligomers and structure and suggest a possible protective role of PFD in AD.
Collapse
|
49
|
Itm2a is a Pax3 target gene, expressed at sites of skeletal muscle formation in vivo. PLoS One 2013; 8:e63143. [PMID: 23650549 PMCID: PMC3641095 DOI: 10.1371/journal.pone.0063143] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 03/30/2013] [Indexed: 11/19/2022] Open
Abstract
The paired-box homeodomain transcription factor Pax3 is a key regulator of the nervous system, neural crest and skeletal muscle development. Despite the important role of this transcription factor, very few direct target genes have been characterized. We show that Itm2a, which encodes a type 2 transmembrane protein, is a direct Pax3 target in vivo, by combining genetic approaches and in vivo chromatin immunoprecipitation assays. We have generated a conditional mutant allele for Itm2a, which is an imprinted gene, by flanking exons 2–4 with loxP sites and inserting an IRESnLacZ reporter in the 3′ UTR of the gene. The LacZ reporter reproduces the expression profile of Itm2a, and allowed us to further characterize its expression at sites of myogenesis, in the dermomyotome and myotome of somites, and in limb buds, in the mouse embryo. We further show that Itm2a is not only expressed in adult muscle fibres but also in the satellite cells responsible for regeneration. Itm2a mutant mice are viable and fertile with no overt phenotype during skeletal muscle formation or regeneration. Potential compensatory mechanisms are discussed.
Collapse
|
50
|
Komori R, Kobayashi T, Matsuo H, Kino K, Miyazawa H. Csn3 gene is regulated by all-trans retinoic acid during neural differentiation in mouse P19 cells. PLoS One 2013; 8:e61938. [PMID: 23613978 PMCID: PMC3629135 DOI: 10.1371/journal.pone.0061938] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 03/14/2013] [Indexed: 12/21/2022] Open
Abstract
κ-Casein (CSN3) is known to play an essential role in controlling the stability of the milk micelles. We found that the expression of Csn3 was induced by all-trans retinoic acid (ATRA) during neural differentiation in P19 embryonal carcinoma cells from our study using DNA microarray. In this paper, we describe the detailed time course of Csn3 expression and the induction mechanism of Csn3 transcription activation in this process. The Csn3 expression was induced rapidly and transiently within 24 h of ATRA treatment. Retinoic acid receptor (RAR)-specific agonists were used in expression analysis to identify the RAR subtype involved upregulation of Csn3; a RARα-specific agonist mimicked the effects of ATRA on induction of Csn3 expression. Therefore, RARα may be the RAR subtype mediating the effects of ATRA on the induction of Csn3 gene transcription in this differentiation-promoting process of P19 cells. We found that the promoter region of Csn3 contained a typical consensus retinoic acid response element (RARE), and this RARE was necessary for ATRA-dependent transcriptional regulation. We confirmed that RARα bound to this RARE sequence in P19 cells. These findings indicated that the Csn3 expression is upregulated via ATRA-bound RARα and binding of this receptor to the RARE in the Csn3 promoter region. This will certainly serve as a first step forward unraveling the mysteries of induction of Csn3 in the process of neural differentiation.
Collapse
Affiliation(s)
- Rie Komori
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa, Japan
| | - Takanobu Kobayashi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa, Japan
| | - Hikaru Matsuo
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa, Japan
| | - Katsuhito Kino
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa, Japan
| | - Hiroshi Miyazawa
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa, Japan
- * E-mail:
| |
Collapse
|