1
|
NOX as a Therapeutic Target in Liver Disease. Antioxidants (Basel) 2022; 11:antiox11102038. [PMID: 36290761 PMCID: PMC9598239 DOI: 10.3390/antiox11102038] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
The nicotinamide adenine dinucleotide phosphate hydrogen oxidase (NADPH oxidase or NOX) plays a critical role in the inflammatory response and fibrosis in several organs such as the lungs, pancreas, kidney, liver, and heart. In the liver, NOXs contribute, through the generation of reactive oxygen species (ROS), to hepatic fibrosis by acting through multiple pathways, including hepatic stellate cell activation, proliferation, survival, and migration of hepatic stellate cells; hepatocyte apoptosis, enhancement of fibrogenic mediators, and mediation of an inflammatory cascade in both Kupffer cells and hepatic stellate cells. ROS are overwhelmingly produced during malignant transformation and hepatic carcinogenesis (HCC), creating an oxidative microenvironment that can cause different and various types of cellular stress, including DNA damage, ER stress, cell death of damaged hepatocytes, and oxidative stress. NOX1, NOX2, and NOX4, members of the NADPH oxidase family, have been linked to the production of ROS in the liver. This review will analyze some diseases related to an increase in oxidative stress and its relationship with the NOX family, as well as discuss some therapies proposed to slow down or control the disease's progression.
Collapse
|
2
|
Dong W, Zhang X, Kong Y, Zhao Z, Mahmoud A, Wu L, Moussian B, Zhang J. CYP311A1 in the anterior midgut is involved in lipid distribution and microvillus integrity in Drosophila melanogaster. Cell Mol Life Sci 2022; 79:261. [PMID: 35478270 PMCID: PMC11072108 DOI: 10.1007/s00018-022-04283-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 04/01/2022] [Indexed: 11/03/2022]
Abstract
Lipids are either taken up from food sources or produced internally in specialized tissues such as the liver. Among others, both routes of lipid metabolism involve cytochrome P450 monooxygenases (CYPs). We sought to analyze the function of Cyp311a1 that has been shown to be expressed in the midgut of the fruit fly Drosophila melanogaster. Using a GFP-tagged version of CYP311A1 that is expressed under the control of its endogenous promoter, we show that Cyp311a1 localizes to the endoplasmic reticulum in epithelial cells of the anterior midgut. In larvae with reduced Cyp311a1 expression in the anterior midgut, compared to control larvae, the apical plasma membrane of the respective epithelial cells contains less and shorter microvilli. In addition, we observed reduction of neutral lipids in the fat body, the insect liver, and decreased phosphatidylethanolamine (PE) and triacylglycerols (TAG) amounts in the whole body of these larvae. Probably as a consequence, they cease to grow and eventually die. The microvillus defects in larvae with reduced Cyp311a1 expression are restored by supplying PE, a major phospholipid of plasma membranes, to the food. Moreover, the growth arrest phenotype of these larvae is partially rescued. Together, these results suggest that the anterior midgut is an import hub in lipid distribution and that the midgut-specific CYP311A1 contributes to this function by participating in shaping microvilli in a PE-dependent manner.
Collapse
Affiliation(s)
- Wei Dong
- Research Institute of Applied Biology, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Xubo Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Yue Kong
- Research Institute of Applied Biology, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Zhenwen Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Ali Mahmoud
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse-108, 01307, Dresden, Germany
| | - Lixian Wu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Bernard Moussian
- Université Côte d'Azur, Parc Valrose, 06108, Nice Cedex 2, France.
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, 030006, Shanxi, China.
| |
Collapse
|
3
|
Tsuji T, Morita SY, Nakamura Y, Ikeda Y, Kambe T, Terada T. Alterations in cellular and organellar phospholipid compositions of HepG2 cells during cell growth. Sci Rep 2021; 11:2731. [PMID: 33526799 PMCID: PMC7851136 DOI: 10.1038/s41598-021-81733-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 01/11/2021] [Indexed: 01/30/2023] Open
Abstract
The human hepatoblastoma cell line, HepG2, has been used for investigating a wide variety of physiological and pathophysiological processes. However, less information is available about the phospholipid metabolism in HepG2 cells. In the present report, to clarify the relationship between cell growth and phospholipid metabolism in HepG2 cells, we examined the phospholipid class compositions of the cells and their intracellular organelles by using enzymatic fluorometric methods. In HepG2 cells, the ratios of all phospholipid classes, but not the ratio of cholesterol, markedly changed with cell growth. Of note, depending on cell growth, the phosphatidic acid (PA) ratio increased and phosphatidylcholine (PC) ratio decreased in the nuclear membranes, the sphingomyelin (SM) ratio increased in the microsomal membranes, and the phosphatidylethanolamine (PE) ratio increased and the phosphatidylserine (PS) ratio decreased in the mitochondrial membranes. Moreover, the mRNA expression levels of enzymes related to PC, PE, PS, PA, SM and cardiolipin syntheses changed during cell growth. We suggest that the phospholipid class compositions of organellar membranes are tightly regulated by cell growth. These findings provide a basis for future investigations of cancer cell growth and lipid metabolism.
Collapse
Affiliation(s)
- Tokuji Tsuji
- grid.472014.4Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu, Shiga 520-2192 Japan
| | - Shin-ya Morita
- grid.472014.4Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu, Shiga 520-2192 Japan
| | - Yoshinobu Nakamura
- grid.472014.4Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu, Shiga 520-2192 Japan
| | - Yoshito Ikeda
- grid.472014.4Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu, Shiga 520-2192 Japan
| | - Taiho Kambe
- grid.258799.80000 0004 0372 2033Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Tomohiro Terada
- grid.472014.4Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu, Shiga 520-2192 Japan
| |
Collapse
|
4
|
Engin A. Bile Acid Toxicity and Protein Kinases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:229-258. [PMID: 33539018 DOI: 10.1007/978-3-030-49844-3_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
If the bile acids reach to pathological concentrations due to cholestasis, accumulation of hydrophobic bile acids within the hepatocyte may result in cell death. Thus, hydrophobic bile acids induce apoptosis in hepatocytes, while hydrophilic bile acids increase intracellular adenosine 3',5'-monophosphate (cAMP) levels and activate mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) pathways to protect hepatocytes from apoptosis.Two apoptotic pathways have been described in bile acids-induced death. Both are controlled by multiple protein kinase signaling pathways. In mitochondria-controlled pathway, caspase-8 is activated with death domain-independent manner, whereas, Fas-dependent classical pathway involves ligand-independent oligomerization of Fas.Hydrophobic bile acids dose-dependently upregulate the inflammatory response by further stimulating production of inflammatory cytokines. Death receptor-mediated apoptosis is regulated at the cell surface by the receptor expression, at the death-inducing signaling complex (DISC) by expression of procaspase-8, the death receptors Fas-associated death domain (FADD), and cellular FADD-like interleukin 1-beta (IL-1β)-converting enzyme (FLICE) inhibitory protein (cFLIP). Bile acids prevent cFLIP recruitment to the DISC and thereby enhance initiator caspase activation and lead to cholestatic apoptosis. At mitochondria, the expression of B-cell leukemia/lymphoma-2 (Bcl-2) family proteins contribute to apoptosis by regulating mitochondrial cytochrome c release via Bcl-2, Bcl-2 homology 3 (BH3) interacting domain death agonist (Bid), or Bcl-2 associated protein x (Bax). Fas receptor CD95 activation by hydrophobic bile acids is initiated by reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent reactive oxygen species (ROS) signaling. However, activation of necroptosis by ligands of death receptors requires the kinase activity of receptor interacting protein1 (RIP1), which mediates the activation of RIP3 and mixed lineage kinase domain-like protein (MLKL). In this chapter, mainly the effect of protein kinases signal transduction on the mechanisms of hydrophobic bile acids-induced inflammation, apoptosis, necroptosis and necrosis are discussed.
Collapse
Affiliation(s)
- Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey.
| |
Collapse
|
5
|
Nicolaï J, Chapy H, Gillent E, Saunders K, Ungell AL, Nicolas JM, Chanteux H. Impact of In Vitro Passive Permeability in a P-gp-transfected LLC-PK1 Model on the Prediction of the Rat and Human Unbound Brain-to-Plasma Concentration Ratio. Pharm Res 2020; 37:175. [PMID: 32856111 DOI: 10.1007/s11095-020-02867-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE More accurate prediction of the extent of drug brain exposure in early drug discovery and understanding potential species differences could help to guide medicinal chemistry and avoid unnecessary animal studies. Hence, the aim of the current study was to validate the use of a P-gp transfected LLC-PK1 model to predict the unbound brain-to-plasma concentration ratio (Kpuu,brain) in rats and humans. METHODS MOCK-, Mdr1a- and MDR1-transfected LLC-PK1 monolayers were applied in a transwell setup to quantify the bidirectional transport for 12 specific P-gp substrates, 48 UCB drug discovery compounds, 11 compounds with reported rat in situ brain perfusion data and 6 compounds with reported human Kpuu,brain values. The in vitro transport data were introduced in a minimal PBPK model (SIVA®) to determine the transport parameters. These parameters were combined with the differences between in vitro and in vivo passive permeability as well as P-gp expression levels (as determined by LC-MS/MS), to predict the Kpuu,brain. RESULTS A 10-fold difference between in vitro and in vivo passive permeability was observed. Incorporation of the differences between in vitro and in vivo passive permeability and P-gp expression levels resulted in an improved prediction of rat (AAFE 2.17) and human Kpuu,brain (AAFE 2.10). CONCLUSIONS We have succesfully validated a methodology to use a P-gp overexpressing LLC-PK1 cell line to predict both rat and human Kpuu,brain by correcting for both passive permeability and P-gp expression levels.
Collapse
Affiliation(s)
- Johan Nicolaï
- Development Science, UCB Biopharma SRL, Chemin du Foriest, B1420, Braine-l'Alleud, Belgium.
| | - Hélène Chapy
- Development Science, UCB Biopharma SRL, Chemin du Foriest, B1420, Braine-l'Alleud, Belgium
| | - Eric Gillent
- Development Science, UCB Biopharma SRL, Chemin du Foriest, B1420, Braine-l'Alleud, Belgium
| | - Kenneth Saunders
- Development Science, UCB Biopharma SRL, Chemin du Foriest, B1420, Braine-l'Alleud, Belgium
| | - Anna-Lena Ungell
- Development Science, UCB Biopharma SRL, Chemin du Foriest, B1420, Braine-l'Alleud, Belgium
| | - Jean-Marie Nicolas
- Development Science, UCB Biopharma SRL, Chemin du Foriest, B1420, Braine-l'Alleud, Belgium
| | - Hugues Chanteux
- Development Science, UCB Biopharma SRL, Chemin du Foriest, B1420, Braine-l'Alleud, Belgium
| |
Collapse
|
6
|
Morita SY, Tsuji T, Terada T. Protocols for Enzymatic Fluorometric Assays to Quantify Phospholipid Classes. Int J Mol Sci 2020; 21:ijms21031032. [PMID: 32033167 PMCID: PMC7037927 DOI: 10.3390/ijms21031032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 12/15/2022] Open
Abstract
Phospholipids, consisting of a hydrophilic head group and two hydrophobic acyl chains, are essential for the structures of cell membranes, plasma lipoproteins, biliary mixed micelles, pulmonary surfactants, and extracellular vesicles. Beyond their structural roles, phospholipids have important roles in numerous biological processes. Thus, abnormalities in the metabolism and transport of phospholipids are involved in many diseases, including dyslipidemia, atherosclerosis, cholestasis, drug-induced liver injury, neurological diseases, autoimmune diseases, respiratory diseases, myopathies, and cancers. To further clarify the physiological, pathological, and molecular mechanisms and to identify disease biomarkers, we have recently developed enzymatic fluorometric assays for quantifying all major phospholipid classes, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidic acid, phosphatidylinositol, phosphatidylglycerol + cardiolipin, and sphingomyelin. These assays are specific, sensitive, simple, and high-throughput, and will be applicable to cells, intracellular organelles, tissues, fluids, lipoproteins, and extracellular vesicles. In this review, we present the detailed protocols for the enzymatic fluorometric measurements of phospholipid classes in cultured cells.
Collapse
|
7
|
Ikeda Y, Morita SY, Hatano R, Tsuji T, Terada T. Enhancing effect of taurohyodeoxycholate on ABCB4-mediated phospholipid efflux. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1495-1502. [PMID: 31176036 DOI: 10.1016/j.bbalip.2019.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 11/27/2022]
Abstract
Hydrophilic bile salts, ursodeoxycholate and hyodeoxycholate, have choleretic effects. ABCB4, a member of the ABC transporter family, is essential for the secretion of phospholipids from hepatocytes into bile. In this study, we assessed the effects of taurine- or glycine-conjugated cholate, ursodeoxycholate and hyodeoxycholate on the ABCB4-mediated phosphatidylcholine (PC) efflux using Abcb4 knockout mice and HEK293 cells stably expressing ABCB4. To evaluate the effects of bile salts on bile formation in Abcb4+/+ or Abcb4-/- mice, the bile was collected during intravenous infusion of saline or bile salts. The biliary PC secretion in Abcb4+/+ mice was significantly increased by the infusions of all tested bile salts, especially taurohyodeoxycholate. On the other hand, Abcb4-/- mice exhibited extremely low secretion of PC into bile, which was not altered by bile salt infusions. We also showed that the PC efflux from ABCB4-expressing HEK293 cells was stimulated by taurohyodeoxycholate much more strongly than the other tested bile salts. However, taurohyodeoxycholate did not restore the activities of ABCB4 mutants. Furthermore, light scattering measurements demonstrated a remarkable ability of taurohyodeoxycholate to form mixed micelles with PC. Therefore, the enhancing effect of taurohyodeoxycholate on the ABCB4-mediated PC efflux may be due to the strong mixed micelle formation ability.
Collapse
Affiliation(s)
- Yoshito Ikeda
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu City, Shiga 520-2192, Japan
| | - Shin-Ya Morita
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu City, Shiga 520-2192, Japan.
| | - Ryo Hatano
- Department of Medical Physiology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Tokuji Tsuji
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu City, Shiga 520-2192, Japan
| | - Tomohiro Terada
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu City, Shiga 520-2192, Japan
| |
Collapse
|
8
|
Moore ES, Daugherity EK, Karambizi DI, Cummings BP, Behling-Kelly E, Schaefer DMW, Southard TL, McFadden JW, Weiss RS. Sex-specific hepatic lipid and bile acid metabolism alterations in Fancd2-deficient mice following dietary challenge. J Biol Chem 2019; 294:15623-15637. [PMID: 31434739 DOI: 10.1074/jbc.ra118.005729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 08/15/2019] [Indexed: 12/13/2022] Open
Abstract
Defects in the Fanconi anemia (FA) DNA damage-response pathway result in genomic instability, developmental defects, hematopoietic failure, cancer predisposition, and metabolic disorders. The endogenous sources of damage contributing to FA phenotypes and the links between FA and metabolic disease remain poorly understood. Here, using mice lacking the Fancd2 gene, encoding a central FA pathway component, we investigated whether the FA pathway protects against metabolic challenges. Fancd2 -/- and wildtype (WT) mice were fed a standard diet (SD), a diet enriched in fat, cholesterol, and cholic acid (Paigen diet), or a diet enriched in lipid alone (high-fat diet (HFD)). Fancd2 -/- mice developed hepatobiliary disease and exhibited decreased survival when fed a Paigen diet but not a HFD. Male Paigen diet-fed mice lacking Fancd2 had significant biliary hyperplasia, increased serum bile acid concentration, and increased hepatic pathology. In contrast, female mice were similarly impacted by Paigen diet feeding regardless of Fancd2 status. Upon Paigen diet challenge, male Fancd2 -/- mice had altered expression of genes encoding hepatic bile acid transporters and cholesterol and fatty acid metabolism proteins, including Scp2/x, Abcg5/8, Abca1, Ldlr, Srebf1, and Scd-1 Untargeted lipidomic profiling in liver tissue revealed 132 lipid species, including sphingolipids, glycerophospholipids, and glycerolipids, that differed significantly in abundance depending on Fancd2 status in male mice. We conclude that the FA pathway has sex-specific impacts on hepatic lipid and bile acid metabolism, findings that expand the known functions of the FA pathway and may provide mechanistic insight into the metabolic disease predisposition in individuals with FA.
Collapse
Affiliation(s)
- Elizabeth S Moore
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853
| | - Erin K Daugherity
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853.,Center for Animal Resources and Education, Cornell University, Ithaca, New York 14853
| | - David I Karambizi
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853
| | - Bethany P Cummings
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853
| | - Erica Behling-Kelly
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York 14853
| | - Deanna M W Schaefer
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, Tennessee 37996
| | - Teresa L Southard
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853
| | - Joseph W McFadden
- Department of Animal Science, Cornell University, Ithaca, New York 14853
| | - Robert S Weiss
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853
| |
Collapse
|
9
|
Tsuji T, Morita SY, Ikeda Y, Terada T. Enzymatic fluorometric assays for quantifying all major phospholipid classes in cells and intracellular organelles. Sci Rep 2019; 9:8607. [PMID: 31197208 PMCID: PMC6565719 DOI: 10.1038/s41598-019-45185-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022] Open
Abstract
Cell membrane phospholipids regulate various biological functions. We previously reported enzymatic fluorometric methods for quantifying phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, sphingomyelin, phosphatidylglycerol and cardiolipin. In the present report, a new enzymatic fluorometric assay was developed for quantifying phosphatidylinositol. These simple, sensitive and high-throughput methods enabled us to quantify all major phospholipid classes in cultured cells and intracellular organelles. By conducting comprehensive quantitative analyses of major phospholipid classes, we demonstrated that the contents of phospholipid classes in HEK293 cells changed with cell density and that overexpression of phosphatidylinositol synthase or CDP-diacylglycerol synthase significantly affected the phospholipid compositions of microsomal and mitochondrial membranes. These enzymatic fluorometric assays for measuring all major phospholipid classes may be applicable to tissues, fluids, lipoproteins, extracellular vesicles and intracellular organelles of many organisms and will further our understanding of cellular, physiological and pathological processes.
Collapse
Affiliation(s)
- Tokuji Tsuji
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu City, Shiga, 520-2192, Japan
| | - Shin-Ya Morita
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu City, Shiga, 520-2192, Japan.
| | - Yoshito Ikeda
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu City, Shiga, 520-2192, Japan
| | - Tomohiro Terada
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu City, Shiga, 520-2192, Japan
| |
Collapse
|
10
|
Morita SY, Ikeda Y, Tsuji T, Terada T. Molecular Mechanisms for Protection of Hepatocytes against Bile Salt Cytotoxicity. Chem Pharm Bull (Tokyo) 2019; 67:333-340. [DOI: 10.1248/cpb.c18-01029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shin-ya Morita
- Department of Pharmacy, Shiga University of Medical Science Hospital
| | - Yoshito Ikeda
- Department of Pharmacy, Shiga University of Medical Science Hospital
| | - Tokuji Tsuji
- Department of Pharmacy, Shiga University of Medical Science Hospital
| | - Tomohiro Terada
- Department of Pharmacy, Shiga University of Medical Science Hospital
| |
Collapse
|
11
|
Ikeda Y, Morita SY, Terada T. Cholesterol attenuates cytoprotective effects of phosphatidylcholine against bile salts. Sci Rep 2017; 7:306. [PMID: 28331225 PMCID: PMC5428433 DOI: 10.1038/s41598-017-00476-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 02/27/2017] [Indexed: 01/03/2023] Open
Abstract
Bile salts have potent detergent properties and damaging effects on cell membranes, leading to liver injury. However, the molecular mechanisms for the protection of hepatocytes against bile salts are not fully understood. In this study, we demonstrated that the cytotoxicity of nine human major bile salts to HepG2 cells and primary human hepatocytes was prevented by phosphatidylcholine (PC). In contrast, cholesterol had no direct cytotoxic effects but suppressed the cytoprotective effects of PC. PC reduced the cell-association of bile salt, which was reversed by cholesterol. Light scattering measurements and gel filtration chromatography revealed that cholesterol within bile salt/PC dispersions decreased mixed micelles but increased vesicles, bile salt simple micelles and monomers. These results suggest that cholesterol attenuates the cytoprotective effects of PC against bile salts by facilitating the formation of bile salt simple micelles and monomers. Therefore, biliary PC and cholesterol may play different roles in the pathogenesis of bile salt-induced liver injury.
Collapse
Affiliation(s)
- Yoshito Ikeda
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu City, Shiga, 520-2192, Japan
| | - Shin-Ya Morita
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu City, Shiga, 520-2192, Japan.
| | - Tomohiro Terada
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu City, Shiga, 520-2192, Japan
| |
Collapse
|
12
|
Akazawa T, Uchida Y, Tachikawa M, Ohtsuki S, Terasaki T. Quantitative Targeted Absolute Proteomics of Transporters and Pharmacoproteomics-Based Reconstruction of P-Glycoprotein Function in Mouse Small Intestine. Mol Pharm 2016; 13:2443-56. [PMID: 27276518 DOI: 10.1021/acs.molpharmaceut.6b00196] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The purpose of this study was to investigate whether a pharmacokinetic model integrating in vitro mdr1a efflux activity (which we previously reported) with in vitro/in vivo differences in protein expression level can reconstruct intestinal mdr1a function. In situ intestinal permeability-surface area product ratio between wild-type and mdr1a/1b (-/-) mice is one of the parameters used to describe intestinal mdr1a function. The reconstructed ratios of six mdr1a substrates (dexamethasone, digoxin, loperamide, quinidine, verapamil, vinblastine) and one nonsubstrate (diazepam) were consistent with the observed values reported by Adachi et al. within 2.1-fold difference. Thus, intestinal mdr1a function can be reconstructed by our pharmacoproteomic modeling approach. Furthermore, we evaluated regional differences in protein expression levels of mouse intestinal transporters. Sixteen (mdr1a, mrp4, bcrp, abcg5, abcg8, glut1, 4f2hc, sglt1, lat2, pept1, mct1, slc22a18, ostβ, villin1, Na(+)/K(+)-ATPase, γ-gtp) out of 46 target molecules were detected by employing our established quantitative targeted absolute proteomics technique. The protein expression amounts of mdr1a and bcrp increased progressively from duodenum to ileum. Sglt1, lat2, and 4f2hc were highly expressed in jejunum and ileum. Mct1 and ostβ were highly expressed in ileum. The quantitative expression profiles established here should be helpful to understand and predict intestinal transporter functions.
Collapse
Affiliation(s)
- Takanori Akazawa
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University , 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Yasuo Uchida
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University , 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Masanori Tachikawa
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University , 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University , 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Tetsuya Terasaki
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University , 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
13
|
Morita SY, Soda K, Teraoka R, Kitagawa S, Terada T. Specific and sensitive enzymatic measurement of sphingomyelin in cultured cells. Chem Phys Lipids 2012; 165:571-6. [DOI: 10.1016/j.chemphyslip.2012.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 06/11/2012] [Accepted: 06/11/2012] [Indexed: 11/29/2022]
|