1
|
Aktar MS, de Serrano V, Ghiladi RA, Franzen S. Structural Comparison of Substrate Binding Sites in Dehaloperoxidase A and B. Biochemistry 2024; 63:1761-1773. [PMID: 38959050 DOI: 10.1021/acs.biochem.4c00179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Dehalperoxidase (DHP) has diverse catalytic activities depending on the substrate binding conformation, pH, and dynamics in the distal pocket above the heme. According to our hypothesis, the molecular structure of the substrate and binding orientation in DHP guide enzymatic function. Enzyme kinetic studies have shown that the catalytic activity of DHP B is significantly higher than that of DHP A despite 96% sequence homology. There are more than 30 substrate-bound structures with DHP B, each providing insight into the nature of enzymatic binding at the active site. By contrast, the only X-ray crystallographic structures of small molecules in a complex with DHP A are phenols. This study is focused on investigating substrate binding in DHP A to compare with DHP B structures. Fifteen substrates were selected that were known to bind to DHP B in the crystal to test whether soaking substrates into DHP A would yield similar structures. Five of these substrates yielded X-ray crystal structures of substrate-bound DHP A, namely, 2,4-dichlorophenol (1.48 Å, PDB: 8EJN), 2,4-dibromophenol (1.52 Å, PDB: 8VSK), 4-nitrophenol (2.03 Å, PDB: 8VKC), 4-nitrocatechol (1.40 Å, PDB: 8VKD), and 4-bromo-o-cresol (1.64 Å, PDB: 8VZR). For the remaining substrates that bind to DHP B, such as cresols, 5-bromoindole, benzimidazole, 4,4-biphenol, 4.4-ethylidenebisphenol, 2,4-dimethoxyphenol, and guaiacol, the electron density maps in DHP A are not sufficient to determine the presence of the substrates, much less their orientation. In our hands, only phenols, 4-Br-o-cresol, and 4-nitrocatechol can be soaked into crystalline DHP A. None of the larger substrates were observed to bind. A minimum of seven hanging drops were selected for soaking with more than 50 crystals screened for each substrate. The five high-quality examples of direct comparison of modes of binding in DHP A and B for the same substrate provide further support for the hypothesis that the substrate-binding conformation determines the enzyme function of DHP.
Collapse
Affiliation(s)
- Mst Sharmin Aktar
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Vesna de Serrano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Stefan Franzen
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
2
|
Freeman SL, Skafar V, Kwon H, Fielding AJ, Moody PCE, Martínez A, Issoglio FM, Inchausti L, Smircich P, Zeida A, Piacenza L, Radi R, Raven EL. Crystal structure of Trypanosoma cruzi heme peroxidase and characterization of its substrate specificity and compound I intermediate. J Biol Chem 2022; 298:102204. [PMID: 35772495 PMCID: PMC9358470 DOI: 10.1016/j.jbc.2022.102204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/26/2022] Open
Abstract
The protozoan parasite Trypanosoma cruzi is the causative agent of American trypanosomiasis, otherwise known as Chagas disease. To survive in the host, the T. cruzi parasite needs antioxidant defense systems. One of these is a hybrid heme peroxidase, the T. cruzi ascorbate peroxidase-cytochrome c peroxidase enzyme (TcAPx-CcP). TcAPx-CcP has high sequence identity to members of the class I peroxidase family, notably ascorbate peroxidase (APX) and cytochrome c peroxidase (CcP), as well as a mitochondrial peroxidase from Leishmania major (LmP). The aim of this work was to solve the structure and examine the reactivity of the TcAPx-CcP enzyme. Low temperature electron paramagnetic resonance spectra support the formation of an exchange-coupled [Fe(IV)=O Trp233•+] compound I radical species, analogous to that used in CcP and LmP. We demonstrate that TcAPx-CcP is similar in overall structure to APX and CcP, but there are differences in the substrate-binding regions. Furthermore, the electron transfer pathway from cytochrome c to the heme in CcP and LmP is preserved in the TcAPx-CcP structure. Integration of steady state kinetic experiments, molecular dynamic simulations, and bioinformatic analyses indicates that TcAPx-CcP preferentially oxidizes cytochrome c but is still competent for oxidization of ascorbate. The results reveal that TcAPx-CcP is a credible cytochrome c peroxidase, which can also bind and use ascorbate in host cells, where concentrations are in the millimolar range. Thus, kinetically and functionally TcAPx-CcP can be considered a hybrid peroxidase.
Collapse
Affiliation(s)
- Samuel L Freeman
- School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Vera Skafar
- Departamento de Bioquímica, Facultad of Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Hanna Kwon
- Department of Molecular and Cell Biology and Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, United Kingdom
| | - Alistair J Fielding
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moore University, Liverpool, United Kingdom
| | - Peter C E Moody
- Department of Molecular and Cell Biology and Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, United Kingdom
| | - Alejandra Martínez
- Departamento de Bioquímica, Facultad of Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Federico M Issoglio
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Lucas Inchausti
- Laboratorio de Bioinformática, Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay; Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Pablo Smircich
- Laboratorio de Bioinformática, Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay; Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Ari Zeida
- Departamento de Bioquímica, Facultad of Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Lucía Piacenza
- Departamento de Bioquímica, Facultad of Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad of Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - Emma L Raven
- School of Chemistry, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
3
|
Di S, Fan S, Jiang F, Cong Z. A Unique P450 Peroxygenase System Facilitated by a Dual-Functional Small Molecule: Concept, Application, and Perspective. Antioxidants (Basel) 2022; 11:antiox11030529. [PMID: 35326179 PMCID: PMC8944620 DOI: 10.3390/antiox11030529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 02/01/2023] Open
Abstract
Cytochrome P450 monooxygenases (P450s) are promising versatile oxidative biocatalysts. However, the practical use of P450s in vitro is limited by their dependence on the co-enzyme NAD(P)H and the complex electron transport system. Using H2O2 simplifies the catalytic cycle of P450s; however, most P450s are inactive in the presence of H2O2. By mimicking the molecular structure and catalytic mechanism of natural peroxygenases and peroxidases, an artificial P450 peroxygenase system has been designed with the assistance of a dual-functional small molecule (DFSM). DFSMs, such as N-(ω-imidazolyl fatty acyl)-l-amino acids, use an acyl amino acid as an anchoring group to bind the enzyme, and the imidazolyl group at the other end functions as a general acid-base catalyst in the activation of H2O2. In combination with protein engineering, the DFSM-facilitated P450 peroxygenase system has been used in various oxidation reactions of non-native substrates, such as alkene epoxidation, thioanisole sulfoxidation, and alkanes and aromatic hydroxylation, which showed unique activities and selectivity. Moreover, the DFSM-facilitated P450 peroxygenase system can switch to the peroxidase mode by mechanism-guided protein engineering. In this short review, the design, mechanism, evolution, application, and perspective of these novel non-natural P450 peroxygenases for the oxidation of non-native substrates are discussed.
Collapse
Affiliation(s)
- Siyu Di
- CAS Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (S.D.); (S.F.); (F.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengxian Fan
- CAS Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (S.D.); (S.F.); (F.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengjie Jiang
- CAS Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (S.D.); (S.F.); (F.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (S.D.); (S.F.); (F.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-532-80662758
| |
Collapse
|
4
|
Ma N, Fang W, Liu C, Qin X, Wang X, Jin L, Wang B, Cong Z. Switching an Artificial P450 Peroxygenase into Peroxidase via Mechanism-Guided Protein Engineering. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nana Ma
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenhan Fang
- Department of Chemistry, Xiamen University, Xiamen, Fujian 361005, China
| | - Chuanfei Liu
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Xiangquan Qin
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Department of Chemistry, College of Science, Yanbian University, Yanji, Jilin 133002, China
| | - Xiling Wang
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Longyi Jin
- Department of Chemistry, College of Science, Yanbian University, Yanji, Jilin 133002, China
| | - Binju Wang
- Department of Chemistry, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Liao F, Xu JK, Luo J, Gao SQ, Wang XJ, Lin YW. Bioinspired design of an artificial peroxidase: introducing key residues of native peroxidases into F43Y myoglobin with a Tyr-heme cross-link. Dalton Trans 2020; 49:5029-5033. [PMID: 32236202 DOI: 10.1039/d0dt00875c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Inspired by the structural features of native peroxidases, an artificial peroxidase was rationally designed using F43Y myoglobin with a Tyr-heme cross-link by further introduction of key residues, including both a distal Arg and a Trp close to the heme group, which exhibits an enhanced peroxidase activity similar to the most efficient native horseradish peroxidase. This study provides a simple approach for design of artificial heme enzymes by the combination of catalytic elements of native enzymes with the post-translational modifications of heme proteins.
Collapse
Affiliation(s)
- Fei Liao
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Jia-Kun Xu
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Lab for Marine Drugs and By products of Pilot National Lab for Marine Science and Technology, Qingdao 266071, China
| | - Jie Luo
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Shu-Qin Gao
- Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
| | - Xiao-Juan Wang
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Lab for Marine Drugs and By products of Pilot National Lab for Marine Science and Technology, Qingdao 266071, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China. and Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
| |
Collapse
|
6
|
Probing the effect of aroma compounds on the hydrodynamic properties of mucin glycoproteins. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:799-808. [PMID: 33185715 PMCID: PMC7701130 DOI: 10.1007/s00249-020-01475-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/12/2020] [Accepted: 10/23/2020] [Indexed: 11/29/2022]
Abstract
Aroma compounds are diverse low molecular weight organic molecules responsible for the flavour of food, medicines or cosmetics. Natural and artificial aroma compounds are manufactured and used by the industry to enhance the flavour and fragrance of products. While the low concentrations of aroma compounds present in food may leave no effect on the structural integrity of the mucosa, the effect of concentrated aroma volatiles is not well understood. At high concentrations, like those found in some flavoured products such as e-cigarettes, some aroma compounds are suggested to elicit a certain degree of change in the mucin glycoprotein network, depending on their functional group. These effects are particularly associated with carbonyl compounds such as aldehydes and ketones, but also phenols which may interact with mucin and other glycoproteins through other interaction mechanisms. This study demonstrates the formation of such interactions in vitro through the use of molecular hydrodynamics. Sedimentation velocity studies reveal that the strength of the carbonyl compound interaction is influenced by compound hydrophobicity, in which the more reactive short chain compounds show the largest increase in mucin-aroma sedimentation coefficients. By contrast, the presence of groups that increases the steric hindrance of the carbonyl group, such as ketones, produced a milder effect. The interaction effects were further demonstrated for hexanal using size exclusion chromatography light scattering (SEC-MALS) and intrinsic viscosity. In addition, phenolic aroma compounds were identified to reduce the sedimentation coefficient of mucin, which is consistent with interactions in the non-glycosylated mucin region.
Collapse
|
7
|
Dinu V, Kilic A, Wang Q, Ayed C, Fadel A, Harding SE, Yakubov GE, Fisk ID. Policy, toxicology and physicochemical considerations on the inhalation of high concentrations of food flavour. NPJ Sci Food 2020; 4:15. [PMID: 33083547 PMCID: PMC7541606 DOI: 10.1038/s41538-020-00075-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 08/26/2020] [Indexed: 01/09/2023] Open
Abstract
Food flavour ingredients are required by law to obtain prior approval from regulatory bodies, such as the U.S. Food and Drug Administration (FDA) or the European Food Safety Authority (EFSA) in terms of toxicological data and intended use levels. However, there are no regulations for labelling the type and concentration of flavour additives on the product, primarily due to their low concentration in food and generally recognised as safe (GRAS) status determined by the flavour and extract manufacturers' association (FEMA). Their status for use in e-cigarettes and other vaping products challenges these fundamental assumptions, because their concentration can be over ten-thousand times higher than in food, and the method of administration is through inhalation, which is currently not evaluated by the FEMA expert panel. This work provides a review of some common flavour ingredients used in food and vaping products, their product concentrations, inhalation toxicity and aroma interactions reported with different biological substrates. We have identified several studies, which suggest that the high concentrations of flavour through inhalation may pose a serious health threat, especially in terms of their cytotoxicity. As a result of the wide range of possible protein-aroma interactions reported in our diet and metabolism, including links to several non-communicable diseases, we suggest that it is instrumental to update current flavour- labelling regulations, and support new strategies of understanding the effects of flavour uptake on the digestive and respiratory systems, in order to prevent the onset of future non-communicable diseases.
Collapse
Affiliation(s)
- Vlad Dinu
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, UK.,Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, UK
| | - Azad Kilic
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, UK.,Centre for Plant Integrative Biology (CPIB), School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, UK
| | - Qingqi Wang
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, UK
| | - Charfedinne Ayed
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, UK
| | - Abdulmannan Fadel
- Sport and Exercise Sciences, Liverpool John Moores University, Byrom Street, Liverpool, UK
| | - Stephen E Harding
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, UK
| | - Gleb E Yakubov
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, UK
| | - Ian D Fisk
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, UK
| |
Collapse
|
8
|
Zhang P, Yuan H, Xu J, Wang XJ, Gao SQ, Tan X, Lin YW. A Catalytic Binding Site Together with a Distal Tyr in Myoglobin Affords Catalytic Efficiencies Similar to Natural Peroxidases. ACS Catal 2019. [DOI: 10.1021/acscatal.9b05080] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ping Zhang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Hong Yuan
- Department of Chemistry & Institute of Biomedical Science, Fudan University, Shanghai 200433, China
| | - Jiakun Xu
- Key Lab of Sustainable Development of Polar Fisheries, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xiao-Juan Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Shu-Qin Gao
- Lab of Protein Structure and Function, University of South China, Hengyang 421001, China
| | - Xiangshi Tan
- Department of Chemistry & Institute of Biomedical Science, Fudan University, Shanghai 200433, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
- Lab of Protein Structure and Function, University of South China, Hengyang 421001, China
| |
Collapse
|
9
|
Liu C, Yuan H, Liao F, Wei CW, Du KJ, Gao SQ, Tan X, Lin YW. Unique Tyr-heme double cross-links in F43Y/T67R myoglobin: an artificial enzyme with a peroxidase activity comparable to that of native peroxidases. Chem Commun (Camb) 2019; 55:6610-6613. [PMID: 31119219 DOI: 10.1039/c9cc02714a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The X-ray crystal structure of F43Y/T67R myoglobin revealed unique Tyr-heme double cross-links between Tyr43 and the heme 4-vinyl group, which represents a novel post-translational modification of heme proteins. Moreover, with the feature of a distal His-Arg pair, the designed artificial enzyme exhibited a peroxidase activity comparable to that of native peroxidases, such as the most efficient horseradish peroxidase.
Collapse
Affiliation(s)
- Can Liu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Hong Yuan
- Department of Chemistry & Institute of Biomedical Science, Fudan University, Shanghai 200433, China
| | - Fei Liao
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Chuan-Wan Wei
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Ke-Jie Du
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Shu-Qin Gao
- Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
| | - Xiangshi Tan
- Department of Chemistry & Institute of Biomedical Science, Fudan University, Shanghai 200433, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China. and Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
| |
Collapse
|
10
|
Kathiresan M, English AM. LC-MS/MS Proteoform Profiling Exposes Cytochrome c Peroxidase Self-Oxidation in Mitochondria and Functionally Important Hole Hopping from Its Heme. J Am Chem Soc 2018; 140:12033-12039. [PMID: 30145880 DOI: 10.1021/jacs.8b05966] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
LC-MS/MS profiling reveals that the proteoforms of cytochrome c peroxidase (Ccp1) isolated from respiring yeast mitochondria are oxidized at numerous Met, Trp, and Tyr residues. In vitro oxidation of recombinant Ccp1 by H2O2 in the absence of its reducing substrate, ferrocytochrome c, gives rise to similar proteoforms, indicating uncoupling of Ccp1 oxidation and reduction in mitochondria. The oxidative modifications found in the Ccp1 proteoforms are consistent with radical transfer (hole hopping) from the heme along several chains of redox-active residues (Trp, Met, Tyr). These modifications delineate likely hole-hopping pathways to novel substrate-binding sites. Moreover, a decrease in recombinant Ccp1 oxidation by H2O2 in vitro in the presence of glutathione supports a protective role for hole hopping to this antioxidant. Isolation and characterization of extramitochondrial Ccp1 proteoforms reveals that hole hopping from the heme in these proteoforms results in selective oxidation of the proximal heme ligand (H175) and heme labilization. Previously, we demonstrated that this labilized heme is recruited for catalase maturation (Kathiresan, M.; Martins, D.; English, A. M. Respiration triggers heme transfer from cytochrome c peroxidase to catalase in yeast mitochondria. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 17468-17473; DOI: 10.1073/pnas.1409692111 ). Following heme release, apoCcp1 exits mitochondria, yielding the extramitochondrial proteoforms that we characterize here. The targeting of Ccp1 for selective H175 oxidation may be linked to the phosphorylation status of Y153 close to the heme since pY153 is abundant in certain proteoforms. In sum, when insufficient electrons from ferrocytochrome c are available to Ccp1 in mitochondria, hole hopping from its heme expands its physiological functions. Specifically, we observe an unprecedented hole-hopping sequence for heme labilization and identify hole-hopping pathways from the heme to novel substrates and to glutathione at Ccp1's surface. Furthermore, our results underscore the power of proteoform profiling by LC-MS/MS in exploring the cellular roles of oxidoreductases.
Collapse
Affiliation(s)
- Meena Kathiresan
- Quebec Network for Research on Protein Function, Structure and Engineering (PROTEO), and Department of Chemistry and Biochemistry , Concordia University , Montreal , QC H4B 1R6 , Canada
| | - Ann M English
- Quebec Network for Research on Protein Function, Structure and Engineering (PROTEO), and Department of Chemistry and Biochemistry , Concordia University , Montreal , QC H4B 1R6 , Canada
| |
Collapse
|
11
|
The role of Ala134 in controlling substrate binding and reactivity in ascorbate peroxidase. J Inorg Biochem 2017; 180:230-234. [PMID: 29317104 DOI: 10.1016/j.jinorgbio.2017.12.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/06/2017] [Accepted: 12/24/2017] [Indexed: 11/21/2022]
Abstract
Ascorbate peroxidase (APX) is a class I heme peroxidase. It has two sites for binding of substrates. One is close to the γ-heme edge and is used for oxidation of ascorbate; the other is at the δ-heme edge and is used for binding of aromatic substrates [Gumiero et al., (2010) Arch. Biochem. Biophys. 500, 13-20]. In this work, we have examined the structural factors that control binding at the δ-heme edge by replacement of Ala134 in APX with a proline residue that is more commonly found in other class II and III peroxidases. Kinetic data indicate that replacement of Ala134 by proline has only a small effect on the catalytic mechanism, or the oxidation of ascorbate or guaiacol. Chemical modification with phenylhydrazine indicates that heme accessibility close to the δ-heme edge is only minorly affected by the substitution. We conclude that the A134P mutation alone is not enough to substantially affect the reactivity of APX towards aromatic substrates bound at the δ-heme edge. The data are relevant to the recent application of APX (APEX) in cellular imaging.
Collapse
|
12
|
Hu S, He B, Du KJ, Wang XJ, Gao SQ, Lin YW. Peroxidase Activity of a c-Type Cytochrome b5 in the Non-Native State is Comparable to that of Native Peroxidases. ChemistryOpen 2017. [PMID: 28638761 PMCID: PMC5474653 DOI: 10.1002/open.201700055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The design of artificial metalloenzymes has achieved tremendous progress, although few designs can achieve catalytic performances comparable to that of native enzymes. Moreover, the structure and function of artificial metalloenzymes in non‐native states has rarely been explored. Herein, we found that a c‐type cytochrome b5 (Cyt b5), N57C/S71C Cyt b5, with heme covalently attached to the protein matrix through two Cys–heme linkages, adopts a non‐native state with an open heme site after guanidine hydrochloride (Gdn⋅HCl)‐induced unfolding, which facilitates H2O2 activation and substrate binding. Stopped‐flow kinetic studies further revealed that c‐type Cyt b5 in the non‐native state exhibited impressive peroxidase activity comparable to that of native peroxidases, such as the most efficient horseradish peroxidase. This study presents an alternative approach to the design of functional artificial metalloenzymes by exploring enzymatic functions in non‐native states.
Collapse
Affiliation(s)
- Shan Hu
- School of Chemistry and Chemical Engineering University of South China Hengyang 421001 P.R. China
| | - Bo He
- School of Chemistry and Chemical Engineering University of South China Hengyang 421001 P.R. China
| | - Ke-Jie Du
- School of Chemistry and Chemical Engineering University of South China Hengyang 421001 P.R. China
| | - Xiao-Juan Wang
- School of Chemistry and Chemical Engineering University of South China Hengyang 421001 P.R. China
| | - Shu-Qin Gao
- Laboratory of Protein Structure and Function University of South China Hengyang 421001 P.R. China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering University of South China Hengyang 421001 P.R. China.,Laboratory of Protein Structure and Function University of South China Hengyang 421001 P.R. China
| |
Collapse
|
13
|
Kathiresan M, English AM. LC-MS/MS suggests that hole hopping in cytochrome c peroxidase protects its heme from oxidative modification by excess H 2O 2. Chem Sci 2017; 8:1152-1162. [PMID: 28451256 PMCID: PMC5369544 DOI: 10.1039/c6sc03125k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/06/2016] [Indexed: 12/20/2022] Open
Abstract
We recently reported that cytochrome c peroxidase (Ccp1) functions as a H2O2 sensor protein when H2O2 levels rise in respiring yeast. The availability of its reducing substrate, ferrocytochrome c (CycII), determines whether Ccp1 acts as a H2O2 sensor or peroxidase. For H2O2 to serve as a signal it must modify its receptor so we employed high-performance LC-MS/MS to investigate in detail the oxidation of Ccp1 by 1, 5 and 10 M eq. of H2O2 in the absence of CycII to prevent peroxidase activity. We observe strictly heme-mediated oxidation, implicating sequential cycles of binding and reduction of H2O2 at Ccp1's heme. This results in the incorporation of ∼20 oxygen atoms predominantly at methionine and tryptophan residues. Extensive intramolecular dityrosine crosslinking involving neighboring residues was uncovered by LC-MS/MS sequencing of the crosslinked peptides. The proximal heme ligand, H175, is converted to oxo-histidine, which labilizes the heme but irreversible heme oxidation is avoided by hole hopping to the polypeptide until oxidation of the catalytic distal H52 in Ccp1 treated with 10 M eq. of H2O2 shuts down heterolytic cleavage of H2O2 at the heme. Mapping of the 24 oxidized residues in Ccp1 reveals that hole hopping from the heme is directed to three polypeptide zones rich in redox-active residues. This unprecedented analysis unveils the remarkable capacity of a polypeptide to direct hole hopping away from its active site, consistent with heme labilization being a key outcome of Ccp1-mediated H2O2 signaling. LC-MS/MS identification of the oxidized residues also exposes the bias of electron paramagnetic resonance (EPR) detection toward transient radicals with low O2 reactivity.
Collapse
Affiliation(s)
- Meena Kathiresan
- Concordia University Faculty of Arts and Science, and PROTEOhttp://www.proteo.ca/index.html , Chemistry and Biochemistry , Montreal , Canada .
| | - Ann M English
- Concordia University Faculty of Arts and Science, and PROTEOhttp://www.proteo.ca/index.html , Chemistry and Biochemistry , Montreal , Canada .
| |
Collapse
|
14
|
Field MJ, Bains RK, Warren JJ. Using an artificial tryptophan “wire” in cytochrome c peroxidase for oxidation of organic substrates. Dalton Trans 2017; 46:11078-11083. [DOI: 10.1039/c7dt02330h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Addition of tryptophan residues between heme and the protein surface in cytochrome c peroxidase gives rise to new redox reactivity, in analogy to lignolytic peroxidases.
Collapse
|
15
|
Wu LB, Du KJ, Nie CM, Gao SQ, Wen GB, Tan X, Lin YW. Peroxidase activity enhancement of myoglobin by two cooperative distal histidines and a channel to the heme pocket. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Strohal R, Assenheimer B, Augustin M, Hämmerle G, Läuchli S, Pundt B, Stern G, Storck M, Ulrich C. [Wound management with enzyme alginogels : Expert consensus]. Hautarzt 2016; 68:36-42. [PMID: 27680011 DOI: 10.1007/s00105-016-3878-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The challenges of modern wound management, such as the treatment of chronic wounds and their phase-specific handling, are demanding and require optimally adapted therapeutic measures. The principles of moist wound care as well as an adequate debridement have priority here. To support these necessary measures, different options are available, e.g., a new product group operating across several wound phases. OBJECTIVE A new treatment principle in modern wound management based on an expert consensus is presented. METHODS On the basis of clinical experience reports and published evidence, the current and new principles of wound treatment were discussed in a panel of experts and formulated as a consensus statement. RESULTS Enzyme alginogels represent a combination of agents that allow phase-specific wound care. They exhibit autolytic, absorbent, and antimicrobial properties and simultaneously cover three components of wound management based on the TIME framework. Thus, according to the experts, they differ from other wound healing products and can be classified in a distinct product group. Clinical studies, as well as clinical experiences, provide evidence for the efficacy of enzyme alginogels. DISCUSSION According to the experts, the potential of enzyme alginogels used considering the principles of moist wound care, comprises the three-fold effect (continuous and significantly simplified debridement, maintaining a moist wound environment and antimicrobial effect without cytotoxicity), the ease of use, and the flexible application. In addition, the flexibility of the product class regarding frequency of application, duration of treatment and combinability with secondary dressings, are of economic benefit in the health care sector.
Collapse
Affiliation(s)
- R Strohal
- Abteilung für Dermatologie und Venerologie, LKH Feldkirch, Akademisches Lehrspital, Carinagasse 45-47, 6800, Feldkirch, Österreich.
| | - B Assenheimer
- Arbeitsgruppe Dekubitus/Wundpflege, Universitätsklinikum Tübingen, Geissweg 3, 72076, Tübingen, Deutschland.,Initiative Chronische Wunden e. V., Pölle 27/28, 06484, Quedlinburg, Deutschland
| | - M Augustin
- Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Deutschland
| | - G Hämmerle
- Wundambulanz, LKH Bregenz, Carl-Pedenz-Str. 2, 6900, Bregenz, Österreich
| | - S Läuchli
- Dermatologische Klinik, Universitätsspital Zürich, Gloriastr. 31, 8091, Zürich, Schweiz
| | - B Pundt
- Gemeinschaftspraxis für Allgemeinmedizin, Bahnhofstr. 18, 26180, Rastede, Deutschland
| | - G Stern
- Ambulantes-Therapie-Zentrum ATZ Stern, Barloer Weg 127b, 46397, Bocholt, Deutschland
| | - M Storck
- Klinik für Gefäß- und Thoraxchirurgie, Städt. Klinikum Karlsruhe, Moltkestr. 90, 76133, Karlsruhe, Deutschland
| | - C Ulrich
- Klinik für Dermatologie, Venerologie und Allergologie, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Deutschland
| |
Collapse
|
17
|
de Visser SP, Stillman MJ. Challenging Density Functional Theory Calculations with Hemes and Porphyrins. Int J Mol Sci 2016; 17:519. [PMID: 27070578 PMCID: PMC4848975 DOI: 10.3390/ijms17040519] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 01/09/2023] Open
Abstract
In this paper we review recent advances in computational chemistry and specifically focus on the chemical description of heme proteins and synthetic porphyrins that act as both mimics of natural processes and technological uses. These are challenging biochemical systems involved in electron transfer as well as biocatalysis processes. In recent years computational tools have improved considerably and now can reproduce experimental spectroscopic and reactivity studies within a reasonable error margin (several kcal·mol(-1)). This paper gives recent examples from our groups, where we investigated heme and synthetic metal-porphyrin systems. The four case studies highlight how computational modelling can correctly reproduce experimental product distributions, predicted reactivity trends and guide interpretation of electronic structures of complex systems. The case studies focus on the calculations of a variety of spectroscopic features of porphyrins and show how computational modelling gives important insight that explains the experimental spectra and can lead to the design of porphyrins with tuned properties.
Collapse
Affiliation(s)
- Sam P de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, the University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | - Martin J Stillman
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B7, Canada.
| |
Collapse
|
18
|
Hosseinzadeh P, Mirts EN, Pfister TD, Gao YG, Mayne C, Robinson H, Tajkhorshid E, Lu Y. Enhancing Mn(II)-Binding and Manganese Peroxidase Activity in a Designed Cytochrome c Peroxidase through Fine-Tuning Secondary-Sphere Interactions. Biochemistry 2016; 55:1494-502. [PMID: 26885726 DOI: 10.1021/acs.biochem.5b01299] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Noncovalent second-shell interactions are important in controlling metal-binding affinity and activity in metalloenzymes, but fine-tuning these interactions in designed metalloenzymes has not been fully explored. As a result, most designed metalloenzymes have low metal-binding affinity and activity. Here we identified three mutations in the second coordination shell of an engineered Mn(II)-binding site in cytochrome c peroxidase (called MnCcP.1, containing Glu45, Glu37, and Glu181 ligands) that mimics the native manganese peroxidase (MnP), and explored their effects on both Mn(II)-binding affinity and MnP activity. First, removing a hydrogen bond to Glu45 through Tyr36Phe mutation enhanced Mn(II)-binding affinity, as evidenced by a 2.8-fold decrease in the KM of Mn(II) oxidation. Second, introducing a salt bridge through Lys179Arg mutation improved Glu35 and Glu181 coordination to Mn(II), decreasing KM 2.6-fold. Third, eliminating a steric clash that prevented Glu37 from orienting toward Mn(II) resulted in an 8.6-fold increase in kcat/KM, arising primarily from a 3.6-fold decrease in KM, with a KM value comparable to that of the native enzyme (0.28 mM vs 0.19 mM for Pleurotus eryngii MnP PS3). We further demonstrated that while the effects of Tyr36Phe and Lys179Arg mutations are additive, because involved in secondary-shell interactions to different ligands, other combinations of mutations were antagonistic because they act on different aspects of the Mn(II) coordination at the same residues. Finally, we showed that these MnCcP variants are functional models of MnP that mimic its activity in both Mn(II) oxidation and degradation of a phenolic lignin model compound and kraft lignin. In addition to achieving KM in a designed protein that is similar to the that of native enzyme, our results offer molecular insight into the role of noncovalent interactions around metal-binding sites for improving metal binding and overall activity; such insight can be applied to rationally enhance these properties in other metalloenzymes and their models.
Collapse
Affiliation(s)
| | | | | | | | | | - Howard Robinson
- Department of Biology, Brookhaven National Laboratory , Upton, New York 11973, United States
| | | | | |
Collapse
|
19
|
Yamaguchi A, Isozaki K, Nakamura M, Takaya H, Watanabe T. Discovery of 12-mer peptides that bind to wood lignin. Sci Rep 2016; 6:21833. [PMID: 26903196 PMCID: PMC4794044 DOI: 10.1038/srep21833] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/02/2016] [Indexed: 11/09/2022] Open
Abstract
Lignin, an abundant terrestrial polymer, is the only large-volume renewable feedstock composed of an aromatic skeleton. Lignin has been used mostly as an energy source during paper production; however, recent interest in replacing fossil fuels with renewable resources has highlighted its potential value in providing aromatic chemicals. Highly selective degradation of lignin is pivotal for industrial production of paper, biofuels, chemicals, and materials. However, few studies have examined natural and synthetic molecular components recognizing the heterogeneous aromatic polymer. Here, we report the first identification of lignin-binding peptides possessing characteristic sequences using a phage display technique. The consensus sequence HFPSP was found in several lignin-binding peptides, and the outer amino acid sequence affected the binding affinity of the peptides. Substitution of phenylalanine7 with Ile in the lignin-binding peptide C416 (HFPSPIFQRHSH) decreased the affinity of the peptide for softwood lignin without changing its affinity for hardwood lignin, indicating that C416 recognised structural differences between the lignins. Circular dichroism spectroscopy demonstrated that this peptide adopted a highly flexible random coil structure, allowing key residues to be appropriately arranged in relation to the binding site in lignin. These results provide a useful platform for designing synthetic and biological catalysts selectively bind to lignin.
Collapse
Affiliation(s)
- Asako Yamaguchi
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho Uji, Kyoto 611-0011, Japan
| | - Katsuhiro Isozaki
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto 611-0011, Japan
| | - Masaharu Nakamura
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto 611-0011, Japan
| | - Hikaru Takaya
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto 611-0011, Japan
| | - Takashi Watanabe
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho Uji, Kyoto 611-0011, Japan
| |
Collapse
|
20
|
Fischer M, Shoichet BK, Fraser JS. One Crystal, Two Temperatures: Cryocooling Penalties Alter Ligand Binding to Transient Protein Sites. Chembiochem 2015; 16:1560-4. [PMID: 26032594 PMCID: PMC4539595 DOI: 10.1002/cbic.201500196] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Indexed: 11/08/2022]
Abstract
Interrogating fragment libraries by X-ray crystallography is a powerful strategy for discovering allosteric ligands for protein targets. Cryocooling of crystals should theoretically increase the fraction of occupied binding sites and decrease radiation damage. However, it might also perturb protein conformations that can be accessed at room temperature. Using data from crystals measured consecutively at room temperature and at cryogenic temperature, we found that transient binding sites could be abolished at the cryogenic temperatures employed by standard approaches. Changing the temperature at which the crystallographic data was collected could provide a deliberate perturbation to the equilibrium of protein conformations and help to visualize hidden sites with great potential to allosterically modulate protein function.
Collapse
Affiliation(s)
- Marcus Fischer
- Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th St., Byers Hall, BH-501, Box 2550, San Francisco, CA 94158 (USA)
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th St., Byers Hall, BH-501, Box 2550, San Francisco, CA 94158 (USA)
| | - James S Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, 600 16th St., Genentech Hall, S472E, Box 2240, San Francisco, CA 94158 (USA).
| |
Collapse
|
21
|
Pandey VP, Dwivedi UN. A ripening associated peroxidase from papaya having a role in defense and lignification: Heterologous expression and in-silico and in-vitro experimental validation. Gene 2015; 555:438-47. [DOI: 10.1016/j.gene.2014.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/25/2014] [Accepted: 11/08/2014] [Indexed: 11/16/2022]
|
22
|
Miner KD, Pfister TD, Hosseinzadeh P, Karaduman N, Donald LJ, Loewen PC, Lu Y, Ivancich A. Identifying the elusive sites of tyrosyl radicals in cytochrome c peroxidase: implications for oxidation of substrates bound at a site remote from the heme. Biochemistry 2014; 53:3781-9. [PMID: 24901481 PMCID: PMC4063442 DOI: 10.1021/bi500353p] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The location of the Trp radical and the catalytic function of the [Fe(IV)═O Trp₁₉₁(•+)] intermediate in cytochrome c peroxidase (CcP) are well-established; however, the unambiguous identification of the site(s) for the formation of tyrosyl radical(s) and their possible biological roles remain elusive. We have now performed a systematic investigation of the location and reactivity of the Tyr radical(s) using multifrequency Electron Paramagnetic Resonance (EPR) spectroscopy combined with multiple-site Trp/Tyr mutations in CcP. Two tyrosines, Tyr71 and Tyr236, were identified as those contributing primarily to the EPR spectrum of the tyrosyl radical, recorded at 9 and 285 GHz. The EPR characterization also showed that the heme distal-side Trp51 is involved in the intramolecular electron transfer between Tyr71 and the heme and that formation of Tyr₇₁(•) and Tyr₂₃₆(•) is independent of the [Fe(IV)═O Trp₁₉₁(•+)] intermediate. Tyr71 is located in an optimal position to mediate the oxidation of substrates binding at a site, more than 20 Å from the heme, which has been reported recently in the crystal structures of CcP with bound guaicol and phenol [Murphy, E. J., et al. (2012) FEBS J. 279, 1632-1639]. The possibility of discriminating the radical intermediates by their EPR spectra allowed us to identify Tyr₇₁(•) as the reactive species with the guaiacol substrate. Our assignment of the surface-exposed Tyr236 as the other radical site agrees well with previous studies based on MNP labeling and protein cross-linking [Tsaprailis, G., and English, A. M. (2003) JBIC, J. Biol. Inorg. Chem. 8, 248-255] and on its covalent modification upon reaction of W191G CcP with 2-aminotriazole [Musah, R. A., and Goodin, D. B. (1997) Biochemistry 36, 11665-11674]. Accordingly, while Tyr71 acts as a true reactive intermediate for the oxidation of certain small substrates that bind at a site remote from the heme, the surface-exposed Tyr236 would be more likely related to oxidative stress signaling, as previously proposed. Our findings reinforce the view that CcP is the monofunctional peroxidase that most closely resembles its ancestor enzymes, the catalase-peroxidases, in terms of the higher complexity of the peroxidase reaction [Colin, J., et al. (2009) J. Am. Chem. Soc. 131, 8557-8563]. The strategy used to identify the elusive Tyr radical sites in CcP may be applied to other heme enzymes containing a large number of Tyr and Trp residues and for which Tyr (or Trp) radicals have been proposed to be involved in their peroxidase or peroxidase-like reaction.
Collapse
Affiliation(s)
- Kyle D Miner
- CNRS, Unité de Recherche Mixte CNRS/CEA/Université Paris-Sud (UMR 8221), Laboratoire de Bioénergétique, Métalloprotéines et Stress. Centre d'Etudes de Saclay, iBiTec-S, 91191 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Pandey VP, Singh S, Jaiswal N, Awasthi M, Pandey B, Dwivedi UN. Papaya fruit ripening: ROS metabolism, gene cloning, characterization and molecular docking of peroxidase. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Cooper RA. Inhibition of biofilms by glucose oxidase, lactoperoxidase and guaiacol: the active antibacterial component in an enzyme alginogel. Int Wound J 2013; 10:630-7. [PMID: 23672196 DOI: 10.1111/iwj.12083] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The association of biofilms with wound chronicity has prompted a search for antimicrobial interventions that are effective against biofilms. A patented preparation of glucose oxidase, lactoperoxidase and guaiacol (GLG), which is the antibacterial component of Flaminal, has been shown to inhibit a wide range of bacteria, but it has not yet been tested on biofilms. This study aims to determine the effect of GLG on biofilms of Staphylococcus aureus, methicillin-resistant S. aureus and Pseudomonas aeruginosa. Static biofilms were grown in microtitre plates and on coverslips and treated with a range of concentrations of GLG. Effects were monitored by estimating biofilm biomass by staining with crystal violet, biofilm activity by staining with either resazurin or fluorescein diacetate and biofilm viability by staining with LIVE/DEAD BacLight Bacterial Viability Kit. GLG was able to prevent the formation of biofilms at concentration ≤0.5% (w/v) and higher concentrations were required to inhibit established biofilms. GLG did not disrupt biofilm biomass. Staphylococci were more susceptible to GLG than P. aeruginosa. These in vitro findings must be verified by in vivo studies.
Collapse
Affiliation(s)
- Rose A Cooper
- Centre for Biomedical Sciences, Cardiff School of Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| |
Collapse
|
25
|
Yoshida T, Tsuge H, Hisabori T, Sugano Y. Crystal structures of dye-decolorizing peroxidase with ascorbic acid and 2,6-dimethoxyphenol. FEBS Lett 2012; 586:4351-6. [PMID: 23159941 DOI: 10.1016/j.febslet.2012.10.049] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/19/2012] [Accepted: 10/26/2012] [Indexed: 11/27/2022]
Abstract
The structure of dye-decolorizing peroxidase (DyP)-type peroxidase differs from that of other peroxidase families, indicating that DyP-type peroxidases have a different reaction mechanism. We have determined the crystal structures of DyP with ascorbic acid and 2,6-dimethoxyphenol at 1.5 and 1.4Å, respectively. The common binding site for both substrates was located at the entrance of the second cavity leading from the DyP molecular surface to heme. This resulted in a hydrogen bond network connection between each substrate and the heme distal side. This network consisted of water molecules occupying the second cavity, heme 6-propionate, Arg329, and Asn313. This network is consistent with the proton transfer pathway from substrate to DyP.
Collapse
Affiliation(s)
- Toru Yoshida
- Chemical Resources Laboratory, Tokyo Institute of Technology, R1-8, 4259 Nagatsuta, Yokohama 226-8503, Japan
| | | | | | | |
Collapse
|