1
|
Sukmana BI, Al-Hawary SIS, Abosaooda M, Adile M, Gupta R, Saleh EAM, Alwaily ER, Alsaab HO, Sapaev IB, Mustafa YF. A thorough and current study of miR-214-related targets in cancer. Pathol Res Pract 2023; 249:154770. [PMID: 37660658 DOI: 10.1016/j.prp.2023.154770] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023]
Abstract
Cancer is a complex genetic anomaly involving coding and non-coding transcript structural and expressive irregularities. A class of tiny non-coding RNAs known as microRNAs (miRNAs) regulates gene expression at the post-transcriptional level by binding only to messenger RNAs (mRNAs). Due to their capacity to target numerous genes, miRNAs have the potential to play a significant role in the development of tumors by controlling several biological processes, including angiogenesis, drug resistance, metastasis, apoptosis, proliferation, and drug resistance. According to several recent studies, miRNA-214 has been linked to the emergence and spread of tumors. The human genome's q24.3 arm contains the DNM3 gene, which is about 6 kb away and includes the microRNA-214. Its primary purpose was the induction of apoptosis in cancerous cells. The multifaceted and complex functions of miR-214 as a modulator in neoplastic conditions have been outlined in the current review.
Collapse
Affiliation(s)
- Bayu Indra Sukmana
- Departement of Oral Biology, Lambung Mangkurat University, Banjarmasin, Indonesia
| | | | | | - Mohaned Adile
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Reena Gupta
- Institute of Pharmaceutical Research, GLA University, District-Mathura, Uttar Pradesh 281406, India.
| | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, Prince Sattam Bin Abdulaziz University, College of Arts and Science, Wadi Al-Dawasir 11991, Saudi Arabia
| | - Enas R Alwaily
- Microbiology Research Group, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Hashem O Alsaab
- Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - I B Sapaev
- Tashkent Institute of Irrigation and Agricultural Mechanization Engineers" National Research University, Tashkent, Uzbekistan; New Uzbekistan University, Tashkent, Uzbekistan
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
2
|
Yoshida M, Yukawa H, Hayashi K, Naitoh I, Miyabe K, Hori Y, Natsume M, Jinno N, Kato A, Kachi K, Asano G, Sahashi H, Toyohara T, Kuno K, Kito Y, Kondo H, Hirano A, Okumura F, Anbe K, Baba Y, Kataoka H, Tanaka Y. Clinical impact of bile-derived exosomal microRNAs as novel diagnostic and prognostic biomarkers for biliary tract cancers. Cancer Sci 2022; 114:295-305. [PMID: 36168845 PMCID: PMC9807502 DOI: 10.1111/cas.15597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/08/2022] [Accepted: 09/17/2022] [Indexed: 01/07/2023] Open
Abstract
Sampling of bile juice during endoscopic retrograde cholangiopancreatography (ERCP) has potential benefit of being amenable to the identification of novel biomarkers in liquid biopsy. This study reports the results of a global investigation of exosomal microRNAs (miRNAs) in bile to identify potential biomarkers for biliary tract cancers (BTCs). Eighty-eight bile samples collected during ERCP (45 BTC and 43 noncancer control samples) were enrolled in this study. Eleven BTC samples and nine control samples were assigned as the discovery set. Exosomes in bile and serum samples were collected using a glass membrane column with size-controlled macroporous glass (MPG), and exosomal miRNA expression profiles were evaluated using comprehensive miRNA microarray analysis (3D-Gene). For validation, exosomal miRNA in the bile samples of 34 BTCs and 34 controls were comprehensively evaluated using 3D-Gene. In the discovery set, eight exosomal miRNAs in bile were identified as significant aberrant expression markers, while no miRNA with aberrant expression in serum was identified. In a comparison of the discovery and validation sets, miR-451a and miR-3619-3p were identified as reproducible upregulated markers, and the combination of the two bile miRNAs showed an excellent area under the curve (0.819) value for diagnosing BTCs. In addition, high miR-3619-3p expression in bile reflects poorer prognosis of BTCs (hazard ratio = 2.89). The MPG-extracted exosomal miRNAs in bile aspirated during ERCP provide a convenient new approach for diagnosing biliary diseases. Bile-derived miRNA analysis with miR-451a and miR-3619-3p represents a potentially valuable diagnostic strategy for identifying BTCs as well as a predictive indicator of BTC prognosis.
Collapse
Affiliation(s)
- Michihiro Yoshida
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Hiroshi Yukawa
- Department of Biomolecular Engineering, Graduate School of EngineeringNagoya UniversityNagoyaJapan
| | - Kazuki Hayashi
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Itaru Naitoh
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Katsuyuki Miyabe
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Yasuki Hori
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Makoto Natsume
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Naruomi Jinno
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Akihisa Kato
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Kenta Kachi
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Go Asano
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Hidenori Sahashi
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Tadashi Toyohara
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Kayoko Kuno
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Yusuke Kito
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Hiromu Kondo
- Department of GastroenterologyNagoya City East Medical CenterNagoyaJapan
| | - Atsuyuki Hirano
- Department of GastroenterologyNagoya City West Medical CenterNagoyaJapan
| | - Fumihiro Okumura
- Department of GastroenterologyGifu Prefectural Tajimi HospitalTajimiJapan
| | - Kaiki Anbe
- Department of GastroenterologyToyokawa City HospitalToyokawaJapan
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of EngineeringNagoya UniversityNagoyaJapan
| | - Hiromi Kataoka
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| |
Collapse
|
3
|
Mei M, Wang Y, Song W, Li Z, Wang Q, Li J, Zhang M. CircADARB1 serves as a new biomarker in natural killer T-cell lymphoma and a potential regulator of p-Stat3. Cancer Cell Int 2021; 21:594. [PMID: 34736477 PMCID: PMC8567645 DOI: 10.1186/s12935-021-02296-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/22/2021] [Indexed: 12/03/2022] Open
Abstract
Background Natural killer/T-cell lymphoma (NKTCL) is a rare and aggressive subtype of Non-Hodgkin’s Lymphoma. CircRNA has shown great potential to become a biomarker in plasma. In this study, we aimed to determine circRNA for its diagnostic and prognostic value and biological function in NKTCL. Method The circRNA microarray of plasma from NKTCL patients and healthy donors were conducted. The relative expressions of target circRNA were verified by qRT-PCR. We conducted function experiments in vitro and in vivo. Bioinformatics predicted the target miRNA of the target circRNA and the binding site was detected by the dual luciferase report assay. Downstream target protein was predicted and detected by western blot in vitro and immunohistochemistry in vivo. Result By analyzing the plasma circRNA microarrays in NKTCL, 6137 circRNAs were up-regulated and 6190 circRNAs were down-regulated. The relative expressions of circADARB1 were significantly higher in NKTCL patients. The knockdown of circADARB1 inhibited proliferation of NKTCL cells in vitro and in vivo. CircADARB1 could bind to miR-214-3p in the downstream and regulate the expression of p-Stat3. In nude mice tumor tissue, p-Stat3 was under-expressed in the circADARB1 knockdown group. Conclusion CircADARB1 was highly expressed in NKTCL plasma and circADARB1 was a potential biomarker to assist diagnosis and predict the response in NKTCL. CircADARB1 bound up to miR-214-3p and regulated p-Stat3. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02296-x.
Collapse
Affiliation(s)
- Mei Mei
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, Zhengzhou, Henan, China.,The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yingjun Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, Zhengzhou, Henan, China
| | - Wenting Song
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, Zhengzhou, Henan, China
| | - Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, Zhengzhou, Henan, China
| | - Qilong Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, Zhengzhou, Henan, China
| | - Jiayin Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, Zhengzhou, Henan, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, Zhengzhou, Henan, China. .,Diagnosis and Treatment Center of Lymphoma of Henan Province, Zhengzhou, Henan, China.
| |
Collapse
|
4
|
Safarpour AR, Askari H, Ejtehadi F, Azarnezhad A, Raeis-Abdollahi E, Tajbakhsh A, Abazari MF, Tarkesh F, Shamsaeefar A, Niknam R, Sivandzadeh GR, Lankarani KB, Ejtehadi F. Cholangiocarcinoma and liver transplantation: What we know so far? World J Gastrointest Pathophysiol 2021; 12:84-105. [PMID: 34676129 PMCID: PMC8481789 DOI: 10.4291/wjgp.v12.i5.84] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/28/2021] [Accepted: 08/11/2021] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a type of cancer with increasing prevalence around the world that originates from cholangiocytes, the epithelial cells of the bile duct. The tumor begins insidiously and is distinguished by high grade neoplasm, poor outcome, and high risk for recurrence. Liver transplantation has become broadly accepted as a treatment option for CCA. Liver transplantation is expected to play a crucial role as palliative and curative therapy for unresectable hilar CCA and intrahepatic CCA. The purpose of this study was to determine which cases with CCA should be subjected to liver transplantation instead of resection, although reported post-transplant recurrence rate averages approximately 20%. This review also aims to highlight the molecular current frontiers of CCA and directions of liver transplantation for CCA.
Collapse
Affiliation(s)
- Ali Reza Safarpour
- Department of Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| | - Hassan Askari
- Department of Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| | - Farshid Ejtehadi
- The Princess Alexandra Hospital HNS Trust, Harlow, Essex CM20 1QX, United Kingdom
| | - Asaad Azarnezhad
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj 6617913446, Iran
| | - Ehsan Raeis-Abdollahi
- Department of Basic Medical Sciences, Qom Medical Branch, Islamic Azad University, Qom, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| | - Mohammad Foad Abazari
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | - Firoozeh Tarkesh
- Department of Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| | - Alireza Shamsaeefar
- Shiraz Organ Transplant Center, Shiraz University of Medical Sciences, Shiraz 7193711351, Iran
| | - Ramin Niknam
- Department of Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| | - Gholam Reza Sivandzadeh
- Department of Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| | | | - Fardad Ejtehadi
- Department of Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| |
Collapse
|
5
|
Exacerbation of Liver Tumor Metastasis in twist1a+/ xmrk+ Double Transgenic Zebrafish following Lipopolysaccharide or Dextran Sulphate Sodium Exposure. Pharmaceuticals (Basel) 2021; 14:ph14090867. [PMID: 34577566 PMCID: PMC8468836 DOI: 10.3390/ph14090867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022] Open
Abstract
The poor prognosis for patients with hepatocellular carcinoma (HCC) is related directly to metastasis. The Twist1 gene encodes for a transcription factor essential to embryogenesis. It has also been shown to promote epithelial-to-mesenchymal transition (EMT), invasion, and metastasis; however, there is currently no in vivo evidence that Twist1 plays a role in the metastasis of liver tumors. Zebrafish are increasingly being used as an alternative cancer model. In the current study, an adult-stage zebrafish HCC model was used to examine the synergistic effects of twist1a and xmrk, a well characterized oncogene, during HCC metastasis. We also examined the effects of two inflammatory agents, lipopolysaccharides (LPS) and dextran sulfate sodium (DSS), on the hepatocyte-specific expression of transgenic twist1a and xmrk. The conditional overexpression of twist1a and xmrk was shown to promote liver tumor metastasis in zebrafish, resulting in increased apoptosis and cell proliferation as well as tumor maintenance and propagation independent of the inherent EMT-inducing activity of xmrk. Exposing twist1a+/xmrk+ transgenic zebrafish to LPS or DSS was shown to promote metastasis, indicating that the overexpression of twist1a and xmrk led to crosstalk between the signaling pathways involved in EMT. This study provides important evidence pertaining to the largely overlooked effects of signaling crosstalk between twist1a and xmrk in regulating HCC metastasis. Our results also suggest that the co-expression of twist1a/xmrk in conjunction with exposure to LPS or DSS enhances HCC metastasis, and provides a valuable in vivo platform by which to investigate tumor initiation and metastasis in the study of liver cancer.
Collapse
|
6
|
Overview of Evidence-Based Chemotherapy for Oral Cancer: Focus on Drug Resistance Related to the Epithelial-Mesenchymal Transition. Biomolecules 2021; 11:biom11060893. [PMID: 34208465 PMCID: PMC8234904 DOI: 10.3390/biom11060893] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/12/2021] [Accepted: 06/13/2021] [Indexed: 12/12/2022] Open
Abstract
The increasing incidence of resistance to chemotherapeutic agents has become a major issue in the treatment of oral cancer (OC). Epithelial-mesenchymal transition (EMT) has attracted a great deal of attention in recent years with regard to its relation to the mechanism of chemotherapy drug resistance. EMT-activating transcription factors (EMT-ATFs), such as Snail, TWIST, and ZEB, can activate several different molecular pathways, e.g., PI3K/AKT, NF-κB, and TGF-β. In contrast, the activated oncological signal pathways provide reciprocal feedback that affects the expression of EMT-ATFs, resulting in a peritumoral extracellular environment conducive to cancer cell survival and evasion of the immune system, leading to resistance to multiple chemotherapeutic agents. We present an overview of evidence-based chemotherapy for OC treatment based on the National Comprehensive Cancer Network (NCCN) Chemotherapy Order Templates. We focus on the molecular pathways involved in drug resistance related to the EMT and highlight the signal pathways and transcription factors that may be important for EMT-regulated drug resistance. Rapid progress in antitumor regimens, together with the application of powerful techniques such as high-throughput screening and microRNA technology, will facilitate the development of therapeutic strategies to augment chemotherapy.
Collapse
|
7
|
Erdmann EA, Mahapatra A, Mukherjee P, Yang B, Hundley HA. To protect and modify double-stranded RNA - the critical roles of ADARs in development, immunity and oncogenesis. Crit Rev Biochem Mol Biol 2020; 56:54-87. [PMID: 33356612 DOI: 10.1080/10409238.2020.1856768] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adenosine deaminases that act on RNA (ADARs) are present in all animals and function to both bind double-stranded RNA (dsRNA) and catalyze the deamination of adenosine (A) to inosine (I). As inosine is a biological mimic of guanosine, deamination by ADARs changes the genetic information in the RNA sequence and is commonly referred to as RNA editing. Millions of A-to-I editing events have been reported for metazoan transcriptomes, indicating that RNA editing is a widespread mechanism used to generate molecular and phenotypic diversity. Loss of ADARs results in lethality in mice and behavioral phenotypes in worm and fly model systems. Furthermore, alterations in RNA editing occur in over 35 human pathologies, including several neurological disorders, metabolic diseases, and cancers. In this review, a basic introduction to ADAR structure and target recognition will be provided before summarizing how ADARs affect the fate of cellular RNAs and how researchers are using this knowledge to engineer ADARs for personalized medicine. In addition, we will highlight the important roles of ADARs and RNA editing in innate immunity and cancer biology.
Collapse
Affiliation(s)
- Emily A Erdmann
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | | - Priyanka Mukherjee
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN, USA
| | - Boyoon Yang
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Heather A Hundley
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN, USA
| |
Collapse
|
8
|
Li W, Yan P, Meng X, Zhang J, Yang Y. The microRNA cluster miR-214/miR-3120 prevents tumor cell switching from an epithelial to a mesenchymal-like phenotype and inhibits autophagy in gallbladder cancer. Cell Signal 2020; 80:109887. [PMID: 33340658 DOI: 10.1016/j.cellsig.2020.109887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/29/2022]
Abstract
Tumor cells switch from an epithelial to a mesenchymal-like phenotype, which represents a key hallmark of human cancer metastasis, including gallbladder cancer (GBC). A large set of microRNAs (miRNAs/miRs) have been studied to elucidate their functions in initiating or inhibiting this phenotypic switching in GBC cells. In this paper, we attempted to identify the expression pattern of the miR-214/-3120 cluster and its mode of action in the context of GBC, with a specific focus being placed on their effects on EMT and autophagy in GBC cells. Human GBC cells GBC-SD were assayed for their migration, invasion, and autophagy using the Transwell chamber system, MDC staining, and transmission electron microscopy. The tumorigenicity and metastatic behavior of GBC-SD cells were tested in nude mice. The expression of EMT- and autophagy-specific markers (E-cadherin, N-cadherin, vimentin, ATG5, LC3II/LC3I, and Beclin1) was analyzed in cultured GBC-SD cells and in human GBC-SD xenografts. The E2F3 luciferase reporter activity in the presence of miR-214/-3120 was evaluated by a dual luciferase assay. The miR-214/-3120 was downregulated in GBC. Exogenous miR-214/-3120 inhibited the phenotypic switching of GBC cells from epithelial to mesenchymal, prevented autophagy, and suppressed the tumorigenicity and metastatic behavior of GBC-SD cells in vitro and in vivo. E2F3 was demonstrated to be the target gene of miR-214/-3120, and its knockdown in part mimicked the effect of miR-214/-3120 on the EMT, autophagy, tumorigenicity, and metastatic behavior of GBC-SD cells. These results demonstrated that the miR-214/-3120 cluster blocks the process of EMT and autophagy to limit GBC metastasis by repressing E2F3 expression.
Collapse
Affiliation(s)
- Wujun Li
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, PR China; Department of General Surgery, The First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, Shaanxi Province, PR China
| | - Pu Yan
- Department of General Surgery, The First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, Shaanxi Province, PR China
| | - Xiaofen Meng
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, PR China
| | - Jinpei Zhang
- Department of Encephalopathy, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, Shaanxi Province, PR China.
| | - Yi Yang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, PR China.
| |
Collapse
|
9
|
Grzywa TM, Klicka K, Włodarski PK. Regulators at Every Step-How microRNAs Drive Tumor Cell Invasiveness and Metastasis. Cancers (Basel) 2020; 12:E3709. [PMID: 33321819 PMCID: PMC7763175 DOI: 10.3390/cancers12123709] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Tumor cell invasiveness and metastasis are the main causes of mortality in cancer. Tumor progression is composed of many steps, including primary tumor growth, local invasion, intravasation, survival in the circulation, pre-metastatic niche formation, and metastasis. All these steps are strictly controlled by microRNAs (miRNAs), small non-coding RNA that regulate gene expression at the post-transcriptional level. miRNAs can act as oncomiRs that promote tumor cell invasion and metastasis or as tumor suppressor miRNAs that inhibit tumor progression. These miRNAs regulate the actin cytoskeleton, the expression of extracellular matrix (ECM) receptors including integrins and ECM-remodeling enzymes comprising matrix metalloproteinases (MMPs), and regulate epithelial-mesenchymal transition (EMT), hence modulating cell migration and invasiveness. Moreover, miRNAs regulate angiogenesis, the formation of a pre-metastatic niche, and metastasis. Thus, miRNAs are biomarkers of metastases as well as promising targets of therapy. In this review, we comprehensively describe the role of various miRNAs in tumor cell migration, invasion, and metastasis.
Collapse
Affiliation(s)
- Tomasz M. Grzywa
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Klaudia Klicka
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Paweł K. Włodarski
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
| |
Collapse
|
10
|
Regulators at Every Step—How microRNAs Drive Tumor Cell Invasiveness and Metastasis. Cancers (Basel) 2020. [DOI: 10.3390/cancers12123709
expr 991289423 + 939431153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Tumor cell invasiveness and metastasis are the main causes of mortality in cancer. Tumor progression is composed of many steps, including primary tumor growth, local invasion, intravasation, survival in the circulation, pre-metastatic niche formation, and metastasis. All these steps are strictly controlled by microRNAs (miRNAs), small non-coding RNA that regulate gene expression at the post-transcriptional level. miRNAs can act as oncomiRs that promote tumor cell invasion and metastasis or as tumor suppressor miRNAs that inhibit tumor progression. These miRNAs regulate the actin cytoskeleton, the expression of extracellular matrix (ECM) receptors including integrins and ECM-remodeling enzymes comprising matrix metalloproteinases (MMPs), and regulate epithelial–mesenchymal transition (EMT), hence modulating cell migration and invasiveness. Moreover, miRNAs regulate angiogenesis, the formation of a pre-metastatic niche, and metastasis. Thus, miRNAs are biomarkers of metastases as well as promising targets of therapy. In this review, we comprehensively describe the role of various miRNAs in tumor cell migration, invasion, and metastasis.
Collapse
|
11
|
Salem PES, Ghazala RA, El Gendi AM, Emara DM, Ahmed NM. The association between circulating MicroRNA-150 level and cholangiocarcinoma. J Clin Lab Anal 2020; 34:e23397. [PMID: 33161598 PMCID: PMC7676191 DOI: 10.1002/jcla.23397] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/06/2019] [Accepted: 11/24/2019] [Indexed: 12/17/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a rare tumor which requires a multimodality approach for its diagnosis. Carbohydrate antigen 19‐9 (CA19‐9) is currently the most commonly used tumor marker for CCA; nevertheless, it has certain limitations which need to be considered when using it as a tumor marker. MiRNA‐150 altered expression has been linked to the development and tumorigenesis of several cancers including CCA. This work aimed to study the serum level of CA19‐9 and miRNA‐150 expression in CCA patients and, also, to correlate their levels with tumor staging and different studied clinical and laboratory parameters. This work included 35 patients with CCA who were admitted to Hepatobiliary Unit, Alexandria Main University Hospital (Group I). Also, 35 age‐ and sex‐matched healthy subjects were included as a control group (Group II). All included subjects were submitted to measurement of serum CA19‐9 and MiRNA‐150 expression levels. Serum CA19‐9 levels showed an evident high median among CCA patients, while serum miRNA‐150 expression levels were evidently low among those patients. Moreover, combining miRNA‐150 with CA19‐9 made the accuracy of diagnosis of CCA much more reliable. Thus, miRNA‐150 can be considered as a non‐invasive, sensitive serum biomarker for the diagnosis of CCA especially when combined with CA 19‐9.
Collapse
Affiliation(s)
- Perihan El Sayed Salem
- Internal Medicine Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | | | | - Doaa Mokhtar Emara
- Department of Radiodiagnosis and Intervention Radiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nesma Mahmoud Ahmed
- Internal Medicine Department, Fever Hospital, Alexandria University, Alexandria, Egypt
| |
Collapse
|
12
|
Lv Y, Wang Z, Zhao K, Zhang G, Huang S, Zhao Y. Role of noncoding RNAs in cholangiocarcinoma (Review). Int J Oncol 2020; 57:7-20. [PMID: 32319584 DOI: 10.3892/ijo.2020.5047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/16/2020] [Indexed: 11/06/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a malignant tumour originating from biliary epithelial cells, and is increasing in incidence. Radical surgery is the main treatment. However, the pathogenesis of CCA is unclear. Noncoding RNAs (ncRNAs) are non‑protein‑coding RNAs produced by genomic transcription that include microRNAs (miRNAs), circular RNAs (circRNAs) and long noncoding RNAs (lncRNAs). They play important roles in gene expression, epigenetic modification, cell proliferation, differentiation and reproduction. ncRNAs also serve key roles in cancer development. Numerous studies have been carried out on ncRNAs, and associated publications have shown that ncRNAs are closely associated with the physiological and pathological mechanisms of CCA. The findings of these studies can provide new insights into the diagnosis, treatment and prognosis of CCA. The present review summarizes the pathophysiological mechanisms of different types of ncRNAs, including miRNAs, circRNAs and lncRNAs in CCA, and their applications in the diagnosis and treatment of CCA.
Collapse
Affiliation(s)
- Yinghao Lv
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 476100, P.R. China
| | - Zhenzhen Wang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 476100, P.R. China
| | - Kun Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 476100, P.R. China
| | - Guokun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 476100, P.R. China
| | - Shuai Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 476100, P.R. China
| | - Yongfu Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 476100, P.R. China
| |
Collapse
|
13
|
Xu Y, Ouyang C, Lyu D, Lin Z, Zheng W, Xiao F, Xu Z, Ding L. Diabetic nephropathy execrates epithelial-to-mesenchymal transition (EMT) via miR-2467-3p/Twist1 pathway. Biomed Pharmacother 2020; 125:109920. [PMID: 32050151 DOI: 10.1016/j.biopha.2020.109920] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/12/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022] Open
Abstract
Although diabetic nephropathy (DN) is induced by a complicate interplay of multiple factors, the underlying mechanisms remain poorly characterized, even the treatment. Herein, we show that both of DN patients and STZ-induced type 1 diabetic rat exhibit the reduction both of urinary and circulating miR-2467-3p. We identify a negative correlation between miR-2467-3p levels and renal dysfunction. Administration of miR-2467-3p prevents diabetes-induced renal dysfunction and represses renal fibrosis in STZ-induced type 1 diabetic rats. Conversely, anti-miR-2467 overexpression exacerbates renal dysfunction and fibrosis in STZ-induced rats. In diabetic condition, the reduction of miR-2467-3p promotes expression of Twist1, inducing epithelial-to-mesenchymal transition (EMT), resulting in renal fibrosis and kidney dysfunction. Together, our study presents miR-2467/Twist1/EMT as a regulatory axis of renal dysfunction in DN.
Collapse
Affiliation(s)
- Yan Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350004, China
| | - Changhan Ouyang
- Hubei Key Laboratory of Cardiovascular, Cerebrovascular and Metabolic Disorders, Hubei University of Science and Technology, Xianning, 437100, China
| | - Dayin Lyu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Zhangmei Lin
- School of Clinical Medicine, Fujian Medical University, Fuzhou, 350004, China
| | - Wencai Zheng
- School of Clinical Medicine, Fujian Medical University, Fuzhou, 350004, China
| | - Fan Xiao
- School of Clinical Medicine, Fujian Medical University, Fuzhou, 350004, China
| | - Zhimin Xu
- School of Clinical Medicine, Fujian Medical University, Fuzhou, 350004, China
| | - Lexi Ding
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
14
|
Bai T, Liang R, Zhu R, Wang W, Zhou L, Sun Y. MicroRNA-214-3p enhances erastin-induced ferroptosis by targeting ATF4 in hepatoma cells. J Cell Physiol 2020; 235:5637-5648. [PMID: 31960438 DOI: 10.1002/jcp.29496] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 01/08/2020] [Indexed: 12/29/2022]
Abstract
Primary liver cancer is the second most frequent cause of cancer-related deaths. Ferroptosis, a recognized form of regulated cell death, recently gains attention. MicroRNA-214-3p (miR-214) plays a regulatory role in hepatocarcinogenesis. However, the role of miR-214 in cellular ferroptosis is unclear. This study aimed at elucidating whether miR-214 could regulate ferroptosis of liver cancer. In vitro, HepG2 and Hep3B cancer cells were treated with erastin, a ferroptosis inducer, and then erastin was demonstrated to suppress the cell viability. Moreover, pre-miR-214 overexpression caused that HepG2 and Hep3B cells were more susceptible to erastin, whereas anti-miR-214 sponge showed the opposite effect. Additionally, pre-miR-214 overexpression increased the malondialdehyde and reactive oxygen species levels, upregulated Fe2+ concentration, and decreased glutathione levels in cancer cells exposed to erastin. Further, erastin enhanced the activation of transcription factor 4 (ATF4) in HepG2 and Hep3B cells, and pre-miR-214 overexpression inhibited ATF4 expression. The luciferase reporter data validated ATF4 as a direct target of miR-214. Cancer cells transfected with ATF4 overexpression plasmid rendered lower susceptible to miR-214-induced ferroptotic death. In vivo, erastin significantly reduced the size and weight of xenografted tumors, and miR-214 elevated the ferroptosis-promoting effects of erastin and decreased ATF4 expression. In summary, our study demonstrates that the ferroptosis-promoting effects of miR-214 in hepatoma cells are attributed at least to its inhibitory effects on ATF4, which may provide a new target for therapy of hepatoma regarding ferroptosis.
Collapse
Affiliation(s)
- Tao Bai
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ruopeng Liang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, Henan, China
| | - Rongtao Zhu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Institute of Hepatopancreatobiliary Diseases of Zhengzhou University, Zhengzhou, Henan, China
| | - Weijie Wang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Institute of Hepatopancreatobiliary Diseases of Zhengzhou University, Zhengzhou, Henan, China
| | - Lin Zhou
- Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, Henan, China.,Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuling Sun
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, Henan, China.,Institute of Hepatopancreatobiliary Diseases of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
15
|
Lin CR, Chu TM, Luo A, Huang SJ, Chou HY, Lu MW, Wu JL. Omega-3 polyunsaturated fatty acids suppress metastatic features of human cholangiocarcinoma cells by suppressing twist. J Nutr Biochem 2019; 74:108245. [DOI: 10.1016/j.jnutbio.2019.108245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/12/2019] [Accepted: 09/10/2019] [Indexed: 01/04/2023]
|
16
|
Zhang Y, Qian H, Xu J, Gao W. ADAR, the carcinogenesis mechanisms of ADAR and related clinical applications. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:686. [PMID: 31930087 DOI: 10.21037/atm.2019.11.06] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adenosine deaminases acting on RNA (ADARs) catalyze the conversion of adenosine (A) to inosine (I) in double-stranded RNA, which can change the codons after transcription. Abnormal ADAR editing is present in a variety of cancers. However, the study of the biological effects of ADARs in cancer is not very deep. Here, we review current important ADAR-mediated editing events, related carcinogenic mechanisms and applications in clinical medicine. Further exploration in ADARs can provide a new direction for cancer treatment.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Huizhu Qian
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jing Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wen Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
17
|
Yang J, Li R, Zhao D, Zheng S. Downregulation of microRNA-214 improves therapeutic potential of allogeneic bone marrow-derived mesenchymal stem cell by targeting PIM-1 in rats with acute liver failure. J Cell Biochem 2019; 120:12887-12903. [PMID: 30938885 DOI: 10.1002/jcb.28560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/14/2018] [Accepted: 01/10/2019] [Indexed: 01/08/2023]
Abstract
Acute liver failure (ALF) is a disease resulted from diverse etiology, which generally leads to a rapid degenerated hepatic function. However, transplantation bone marrow-derived mesenchymal stem cells (BMSCs) transplantation has been suggested to relieve ALF. Interestingly, microRNA-214 (miR-214) could potentially regulate differentiation and migration of BMSCs. The present study aims to inquire whether miR-214 affects therapeutic potential of BMSCs transplantation by targeting PIM-1 in ALF. 120 male Wistar rats were induced as ALF model rats and transplanted with BMSCs post-alteration of miR-214 or PIM-1 expression. Further experiments were performed to detect biochemical index (alanine aminotransferase [ALT], aspartate transaminase [AST], total bilirubin [TBiL]), and expression of miR-214, PIM-1, hepatocyte growth factor (HGF), caspase 3, tumor necrosis factor-α (TNF-α), and interleukin-10 (IL-10) in rat serum. Apart from the above detection, apoptosis of hepatocytes and Ki67 protein expression in hepatic tissues of rats were additionally assessed. After BMSCs transplantation with miR-214 inhibition, a decreased expression of ALT, AST, and TBiL yet an increased expression of HGF was shown, coupled with a decline in the expression of caspase 3, TNF-α, and IL-10. Meanwhile, alleviated hepatic injury and decreased apoptotic index of hepatic cells were observed and the positive rate of Ki67 protein expression was significantly increased. Moreover, miR-214 and caspase 3, TNF-α, and IL-10 decreased notably, while PIM-1 was upregulated in response to miR-214 inhibition. Strikingly, the inhibition of PIM-1 reversed effects triggered by miR-214 inhibition. These findings indicated that downregulation of miR-214 improves therapeutic potential of BMSCs transplantation by upregulating PIM-1 for ALF.
Collapse
Affiliation(s)
- Juan Yang
- Department of Gastroenterology and Hepatology, The Third People's Hospital of Yunnan Province, Kunming, People's Republic of China
| | - Rui Li
- Department of Obstetrics, Kunming Dongfang Hospital, Kunming, People's Republic of China
| | - Dan Zhao
- Life Science Academy of Yunnan University, Kunming, People's Republic of China
| | - Sheng Zheng
- Department of Gastroenterology and Hepatology, The Third People's Hospital of Yunnan Province, Kunming, People's Republic of China
| |
Collapse
|
18
|
Shan H, Zhou X, Chen C. MicroRNA‑214 suppresses the viability, migration and invasion of human colorectal carcinoma cells via targeting transglutaminase 2. Mol Med Rep 2019; 20:1459-1467. [PMID: 31173203 PMCID: PMC6625444 DOI: 10.3892/mmr.2019.10325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 02/21/2019] [Indexed: 12/17/2022] Open
Abstract
Colorectal carcinoma (CRC) is a common malignancy of the digestive tract. MicroRNA (miR)-214 is considered a key hub that controls tumor networks; therefore, the effects of miR-214 on CRC were examined and its target gene was investigated in this study. The expression levels of transglutaminase 2 (TGM2) and miR-214 were detected in CRC and adjacent normal tissues by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting, and luciferase activity was analyzed by dual luciferase reporter analysis. In addition, cell viability, invasion and migration were measured by Cell Counting kit-8 and Transwell assays, respectively. The expression levels of epithelial-mesenchymal transition-related proteins, and phosphoinositide-3 kinase (PI3K)/protein kinase B (Akt) signaling-associated factors were detected using RT-qPCR and western blotting. The results demonstrated that miR-214 expression was downregulated in CRC tissue, whereas TGM2 expression was upregulated. According to TargetScan prediction, miR-214 possesses a binding site to TGM2. In addition, transfection with miR-214 mimics markedly suppressed the viability of LoVo cells. miR-214 overexpression also inhibited cell invasion and migration by increasing E-cadherin and tissue inhibitor of metalloproteinases-2 expression, and decreasing matrix metalloproteinase (MMP)-2 and MMP-9 expression. Furthermore, miR-214 downregulated phosphorylation of PI3K and Akt; however, the expression levels of total PI3K and Akt were not affected by miR-214. In conclusion, this study indicated that TGM2 was a target gene of miR-214, and a negative correlation between miR-214 and TGM2 expression was determined in CRC. Notably, miR-214 markedly suppressed the viability, invasion and migration of CRC cells, which may be associated with a downregulation in PI3K/Akt signaling. These findings suggested that miR-214 may be considered a novel target for the treatment of CRC.
Collapse
Affiliation(s)
- Huiguo Shan
- Department of Oncology, The Affiliated Dongtai Hospital of Nantong University, Dongtai, Jiangsu 224200, P.R. China
| | - Xuefeng Zhou
- Department of Oncology, The Affiliated Dongtai Hospital of Nantong University, Dongtai, Jiangsu 224200, P.R. China
| | - Chuanjun Chen
- Department of Medical Oncology, Xinchang People's Hospital, Shaoxing, Zhejiang 312500, P.R. China
| |
Collapse
|
19
|
Labib PL, Goodchild G, Pereira SP. Molecular Pathogenesis of Cholangiocarcinoma. BMC Cancer 2019; 19:185. [PMID: 30819129 PMCID: PMC6394015 DOI: 10.1186/s12885-019-5391-0] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/20/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cholangiocarcinomas are a heterogeneous group of malignancies arising from a number of cells of origin along the biliary tree. Although most cases in Western countries are sporadic, large population-based studies have identified a number of risk factors. This review summarises the evidence behind reported risk factors and current understanding of the molecular pathogenesis of cholangiocarcinoma, with a focus on inflammation and cholestasis as the driving forces in cholangiocarcinoma development. RISK FACTORS FOR CHOLANGIOCARCINOGENESIS Cholestatic liver diseases (e.g. primary sclerosing cholangitis and fibropolycystic liver diseases), liver cirrhosis, and biliary stone disease all increase the risk of cholangiocarcinoma. Certain bacterial, viral or parasitic infections such as hepatitis B and C and liver flukes also increase cholangiocarcinoma risk. Other risk factors include inflammatory disorders (such as inflammatory bowel disease and chronic pancreatitis), toxins (e.g. alcohol and tobacco), metabolic conditions (diabetes, obesity and non-alcoholic fatty liver disease) and a number of genetic disorders. MOLECULAR PATHOGENESIS OF CHOLANGIOCARCINOMA Regardless of aetiology, most risk factors cause chronic inflammation or cholestasis. Chronic inflammation leads to increased exposure of cholangiocytes to the inflammatory mediators interleukin-6, Tumour Necrosis Factor-ɑ, Cyclo-oxygenase-2 and Wnt, resulting in progressive mutations in tumour suppressor genes, proto-oncogenes and DNA mismatch-repair genes. Accumulating bile acids from cholestasis lead to reduced pH, increased apoptosis and activation of ERK1/2, Akt and NF-κB pathways that encourage cell proliferation, migration and survival. Other mediators upregulated in cholangiocarcinoma include Transforming Growth Factor-β, Vascular Endothelial Growth Factor, Hepatocyte Growth Factor and several microRNAs. Increased expression of the cell surface receptor c-Met, the glucose transporter GLUT-1 and the sodium iodide symporter lead to tumour growth, angiogenesis and cell migration. Stromal changes are also observed, resulting in alterations to the extracellular matrix composition and recruitment of fibroblasts and macrophages that create a microenvironment promoting cell survival, invasion and metastasis. CONCLUSION Regardless of aetiology, most risk factors for cholangiocarcinoma cause chronic inflammation and/or cholestasis, leading to the activation of common intracellular pathways that result in reactive cell proliferation, genetic/epigenetic mutations and cholangiocarcinogenesis. An understanding of the molecular pathogenesis of cholangiocarcinoma is vital when developing new diagnostic biomarkers and targeted therapies for this disease.
Collapse
Affiliation(s)
- Peter L. Labib
- UCL Institute for Liver and Digestive Health, University College London (Royal Free Hospital Campus), Royal Free Hospital, Pond Street, London, NW3 2QG UK
| | - George Goodchild
- UCL Institute for Liver and Digestive Health, University College London (Royal Free Hospital Campus), Royal Free Hospital, Pond Street, London, NW3 2QG UK
| | - Stephen P. Pereira
- UCL Institute for Liver and Digestive Health, University College London (Royal Free Hospital Campus), Royal Free Hospital, Pond Street, London, NW3 2QG UK
| |
Collapse
|
20
|
Wang R, Sun Y, Yu W, Yan Y, Qiao M, Jiang R, Guan W, Wang L. Downregulation of miRNA-214 in cancer-associated fibroblasts contributes to migration and invasion of gastric cancer cells through targeting FGF9 and inducing EMT. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:20. [PMID: 30646925 PMCID: PMC6334467 DOI: 10.1186/s13046-018-0995-9] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/05/2018] [Indexed: 12/21/2022]
Abstract
Background Cancer-associated fibroblasts (CAFs), one of the principal constituents of the tumor microenvironment, have a pivotal role in tumor progression. Dysregulation of microRNAs (miRNAs) in CAFs contributes to the tumor-promoting ability of CAFs. However, the mechanism underlying the involvement of miRNAs in CAFs of gastric cancer (GC) is not fully understood. This study aimed to explore the effects of miRNA-214 in CAFs on GC migration and invasion. Methods The primary CAFs and corresponding normal fibroblasts (NFs) were isolated. Cell counting kit-8, EdU cell proliferation staining and Transwell assays were used to determine the role of miRNA-214 in GC progression. Real-time polymerase chain reaction, Western blot analysis, and dual-luciferase reporter assay were performed to verify the target genes of miRNA-214. Immunofluorescence and Western blot analysis were applied to detect the expression of epithelial–mesenchymal transition (EMT) markers. Immunohistochemistry and in situ hybridization were implemented to analyze the fibroblast growth factor 9 (FGF9) and miRNA-214 expression in human GC tissues, respectively. Finally, to assess its prognostic relevance, Kaplan–Meier survival analysis was conducted. Results MiRNA-214 was significantly downregulated in CAFs of GC compared with NFs. The upregulation of miRNA-214 in CAFs inhibited GC cell migration and invasion in vitro but failed to affect proliferation. Moreover, GC cells cultured with conditioned medium from CAFs transfected with miR-214 mimic showed increased expression of E-cadherin and decreased expression of Vimentin, N-cadherin and Snail, indicating the suppression of EMT of GC cells. Furthermore, FGF9 was proved to be a direct target gene of miR-214. The expression of FGF9 was higher in CAFs than that in tumor cells not only in primary tumor but also in lymph node metastatic sites (30.0% vs 11.9%, P < 0.01 and 32.1% vs 12.3%, P < 0.01, respectively). Abnormal expression of FGF9 in CAFs of lymph node metastatic sites was significantly associated with poor prognosis in patients with GC (P < 0.05). Conclusions This study showed that miR-214 inhibited the tumor-promoting effect of CAFs on GC through targeting FGF9 in CAFs and regulating the EMT process in GC cells, suggesting miRNA-214/FGF9 in CAFs as a potential target for therapeutic approaches in GC. Electronic supplementary material The online version of this article (10.1186/s13046-018-0995-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruifen Wang
- Department of Pathology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Yeqi Sun
- Department of Pathology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Wenwei Yu
- Department of Pathology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Yu Yan
- Department of Pathology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Meng Qiao
- Department of Pathology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Ruiqi Jiang
- Department of Pathology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Wenbin Guan
- Department of Pathology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, 200092, China.
| | - Lifeng Wang
- Department of Pathology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, 200092, China.
| |
Collapse
|
21
|
Nie H, Nie D, Men L. Role of miR-214 in modulating proliferation and invasion of human colon cancer SW620 cells. Oncol Lett 2018; 16:7175-7179. [PMID: 30546454 PMCID: PMC6256325 DOI: 10.3892/ol.2018.9521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 09/14/2018] [Indexed: 12/23/2022] Open
Abstract
This study investigated the role of miR-214 in modulating proliferation and invasion of human colon cancer SW620 cells. Fifty-five patients with colon cancer who were treated in China-Japan Union Hospital of Jilin University from March 2014 to March 2015 were enrolled into this study. Their cancer and corresponding paracancerous tissues were collected and the expression levels of miR-214 were determined by RT-qPCR. A miR-214 expression vector was constructed. SW620 cells were transfected with the miR-214 expression vector and a blank vector. Cells transfected with the miR-214 expression vector were assigned to the miR-214 positive group and cells transfected with the blank vector were assigned to the miR-214 negative group. Cell proliferation, invasion and apoptosis were assessed by MTT assay, Transwell migration assay and TUNEL apoptosis assay, respectively. The RT-qPCR results showed that the expression level of miR-214 in colon cancer tissue, as well as in miR-214 negative cells, was significantly lower than that in paracancerous tissue (P<0.05 for both). In cell comparison, the expression level of miR-214 in the miR-214 positive group was significantly higher than that in the miR-214 negative group (0.483±0.001 vs. 0.172±0.001; P<0.05). The proliferation level of SW620 cells in the miR-214 positive group was lower than that in the miR-214 negative group (P<0.05). The Transwell migration assay indicated that there were less cells penetrating the membrane in the miR-214 positive group than in the miR-214 negative group (P<0.05). In addition, The apoptosis rate of cells in the miR-214 negative group was significantly lower than that in the miR-214 positive group (P<0.05). Finally, the low expression of miR-214 was found in colon cancer, indicating that miR-214 is a cancer suppressor playing an opposing role in colon cancer onset and progression. Therefore, miR-214 can promote apoptosis of colon cancer cells SW620 by inhibiting their proliferation and invasion.
Collapse
Affiliation(s)
- Haiying Nie
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Dandan Nie
- Jilin Entry-Exit Inspection and Quarantine Bureau, Changchun, Jilin 130062, P.R. China
| | - Lan Men
- Department of Gastrointestinal Medicine, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
22
|
Ma L, Zhao J, Xie X. Sevoflurane induces liver injury by modulating the expression of insulin-like growth factor 1 via miR-214. J Cell Physiol 2018; 233:6742-6749. [PMID: 29226348 DOI: 10.1002/jcp.26382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/04/2017] [Indexed: 12/14/2022]
Abstract
This study aimed to detect the effect of sevoflurane anesthesia on liver injury through modulating IGF-1. The expression of IGF-1 and IGF-1R in liver tissues of sevoflurane-exposed rats was examined by qRT-PCR and Western blot. The expression levels of miR-214 in liver cells treated with different concentration of sevoflurane at different time points were detected by qRT-PCR. Enzyme-linked immunosorbent (ELISA) assay was used to analyze serum IGF-1 concentration in cell culture media. After pre-treatment with 100 nM miR-214 inhibitor followed by exposure to sevoflurane, the expression level of miR-214 and IGF-1 protein in liver cells was examined. Hematoxylin-Eosin (HE) staining and TUNEL assay was performed to analyze liver tissue necrosis and apoptosis. The expression levels of apoptosis-related proteins (caspase 3 and Bcl-xL) were examined using Western blot. The mRNA and protein expression level of IGF-1 and IGF-1R in rats was significantly down-regulated after 90 min exposure to sevoflurane. QRT-PCR results suggested that exposure to sevoflurane upregulated the expression level of miR-214 and decreased the concentration of IGF-1 in a dose and time dependent manner. Sevoflurane inhibited the expression of IGF-1 through up-regulating miR-214. IGF-1 inhibited the positive effect of sevoflurane on cell necrosis and apoptosis. Sevoflurane could induce liver injury by modulating IGF-1 expression via miR-214.
Collapse
Affiliation(s)
- Ligang Ma
- Department of Anesthesia, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Jingjing Zhao
- Department of Outpatient, Luoyang DongFang Hospital, The Third Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan, China
| | - Xiaojuan Xie
- Department of Anesthesia, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
23
|
Zhao H, Diao C, Wang X, Xie Y, Liu Y, Gao X, Han J, Li S. LncRNA BDNF-AS inhibits proliferation, migration, invasion and EMT in oesophageal cancer cells by targeting miR-214. J Cell Mol Med 2018; 22:3729-3739. [PMID: 29896888 PMCID: PMC6050505 DOI: 10.1111/jcmm.13558] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/08/2018] [Indexed: 12/22/2022] Open
Abstract
This study was aimed at exploring the effect of lncRNA BDNF-AS on cell proliferation, migration, invasion and epithelial-to-mesenchymal transition (EMT) of oesophageal cancer (EC) cells. The expression of BDNF-AS and miR-214 in tissue samples and cells was measured by qRT-PCR. The targeted relationship between BDNF-AS and miR-214 was analysed by dual-luciferase reporter assay. After cell transfection, the cell proliferation activity was assessed by MTS method, while the migrating and invading abilities were evaluated by transwell assay. LncRNA BDNF-AS was remarkably down-regulated, while miR-214 was up-regulated in EC tissues and cells in comparison with normal tissues and cells. Overexpression of BDNF-AS significantly inhibited the abilities of cell proliferation, migration and invasion as well as the EMT processes of EC cells. The bioinformatics analysis and luciferase assay indicated that BDNF-AS could be directly bound by miR-214. Furthermore, overexpression of miR-214 and BDNF-AS exerted suppressive influence on EC cell multiplication, migration, invasion and EMT processes. LncRNA BDNF-AS restrained cell proliferation, migration, invasion and EMT processes in EC cells by targeting miR-214.
Collapse
Affiliation(s)
- Huaying Zhao
- Department of PathologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Changying Diao
- Department of PathologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xiaohui Wang
- Department of PathologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yilin Xie
- Department of PathologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yaqing Liu
- Department of PathologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xianzheng Gao
- Department of PathologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jing Han
- Department of PathologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Shenglei Li
- Department of PathologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
24
|
|
25
|
Liu C, Luo J, Zhao YT, Wang ZY, Zhou J, Huang S, Huang JN, Long HX, Zhu B. TWIST1 upregulates miR-214 to promote epithelial-to-mesenchymal transition and metastasis in lung adenocarcinoma. Int J Mol Med 2018; 42:461-470. [PMID: 29693173 DOI: 10.3892/ijmm.2018.3630] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/20/2018] [Indexed: 11/06/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is essential for the progression of non-invasive tumor cells into malignancy and metastasis. We found that miR-214 was increased in lung adenocarcinoma (LAD) and positively associated with metastasis, which was mediated by EMT. However, the mechanism whereby the overexpression of microRNAs (miRNAs), such as miR-214, promote EMT in LAD remains unclear. In this study, we found that TWIST1, an independent prognostic factor for overall survival, was increased in LAD and correlated positively with LAD recurrence and progression. We also found that TWIST1 contributes to the EMT process and metastasis of LAD cells. Most importantly, a positive correlation was found between the expression of miR-214 and TWIST1 in clinical LAD tissue. Additionally, miR-214 expression was decreased and its target gene suppressor of fused homolog (SUFU) was increased in LAD cells in response to the impairment of TWIST1 expression by shRNA. Overall, this study provides the first evidence to show that the high expression of TWIST1 increases the expression of miR-214 to promote the EMT process and metastasis in LAD. These findings contribute to clarify the mechanisms whereby miRNAs regulate the EMT process and implicate a new TWIST1-miR-214 pathway in the control of migration and invasion of LAD.
Collapse
Affiliation(s)
- Chao Liu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Jing Luo
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Yue-Tao Zhao
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Zhong-Yu Wang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Jie Zhou
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Shuo Huang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Jia-Ni Huang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Hai-Xia Long
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
26
|
MicroRNAs and extracellular vesicles in cholangiopathies. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1293-1307. [PMID: 28711597 DOI: 10.1016/j.bbadis.2017.06.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 12/22/2022]
|
27
|
O'Rourke CJ, Munoz-Garrido P, Aguayo EL, Andersen JB. Epigenome dysregulation in cholangiocarcinoma. Biochim Biophys Acta Mol Basis Dis 2018. [DOI: 10.1016/j.bbadis.2017.06.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Brivio S, Cadamuro M, Fabris L, Strazzabosco M. Molecular Mechanisms Driving Cholangiocarcinoma Invasiveness: An Overview. Gene Expr 2018; 18:31-50. [PMID: 29070148 PMCID: PMC5860940 DOI: 10.3727/105221617x15088670121925] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The acquisition of invasive functions by tumor cells is a first and crucial step toward the development of metastasis, which nowadays represents the main cause of cancer-related death. Cholangiocarcinoma (CCA), a primary liver cancer originating from the biliary epithelium, typically develops intrahepatic or lymph node metastases at early stages, thus preventing the majority of patients from undergoing curative treatments, consistent with their very poor prognosis. As in most carcinomas, CCA cells gradually adopt a motile, mesenchymal-like phenotype, enabling them to cross the basement membrane, detach from the primary tumor, and invade the surrounding stroma. Unfortunately, little is known about the molecular mechanisms that synergistically orchestrate this proinvasive phenotypic switch. Autocrine and paracrine signals (cyto/chemokines, growth factors, and morphogens) permeating the tumor microenvironment undoubtedly play a prominent role in this context. Moreover, a number of recently identified signaling systems are currently drawing attention as putative mechanistic determinants of CCA cell invasion. They encompass transcription factors, protein kinases and phosphatases, ubiquitin ligases, adaptor proteins, and miRNAs, whose aberrant expression may result from either stochastic mutations or the abnormal activation of upstream pro-oncogenic pathways. Herein we sought to summarize the most relevant molecules in this field and to discuss their mechanism of action and potential prognostic relevance in CCA. Hopefully, a deeper knowledge of the molecular determinants of CCA invasiveness will help to identify clinically useful biomarkers and novel druggable targets, with the ultimate goal to develop innovative approaches to the management of this devastating malignancy.
Collapse
Affiliation(s)
- Simone Brivio
- *School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Massimiliano Cadamuro
- *School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
- †International Center for Digestive Health, University of Milan-Bicocca, Monza, Italy
| | - Luca Fabris
- †International Center for Digestive Health, University of Milan-Bicocca, Monza, Italy
- ‡Department of Molecular Medicine, University of Padua, Padua, Italy
- §Liver Center, School of Medicine Section of Digestive Diseases, Yale University, New Haven, CT, USA
| | - Mario Strazzabosco
- *School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
- †International Center for Digestive Health, University of Milan-Bicocca, Monza, Italy
- §Liver Center, School of Medicine Section of Digestive Diseases, Yale University, New Haven, CT, USA
| |
Collapse
|
29
|
Peraldo Neia C, Cavalloni G, Chiorino G, Ostano P, Aglietta M, Leone F. Gene and microRNA modulation upon trabectedin treatment in a human intrahepatic cholangiocarcinoma paired patient derived xenograft and cell line. Oncotarget 2018; 7:86766-86780. [PMID: 27902465 PMCID: PMC5349952 DOI: 10.18632/oncotarget.13575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 11/09/2016] [Indexed: 12/11/2022] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is an aggressive and lethal malignancy with limited therapeutic options. Trabectedin has a high antitumor activity in preclinical models of biliary tract carcinoma (BTC), being a promising alternative treatment. Here, we studied the effect of trabectedin at transcriptomic level on an ICC patient derived xenograft (PDX) and on the derived cell line, MT-CHC01. Further, putative targets of trabectedin were explored in the in vitro model. In vitro, trabectedin inhibited genes involved in protein modification, neurogenesis, migration, and motility; it induced the expression of genes involved in keratinization, tissues development, and apoptotic processes. In the PDX model, trabectedin affected ECM-receptor interaction, focal adhesion, complement and coagulation cascades, Hedgehog, MAPK, EGFR signaling via PIP3 pathway, and apoptosis. Among down-regulated genes, we selected SYK and LGALS1; their silencing caused a significantly reduction of migration, but did not affect proliferation in in vitro models. In MT-CHC01 cells, 24 microRNAs were deregulated upon drug treatment, while only 5 microRNAs were perturbed by trabectedin in PDX. The target prediction analysis showed that SYK and LGALS1 are putative targets of up-regulated microRNAs. In conclusion, we described that trabectedin affected genes and microRNAs involved in tumor progression and metastatic processes, reflecting data previously obtained at macroscopically level; in particular, we identified SYK and LGALS1 as new putative targets of trabectedin.
Collapse
Affiliation(s)
- Caterina Peraldo Neia
- University of Turin Medical School, Department of Oncology, IRCCS-Institute Candiolo, Italy
| | - Giuliana Cavalloni
- Medical Oncology Division, Fondazione del Piemonte per l'Oncologia (FPO), IRCCS-Institute Candiolo, Italy
| | - Giovanna Chiorino
- Cancer Genomics Laboratory, Fondazione Edo ed Elvo Tempia Valenta, Biella, Italy
| | - Paola Ostano
- Cancer Genomics Laboratory, Fondazione Edo ed Elvo Tempia Valenta, Biella, Italy
| | - Massimo Aglietta
- University of Turin Medical School, Department of Oncology, IRCCS-Institute Candiolo, Italy.,Medical Oncology Division, Fondazione del Piemonte per l'Oncologia (FPO), IRCCS-Institute Candiolo, Italy
| | - Francesco Leone
- University of Turin Medical School, Department of Oncology, IRCCS-Institute Candiolo, Italy.,Medical Oncology Division, Fondazione del Piemonte per l'Oncologia (FPO), IRCCS-Institute Candiolo, Italy
| |
Collapse
|
30
|
Wangyang Z, Daolin J, Yi X, Zhenglong L, Lining H, Yunfu C, Xingming J. NcRNAs and Cholangiocarcinoma. J Cancer 2018; 9:100-107. [PMID: 29290774 PMCID: PMC5743716 DOI: 10.7150/jca.21785] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/18/2017] [Indexed: 12/12/2022] Open
Abstract
Cholangiocarcinoma (CCA) is the most common primary biliary malignancy with poor prognosis. Less understanding of its etiology and pathogenesis makes the diagnosis and therapy difficult. Recently, accumulating evidences have demonstrated that deregulated expression of non-coding RNAs (ncRNAs) is closely associated with the etiopathogenesis of CCA. NcRNAs which lack open reading frame are a heterogeneous class of transcribed RNA molecules, including microRNAs, long non-coding RNAs and circular RNAs. Several studies have shown ncRNAs dysregulation is a common central event occurring in CCA and has the potential of being therapy targets. Moreover, ncRNAs can be easily detected in cancer tissues and biofluids, representing valuable tools for diagnosis. In this review, we illustrate the role of ncRNA in the CCA and discuss their potential clinical value.
Collapse
Affiliation(s)
- Zheng Wangyang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Ji Daolin
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Xu Yi
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Li Zhenglong
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Huang Lining
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Cui Yunfu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Jiang Xingming
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| |
Collapse
|
31
|
Li YJ, Zhang W, Xia H, Zhang BS, Chen P, Zhao YL, Li J. miR-218 suppresses epithelial-to-mesenchymal transition by targeting Robo1 and Ecop in lung adenocarcinoma cells. Future Oncol 2017; 13:2571-2582. [PMID: 28936884 DOI: 10.2217/fon-2017-0398] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Although, miR-218 has been implicated in epithelial-to-mesenchymal transition process, the detailed mechanisms of miR-218 involvement in epithelial-to-mesenchymal transition in human lung adenocarcinoma cell are still unclear. MATERIALS & METHODS miR-218 function assays and its target gene analysis were performed. RESULTS miR-218 suppresses human lung adenocarcinoma cell migration and invasion and inhibits its target gene, Ecop and Robo1 expression, which subsequently suppresses NF-κB activity and its downstream targets. CONCLUSION miR-218 inhibits human lung adenocarcinoma cell migration and invasion via the suppression of Ecop and Robo1 expression, thus suggesting that miR-218 could serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Ying-Jie Li
- Department of Cardio-thoracic Surgery, First Affiliated Hospital of Chinese PLA General Hospital, Beijing, 100048, China
| | - Wen Zhang
- Department of Cardio-thoracic Surgery, First Affiliated Hospital of Chinese PLA General Hospital, Beijing, 100048, China
| | - Hui Xia
- Department of Cardio-thoracic Surgery, First Affiliated Hospital of Chinese PLA General Hospital, Beijing, 100048, China
| | - Bao-Shi Zhang
- Department of Cardio-thoracic Surgery, First Affiliated Hospital of Chinese PLA General Hospital, Beijing, 100048, China
| | - Ping Chen
- Department of Cardio-thoracic Surgery, First Affiliated Hospital of Chinese PLA General Hospital, Beijing, 100048, China
| | - Yun-Long Zhao
- Department of Cardio-thoracic Surgery, First Affiliated Hospital of Chinese PLA General Hospital, Beijing, 100048, China
| | - Jie Li
- Thoracic Surgeon, Department of Thoracic Surgery, The Chinese PLA General Hospital, Beijing, 100853, China
| |
Collapse
|
32
|
Berretta M, Cavaliere C, Alessandrini L, Stanzione B, Facchini G, Balestreri L, Perin T, Canzonieri V. Serum and tissue markers in hepatocellular carcinoma and cholangiocarcinoma: clinical and prognostic implications. Oncotarget 2017; 8:14192-14220. [PMID: 28077782 PMCID: PMC5355172 DOI: 10.18632/oncotarget.13929] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 10/28/2016] [Indexed: 12/12/2022] Open
Abstract
HCC represents the sixth most common cancer worldwide and the second leading cause of cancer-related death. Despite the high incidence, treatment options for advanced HCC remain limited and unsuccessful, resulting in a poor prognosis. Despite the major advances achieved in the diagnostic management of HCC, only one third of the newly diagnosed patients are presently eligible for curative treatments. Advances in technology and an increased understanding of HCC biology have led to the discovery of novel biomarkers. Improving our knowledge about serum and tissutal markers could ultimately lead to an early diagnosis and better and early treatment strategies for this deadly disease. Serum biomarkers are striking potential tools for surveillance and early diagnosis of HCC thanks to the non-invasive, objective, and reproducible assessments they potentially enable. To date, many biomarkers have been proposed in the diagnosis of HCC. Cholangiocarcinoma (CCA) is an aggressive malignancy, characterized by early lymph node involvement and distant metastasis, with 5-year survival rates of 5%-10%. The identification of new biomarkers with diagnostic, prognostic or predictive value is especially important as resection (by surgery or combined with a liver transplant) has shown promising results and novel therapies are emerging. However, the relatively low incidence of CCA, high frequency of co-existing cholestasis or cholangitis (primary sclerosing cholangitis –PSC- above all), and difficulties with obtaining adequate samples, despite advances in sampling techniques and in endoscopic visualization of the bile ducts, have complicated the search for accurate biomarkers. In this review, we attempt to analyze the existing literature on this argument.
Collapse
Affiliation(s)
| | - Carla Cavaliere
- Department of Onco-Ematology Medical Oncology, S.G. Moscati Hospital of Taranto Taranto, Italy
| | - Lara Alessandrini
- Division of Pathology, National Cancer Institute, Aviano (PN), Italy
| | - Brigida Stanzione
- Department of Medical Oncology, National Cancer Institute, Aviano (PN), Italy
| | - Gaetano Facchini
- Department of Medical Oncology, National Cancer Institute, "G. Pascale" Foundation, Naples, Italy
| | - Luca Balestreri
- Department of Radiology, National Cancer Institute, Aviano (PN), Italy
| | - Tiziana Perin
- Division of Pathology, National Cancer Institute, Aviano (PN), Italy
| | | |
Collapse
|
33
|
Targeting epithelial-mesenchymal plasticity in cancer: clinical and preclinical advances in therapy and monitoring. Biochem J 2017; 474:3269-3306. [PMID: 28931648 DOI: 10.1042/bcj20160782] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/01/2017] [Accepted: 08/07/2017] [Indexed: 02/07/2023]
Abstract
The concept of epithelial-mesenchymal plasticity (EMP), which describes the dynamic flux within the spectrum of phenotypic states that invasive carcinoma cells may reside, is being increasingly recognised for its role in cancer progression and therapy resistance. The myriad of events that are able to induce EMP, as well as the more recently characterised control loops, results in dynamic transitions of cancerous epithelial cells to more mesenchymal-like phenotypes through an epithelial-mesenchymal transition (EMT), as well as the reverse transition from mesenchymal phenotypes to an epithelial one. The significance of EMP, in its ability to drive local invasion, generate cancer stem cells and facilitate metastasis by the dissemination of circulating tumour cells (CTCs), highlights its importance as a targetable programme to combat cancer morbidity and mortality. The focus of this review is to consolidate the existing knowledge on the strategies currently in development to combat cancer progression via inhibition of specific facets of EMP. The prevalence of relapse due to therapy resistance and metastatic propensity that EMP endows should be considered when designing therapy regimes, and such therapies should synergise with existing chemotherapeutics to benefit efficacy. To further improve upon EMP-targeted therapies, it is imperative to devise monitoring strategies to assess the impact of such treatments on EMP-related phenomenon such as CTC burden, chemosensitivity/-resistance and micrometastasis in patients.
Collapse
|
34
|
Puik JR, Meijer LL, Le Large TY, Prado MM, Frampton AE, Kazemier G, Giovannetti E. miRNA profiling for diagnosis, prognosis and stratification of cancer treatment in cholangiocarcinoma. Pharmacogenomics 2017; 18:1343-1358. [PMID: 28832247 DOI: 10.2217/pgs-2017-0010] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a lethal malignancy originating from the biliary tract epithelium. Most patients are diagnosed at an advanced stage. Even after resection with curative intent, prognosis remains poor. Previous studies have reported the evolving role of miRNAs as novel biomarkers in cancer diagnosis, prognostication and chemotherapy response. Various miRNAs, such as miR-21, miR-26, miR-122 and miR-150, have been identified as possible blood-based biomarkers for noninvasive diagnosis of CCA. Moreover, epithelial-mesenchymal transition (EMT)- and angiogenesis-associated miRNAs have been implicated in tumor cell dissemination and are able to determine clinical outcome. In fact, miRNAs involved in cell survival might even determine chemotherapy response. This review provides an overview of known miRNAs as CCA-specific biomarkers.
Collapse
Affiliation(s)
- Jisce R Puik
- Department of Surgery, VU University Medical Center, Amsterdam, The Netherlands.,Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Laura L Meijer
- Department of Surgery, VU University Medical Center, Amsterdam, The Netherlands.,Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Tessa Ys Le Large
- Department of Surgery, VU University Medical Center, Amsterdam, The Netherlands.,Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands.,Laboratory of Experimental Oncology & Radiobiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Mireia Mato Prado
- Department of Surgery & Cancer, Imperial College, Hammersmith Hospital Campus, London, UK
| | - Adam E Frampton
- Department of Surgery & Cancer, Imperial College, Hammersmith Hospital Campus, London, UK
| | - Geert Kazemier
- Department of Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands.,Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa, Pisa, Italy
| |
Collapse
|
35
|
Peng R, Men J, Ma R, Wang Q, Wang Y, Sun Y, Ren J. miR-214 down-regulates ARL2 and suppresses growth and invasion of cervical cancer cells. Biochem Biophys Res Commun 2017; 484:623-630. [DOI: 10.1016/j.bbrc.2017.01.152] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/26/2017] [Indexed: 02/07/2023]
|
36
|
Vaquero J, Guedj N, Clapéron A, Nguyen Ho-Bouldoires TH, Paradis V, Fouassier L. Epithelial-mesenchymal transition in cholangiocarcinoma: From clinical evidence to regulatory networks. J Hepatol 2017; 66:424-441. [PMID: 27686679 DOI: 10.1016/j.jhep.2016.09.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/26/2016] [Accepted: 09/17/2016] [Indexed: 02/06/2023]
Abstract
Cholangiocarcinoma (CCA) is an aggressive tumor with a poor prognosis due to its late clinical presentation and the lack of effective non-surgical therapies. Unfortunately, most of the patients are not eligible for curative surgery owing to the presence of metastases at the time of diagnosis. Therefore, it is important to understand the steps leading to cell dissemination in patients with CCA. To metastasize from the primary site, cancer cells must acquire migratory and invasive properties by a cell plasticity-promoting phenomenon known as epithelial-mesenchymal transition (EMT). EMT is a reversible dynamic process by which epithelial cells gradually adopt structural and functional characteristics of mesenchymal cells, and has lately become a centre of attention in the field of metastatic dissemination. In the present review, we aim to provide an extensive overview of the current clinical data and the prognostic value of different EMT markers that have been analysed in CCA. We summarize all the regulatory networks implicated in EMT from the membrane receptors to the main EMT-inducing transcription factors (SNAIL, TWIST and ZEB). Furthermore, since a tumor is a complex structure not exclusively formed by tumor cells, we also address the prominent role of the main cell types of the desmoplastic stroma that characterizes CCA in the regulation of EMT. Finally, we discuss the therapeutic considerations and difficulties faced to develop an effective anti-EMT treatment due to the redundancies and bypasses among the pathways regulating EMT.
Collapse
Affiliation(s)
- Javier Vaquero
- INSERM, Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche Saint-Antoine (CRSA), F-75012 Paris, France; FONDATION ARC, F-94803 Villejuif, France
| | - Nathalie Guedj
- Service d'Anatomie Pathologique Hôpital Beaujon, F-92110 Clichy, France; INSERM, UMR 1149, Centre de Recherche sur l'Inflammation, F-75018 Paris, France
| | - Audrey Clapéron
- INSERM, Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche Saint-Antoine (CRSA), F-75012 Paris, France
| | | | - Valérie Paradis
- Service d'Anatomie Pathologique Hôpital Beaujon, F-92110 Clichy, France; INSERM, UMR 1149, Centre de Recherche sur l'Inflammation, F-75018 Paris, France
| | - Laura Fouassier
- INSERM, Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche Saint-Antoine (CRSA), F-75012 Paris, France.
| |
Collapse
|
37
|
Wang T, Hou J, Li Z, Zheng Z, Wei J, Song D, Hu T, Wu Q, Yang JY, Cai JC. miR-15a-3p and miR-16-1-3p Negatively Regulate Twist1 to Repress Gastric Cancer Cell Invasion and Metastasis. Int J Biol Sci 2017; 13:122-134. [PMID: 28123352 PMCID: PMC5264267 DOI: 10.7150/ijbs.14770] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 10/30/2016] [Indexed: 12/30/2022] Open
Abstract
MicroRNAs are a novel class of gene regulators that function as oncogenes or tumor suppressors. In our current study, we investigated the role of miR-15a-3p and miR-16-1-3p in the regulation of Twist1 expression and EMT process. Our bioinformatics analysis suggested that on the 3' UTR of Twist1, there are two conserved miRNA recognition sites for miR-15a-3p and miR-16-1-3p respectively. Interestingly, overexpression of miR-15a-3p and miR-16-1-3p significantly suppressed the activity of luciferase reporter containing Twist1-3' UTR, reduced mRNA and protein level of EMT related genes such as TWIST1, N-cadherin, α-SMA and Fibronectin, and repressed MMP9 and MMP2 activity, as well as cell migration and invasion. Conversely, inhibition of miR-15a-3p and miR-16-1-3p significantly increased TWIST1, N-cadherin, α-SMA and Fibronectin protein expression. In addition, Twist1 co-transfection significantly ameliorated the loss of cell migration and invasion. Moreover, overexpression of miR-15a-3p and miR-16-1-3p dramatically suppressed the ability of BGC823 cells to form colonies in vitro and develop tumors in vivo in nude mice. Finally, qPCR and Western blot analysis showed that miR-15a-3p and miR-16-1-3p were significantly reduced in clinical gastric cancer tissue, whereas Twist1 mRNA and protein were significantly up-regulated, suggesting that this aberrant down-regulation of miR-15a-3p and miR-16-1-3p might be associated with the abnormal regulation of Twist1 and the EMT process in gastric cancer development. Our results help to elucidate a novel and important mechanism for the regulation of Twist1 in the development of cancer.
Collapse
Affiliation(s)
- Tao Wang
- Department of Gastrointestinal Surgery, Zhongshan Hospital affiliated to Xiamen University, Xiamen, China 361004.; Institute of Gastrointestinal Oncology, Medical college of Xiamen University, Xiang'an, Xiamen, China 361102.; Xiehe Clinical Medical College, Fujian Medical University, Fuzhou, China 350001
| | - Jingjing Hou
- Department of Gastrointestinal Surgery, Zhongshan Hospital affiliated to Xiamen University, Xiamen, China 361004.; Institute of Gastrointestinal Oncology, Medical college of Xiamen University, Xiang'an, Xiamen, China 361102.; Xiehe Clinical Medical College, Fujian Medical University, Fuzhou, China 350001
| | - Zengpeng Li
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, 184 University Road, Xiamen, China 361005
| | - Zihan Zheng
- College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514
| | - Jie Wei
- Department of Basic Medical Sciences of Medical College, Xiamen University, Xiang'an, Xiamen, China 361102
| | - Dan Song
- State Key Laboratory of Cellular Stress Biology and Department of Biomedical Sciences, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, China 361102
| | - Tao Hu
- Department of Basic Medical Sciences of Medical College, Xiamen University, Xiang'an, Xiamen, China 361102
| | - Qiao Wu
- State Key Laboratory of Cellular Stress Biology and Department of Biomedical Sciences, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, China 361102
| | - James Y Yang
- State Key Laboratory of Cellular Stress Biology and Department of Biomedical Sciences, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, China 361102
| | - Jian-Chun Cai
- Department of Gastrointestinal Surgery, Zhongshan Hospital affiliated to Xiamen University, Xiamen, China 361004.; Institute of Gastrointestinal Oncology, Medical college of Xiamen University, Xiang'an, Xiamen, China 361102.; Xiehe Clinical Medical College, Fujian Medical University, Fuzhou, China 350001
| |
Collapse
|
38
|
Li XF, Wang Y, Zheng DD, Xu HX, Wang T, Pan M, Shi JH, Zhu JH. M1 macrophages promote aortic valve calcification mediated by microRNA-214/TWIST1 pathway in valvular interstitial cells. Am J Transl Res 2017; 8:5773-5783. [PMID: 28078049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 11/05/2016] [Indexed: 09/28/2022]
Abstract
OBJECTIVE The identification of the biological function of M1 macrophages and the mechanism underlying their role in valvular interstitial cell (VIC) calcification may provide therapeutic targets for the prevention of aortic valve calcification (AVC). This study investigated the mechanism by which M1 macrophages and macrophage-derived microvesicles (MVs) affected the calcification of VICs. An additional aim was to investigate the involvement of the miR-214 pathway in this process. METHODS The M1 or M2 macrophage phenotype in human calcific aortic valve was confirmed by gene expression analysis of M1 or M2 macrophage markers. Two macrophage cell lines (BMDMs and RAW 264.7 macrophages) were transformed into M1 macrophages by lipopolysaccharide (LPS) stimulation. To investigate the mechanism by which M1 macrophages promoted VIC calcification, the generated M1 macrophages and macrophage-derived MVs were co-cultured with VICs and VICs were then used for calcification or signals analysis. In addition, a hypercholesterolemic apoE-/- AVC murine model was used to evaluate the therapeutic efficacy of miR-214 specific-siRNA (miR-214 inhibitor). RESULTS Macrophages in calcific aortic valves showed M1-directed polarization. In the VICs co-cultured with LPS-stimulated M1 macrophages and macrophage-derived MVs, VIC calcification was enhanced, and the expression of TWIST1, a direct target of miR-214, was downregulated. We showed that knockdown of TWIST1 serves as a responding molecule for miR-214 and reversed the anti-calcification action of miR-214 inhibitor, mediating signal delivery by the M1 macrophage-derived MVs to VICs and promoting VIC calcification. When M1 macrophages co-cultured with VICs, TWIST1 overexpression in M1 macrophages had no effect on the expression of TWIST1 in VICs. As shown by intravenous therapy, knockdown of miR-214 in mice seemed to improve AVC in apoE-/- mice with high-cholesterol (HC)-diet induced AVC. CONCLUSIONS These findings suggested that M1 macrophages promoted AVC by the delivery of miR-214 to valvular interstitial cells via macrophage-derived MVs and subsequent downregulation of TWIST1 of valvular interstitial cells.
Collapse
Affiliation(s)
- Xiao-Fei Li
- Department of Cardiology, Affiliated Hospital of Nantong University Nantong 226001, China
| | - Yan Wang
- Department of Cardiology, Affiliated Hospital of Nantong University Nantong 226001, China
| | - Dong-Dong Zheng
- Department of Cardiology, Affiliated Hospital of Nantong University Nantong 226001, China
| | - Hai-Xia Xu
- Department of Cardiology, Affiliated Hospital of Nantong University Nantong 226001, China
| | - Teng Wang
- Department of Cardiology, Affiliated Hospital of Nantong University Nantong 226001, China
| | - Min Pan
- Department of Cardiology, Affiliated Hospital of Nantong University Nantong 226001, China
| | - Jia-Hai Shi
- Department of Cardio-Thoracic Surgery, Affiliated Hospital of Nantong University Nantong 226001, China
| | - Jian-Hua Zhu
- Department of Cardiology, Affiliated Hospital of Nantong University Nantong 226001, China
| |
Collapse
|
39
|
The Emerging Role of miRNAs and Their Clinical Implication in Biliary Tract Cancer. Gastroenterol Res Pract 2016; 2016:9797410. [PMID: 28115929 PMCID: PMC5223017 DOI: 10.1155/2016/9797410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/07/2016] [Accepted: 12/04/2016] [Indexed: 01/17/2023] Open
Abstract
Biliary tract cancers are aggressive malignancies that include gallbladder cancer and tumors of intra- and extrahepatic ducts and have a poor prognosis. Surgical resection remains the main curative therapy. Nevertheless, numerous patients experience recurrence even after radical surgery. This scenario drives the research to identify biliary tract cancer biomarkers despite the limited progress that has been made. Recently, a large number of studies have demonstrated that deregulated expression of microRNAs is closely associated with cancer development and progression. In this review, we highlight the role and importance of microRNAs in biliary tract cancers with an emphasis on utilizing circulating microRNAs as potential biomarkers. Additionally, we report several single-nucleotide polymorphisms in microRNA genes that are associated with the susceptibility of biliary tract tumors.
Collapse
|
40
|
Huang SB, Zheng CX. Gene alterations and epigenetic changes in intrahepatic cholangiocarcinoma. Expert Rev Anticancer Ther 2016; 17:89-96. [PMID: 27893290 DOI: 10.1080/14737140.2017.1266261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Shao-Bin Huang
- Department of Pancreato-biliary Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chao-Xu Zheng
- Department of Pancreato-biliary Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
41
|
Deregulated MicroRNAs in Biliary Tract Cancer: Functional Targets and Potential Biomarkers. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4805270. [PMID: 27957497 PMCID: PMC5120202 DOI: 10.1155/2016/4805270] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/10/2016] [Indexed: 02/07/2023]
Abstract
Biliary tract cancer (BTC) is still a fatal disease with very poor prognosis. The lack of reliable biomarkers for early diagnosis and of effective therapeutic targets is a major demanding problem in diagnosis and management of BTC. Due to the clinically silent and asymptomatic characteristics of the tumor, most patients are diagnosed at an already advanced stage allowing only for a palliative therapeutic approach. MicroRNAs are small noncoding RNAs well known to regulate various cellular functions and pathologic events including the formation and progression of cancer. Over the last years, several studies have shed light on the role of microRNAs in BTC, making them potentially attractive therapeutic targets and candidates as biomarkers. In this review, we will focus on the role of oncogenic and tumor suppressor microRNAs and their direct targets in BTC. Furthermore, we summarize and discuss data that evaluate the diagnostic power of deregulated microRNAs as possible future biomarkers for BTC.
Collapse
|
42
|
Tackling Cancer Stem Cells via Inhibition of EMT Transcription Factors. Stem Cells Int 2016; 2016:5285892. [PMID: 27840647 PMCID: PMC5093281 DOI: 10.1155/2016/5285892] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/03/2016] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cell (CSC) has become recognized for its role in both tumorigenesis and poor patient prognosis in recent years. Traditional therapeutics are unable to effectively eliminate this group of cells from the bulk population of cancer cells, allowing CSCs to persist posttreatment and thus propagate into secondary tumors. The therapeutic potential of eliminating CSCs, to decrease tumor relapse, has created a demand for identifying mechanisms that directly target and eliminate cancer stem cells. Molecular profiling has shown that cancer cells and tumors that exhibit the CSC phenotype also express genes associated with the epithelial-to-mesenchymal transition (EMT) feature. Ample evidence has demonstrated that upregulation of master transcription factors (TFs) accounting for the EMT process such as Snail/Slug and Twist can reprogram cancer cells from differentiated to stem-like status. Despite being appealing therapeutic targets for tackling CSCs, pharmacological approaches that directly target EMT-TFs remain impossible. In this review, we will summarize recent advances in the regulation of Snail/Slug and Twist at transcriptional, translational, and posttranslational levels and discuss the clinical implication and application for EMT blockade as a promising strategy for CSC targeting.
Collapse
|
43
|
Liu HT, Gao P. The roles of microRNAs related with progression and metastasis in human cancers. Tumour Biol 2016; 37:10.1007/s13277-016-5436-9. [PMID: 27714675 DOI: 10.1007/s13277-016-5436-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/23/2016] [Indexed: 02/06/2023] Open
Abstract
Metastasis is an important factor in predicting the prognosis of the patients with cancers and contributes to high cancer-related mortality. Recent studies indicated that microRNAs (miRNAs) played a functional role in the initiation and progression of human malignancies. MicroRNAs are small non-coding RNAs of about 22 nucleotides in length that can induce messenger RNA (mRNA) degradation or repress mRNA translation by binding to the 3' untranslated region (3'-UTR) of their target genes. Overwhelming reports indicated that miRNAs could regulate cancer invasion and metastasis via epithelial-to-mesenchymal transition (EMT)-related and/or non-EMT-related mechanisms. In this review, we concentrate on the underlying mechanisms of miRNAs in regulating cancer progression and metastasis.
Collapse
Affiliation(s)
- Hai-Ting Liu
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, People's Republic of China
- Department of Pathology, School of Basic Medicine, Shandong University, Jinan, People's Republic of China
| | - Peng Gao
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, People's Republic of China.
- Department of Pathology, School of Basic Medicine, Shandong University, Jinan, People's Republic of China.
| |
Collapse
|
44
|
Li Z, Shen J, Chan MTV, Wu WKK. The role of microRNAs in intrahepatic cholangiocarcinoma. J Cell Mol Med 2016; 21:177-184. [PMID: 27619971 PMCID: PMC5192883 DOI: 10.1111/jcmm.12951] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 07/14/2016] [Indexed: 12/14/2022] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is the second most common primary hepatic malignancy with poor prognosis. Despite improvements in its diagnosis and therapy, the prognosis for ICC patients remains poor. An improved understanding of ICC pathogenesis and consequential identification of novel therapeutic targets would improve the prognosis of ICC patients. MicroRNAs (miRNAs) are a class of highly conserved, endogenous, small non‐coding RNA molecules of 18–23 nucleotides in length, which regulate gene expression through complementary base‐pairing with target messenger RNAs and subsequent gene silencing. Several studies have shown deregulated expression of miRNAs in ICC cell lines and tissues, in which these miRNAs play important roles in ICC apoptosis, cell proliferation, invasion, migration and metastasis. In this review, we illustrate the potential role of miRNA in the pathogenesis of ICC and explore the possibilities of using miRNAs as prognostic and diagnostic markers, as well as therapeutic targets in ICC.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianxiong Shen
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Digestive Daase, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
45
|
Zhao X, Lu C, Chu W, Zhang Y, Zhang B, Zeng Q, Wang R, Li Z, Lv B, Liu J. microRNA-214 Governs Lung Cancer Growth and Metastasis by Targeting Carboxypeptidase-D. DNA Cell Biol 2016; 35:715-721. [PMID: 27494742 DOI: 10.1089/dna.2016.3398] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lung cancer is one of the most malignant cancers with a high metastatic potential. The purpose of this study was to study the role and the underlying mechanism of miR-214 in lung cancer progression. The expression of miR-214 in normal lung and lung cancer tissue was analyzed by quantitative real-time PCR analysis. Furthermore, H1299 cells were infected with miR-214 lentivirus, and the effect of infection on cell viability and migration was analyzed. Carboxypeptidase-D (CPD), as a potential target of miR-214, was characterized in either normal lung or lung cancer tissues. The interaction of CPD expression with the tumor suppressing effect of miR-214 was characterized. We demonstrated that low miR-214 expression is a hallmark of lung cancer, especially high-grade and metastatic cancer. In vitro studies in H1299 cells confirmed that low miR-214 expression is associated with enhanced proliferation and migratory abilities. Similarly, CPD overexpression coincides with high-grade lung cancer and the CPD overexpression could reverse the inhibitory effects of miR-214. miR-214 is a tumor suppressor in lung cancer. miR-214 inhibits lung cancer progression by targeting CPD. The miR-214-CPD axis may be a therapeutic axis for lung cancer patients.
Collapse
Affiliation(s)
- Xiaojian Zhao
- 1 Department of Thoracic Surgery, The First Hospital of Shijiazhuang , Shijiazhuang, China
| | - Caiping Lu
- 2 Department of Endocrinology, The First Hospital of Shijiazhuang , Shijiazhuang, China
| | - Weiwei Chu
- 1 Department of Thoracic Surgery, The First Hospital of Shijiazhuang , Shijiazhuang, China
| | - Yaxiao Zhang
- 1 Department of Thoracic Surgery, The First Hospital of Shijiazhuang , Shijiazhuang, China
| | - Bing Zhang
- 1 Department of Thoracic Surgery, The First Hospital of Shijiazhuang , Shijiazhuang, China
| | - Qiang Zeng
- 1 Department of Thoracic Surgery, The First Hospital of Shijiazhuang , Shijiazhuang, China
| | - Renfeng Wang
- 1 Department of Thoracic Surgery, The First Hospital of Shijiazhuang , Shijiazhuang, China
| | - Zhe Li
- 1 Department of Thoracic Surgery, The First Hospital of Shijiazhuang , Shijiazhuang, China
| | - Baolei Lv
- 1 Department of Thoracic Surgery, The First Hospital of Shijiazhuang , Shijiazhuang, China
| | - Jiabao Liu
- 1 Department of Thoracic Surgery, The First Hospital of Shijiazhuang , Shijiazhuang, China
| |
Collapse
|
46
|
Howell JA, Khan SA. The role of miRNAs in cholangiocarcinoma. Hepat Oncol 2016; 3:167-180. [PMID: 30191036 PMCID: PMC6095304 DOI: 10.2217/hep-2015-0003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/07/2016] [Indexed: 02/08/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a devastating malignancy with high mortality, in part due to the combination of late presentation, significant diagnostic challenges and limited effective treatment options. Late presentation and diagnosis contribute to the high mortality in CCA and there is an urgent unmet need for diagnostic and prognostic biomarkers to facilitate early diagnosis and treatment stratification to improve clinical outcomes. MiRs are small ncRNA molecules that regulate gene expression and modulate both tumor suppressive and oncogenic pathways. They have a well-defined role in carcinogenesis, including CCA. In this review, we outline the evidence for MiRs in the pathogenesis of CCA and their potential utility as diagnostic and prognostic biomarkers to guide clinical management.
Collapse
Affiliation(s)
- Jessica A Howell
- Department of Hepatology, Level 10 QEQM Building, St Mary's Hospital Campus, Imperial College London, Praed Street, London, W2 1NY, UK
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Victoria Pde, Fitzroy 3065, Victoria, Australia
| | - Shahid A Khan
- Department of Hepatology, Level 10 QEQM Building, St Mary's Hospital Campus, Imperial College London, Praed Street, London, W2 1NY, UK
- *Author for correspondence:
| |
Collapse
|
47
|
WANG FANG, LI LIN, CHEN ZHUO, ZHU MINGZHI, GU YUANTING. MicroRNA-214 acts as a potential oncogene in breast cancer by targeting the PTEN-PI3K/Akt signaling pathway. Int J Mol Med 2016; 37:1421-8. [DOI: 10.3892/ijmm.2016.2518] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 02/25/2016] [Indexed: 11/06/2022] Open
|
48
|
Wang LJ, He CC, Sui X, Cai MJ, Zhou CY, Ma JL, Wu L, Wang H, Han SX, Zhu Q. MiR-21 promotes intrahepatic cholangiocarcinoma proliferation and growth in vitro and in vivo by targeting PTPN14 and PTEN. Oncotarget 2016; 6:5932-46. [PMID: 25803229 PMCID: PMC4467412 DOI: 10.18632/oncotarget.3465] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/20/2015] [Indexed: 12/27/2022] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) constitutes the second-most common primary hepatic malignancy. MicroRNAs (miRNAs) play important roles in the pathogenesis of ICC. However, the clinical significance of miR-21 levels in ICC remains unclear. Here, we investigated the role of miR-21 in ICC and found that its expression was significantly upregulated in serum of ICC patients. Serum miR-21 levels robustly distinguished ICC patients from control subjects. Further experiments showed that inhibition of miR-21 suppressed ICC cell proliferation in vitro and tumor growth in vivo. Specifically, inhibition of miR-21 induced cell cycle arrest and apoptosis. Moreover, PTPN14 and PTEN were identified as direct and functional targets of miR-21. Finally, we showed high expression levels of miR-21 were closely related to adverse clinical features, diminished survival, and poor prognosis in ICC patients. This study revealed functional and mechanistic links between miR-21 and tumor suppressor genes, PTPN14 and PTEN, in the pathogenesis of ICC. MiR-21 not only plays important roles in the regulation of cell proliferation and tumor growth in ICC, but is also a diagnostic and prognostic marker, and a potential therapeutic target for ICC.
Collapse
Affiliation(s)
- Li-Juan Wang
- Department of Oncology, the First Affiliated Hospital of Medical school of Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
| | - Chen-Chen He
- Department of Oncology, the First Affiliated Hospital of Medical school of Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
| | - Xin Sui
- Department of Oncology, the First Affiliated Hospital of Medical school of Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
| | - Meng-Jiao Cai
- Department of Oncology, the First Affiliated Hospital of Medical school of Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
| | - Cong-Ya Zhou
- Department of Oncology, the First Affiliated Hospital of Medical school of Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
| | - Jin-Lu Ma
- Department of Oncology, the First Affiliated Hospital of Medical school of Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
| | - Lei Wu
- Department of Oncology, the First Affiliated Hospital of Medical school of Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China.,Center of Radiotherapy, Shaanxi Provincial Tumor Hospital, Shaanxi Province, P.R. China
| | - Hao Wang
- Department of Oncology, the First Affiliated Hospital of Medical school of Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China.,Center of Radiotherapy, Shaanxi Provincial Tumor Hospital, Shaanxi Province, P.R. China
| | - Su-Xia Han
- Department of Oncology, the First Affiliated Hospital of Medical school of Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
| | - Qing Zhu
- Department of Oncology, the First Affiliated Hospital of Medical school of Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
| |
Collapse
|
49
|
Wei M, Lü L, Lin P, Chen Z, Quan Z, Tang Z. Multiple cellular origins and molecular evolution of intrahepatic cholangiocarcinoma. Cancer Lett 2016; 379:253-61. [PMID: 26940139 DOI: 10.1016/j.canlet.2016.02.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 12/12/2022]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is an aggressive malignancy associated with unfavorable prognosis and for which no effective treatments are available. Its molecular pathogenesis is poorly understood. Genome-wide sequencing and high-throughput technologies have provided critical insights into the molecular basis of ICC while sparking a heated debate on the cellular origin. Cancer exhibits variabilities in origin, progression and cell biology. Recent evidence suggests that ICC has multiple cellular origins, including differentiated hepatocytes; intrahepatic biliary epithelial cells (IBECs)/cholangiocytes; pluripotent stem cells, such as hepatic stem/progenitor cells (HPCs) and biliary tree stem/progenitor cells (BTSCs); and peribiliary gland (PBG). However, both somatic mutagenesis and epigenomic features are highly cell type-specific. Multiple cellular origins may have profoundly different genomic landscapes and key signaling pathways, driving phenotypic variation and thereby posing significant challenges to personalized medicine in terms of achieving the optimal drug response and patient outcome. Considering this information, we have summarized the latest experimental evidence and relevant literature to provide an up-to-date view of the cellular origin of ICC, which will contribute to establishment of a hierarchical model of carcinogenesis and allow for improvement of the anatomical-based classification of ICC. These new insights have important implications for both the diagnosis and treatment of ICC patients.
Collapse
Affiliation(s)
- Miaoyan Wei
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Lisheng Lü
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Peiyi Lin
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Zhisheng Chen
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Zhiwei Quan
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Zhaohui Tang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
50
|
The interplay between microRNAs and Twist1 transcription factor: a systematic review. Tumour Biol 2016; 37:7007-19. [PMID: 26880587 DOI: 10.1007/s13277-016-4960-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/02/2016] [Indexed: 12/11/2022] Open
Abstract
Twist1 (also known as Twist) is a transcription factor that belongs to the family of basic helix-loop-helix (bHLH) proteins. It functions as a negative regulator of epithelial gene expression and a positive regulator of mesenchymal gene expression, thereby leading to induction of the epithelial mesenchymal transition (EMT), a process in which epithelial cells acquire the motile and migratory characteristics of mesenchymal cells. In addition to regulating the expression of protein-coding genes, Twist1 regulates the expression of microRNAs (miRNAs), adding a regulatory layer to EMT induction. Interestingly, the mRNA of Twist1 represents a downstream target of miRNAs, indicating an intricate network between miRNAs and Twist1. This network was shown to play multiple roles in cancer cell migration, invasion, and metastasis. The network can induce angiogenesis, protect cells from oncogene-induced apoptosis and senescence, enhance cancer cell resistance to conventional therapies, and increase cancer stem cell (CSC) populations. Recently, miRNAs have attracted considerable attention as potential promising tools in cancer therapies. Thus, this systematic review was conducted to clarify the reciprocal link between Twist1 and miRNAs in order to provide potential candidate miRNAs for diagnostic and therapeutic approaches in cancer treatment.
Collapse
|