1
|
Gonçalves A, Machado R, Gomes AC. Self-assembled nanoparticles of hybrid elastin-like and Oncostatin M polymers for improved wound healing. BIOMATERIALS ADVANCES 2025; 169:214150. [PMID: 39693870 DOI: 10.1016/j.bioadv.2024.214150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
Oncostatin M (OSM) is a pleiotropic cytokine that can significantly enhance wound healing. Here, we report on the use of nanoparticles (NPs) formulated from a genetically engineered A200_hOSM protein polymer, which combines an elastin-like recombinamer (A200) with human OSM (hOSM) in the same molecule, aiming at enhancing wound healing processes. A200_hOSM NPs were obtained by self-assembly and evaluated for their bioactivity in human keratinocytes and fibroblasts. The NPs demonstrated superior efficacy in promoting cell proliferation in a dose-dependent manner, exhibiting nearly threefold greater proliferation at 48 and 72 h, compared to cells treated with commercial hOSM. Moreover, the NPs stimulated cell migration and collagen production through activation of JAK/STAT3 signaling. They also promoted the production of IL-6 and IL-8, pro-inflammatory cytokines with a critical role for wound healing. Promotion of keratinocyte proliferation and differentiation were further validated in non-commercial 3D skin equivalents. The A200_hOSM NPs revealed potential in accelerating wound healing, evidenced by reduced wound size and a thicker epidermal layer. This system represents a significant advancement in the field of bioinspired biomaterials by improving cytokine bioavailability, allowing for localized therapy and offering a cost-effective strategy for employing hOSM in wound healing management.
Collapse
Affiliation(s)
- Anabela Gonçalves
- CBMA (Centre of Molecular and Environmental Biology)/ Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; IB-S Institute of Science and Innovation for Sustainability, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Raul Machado
- CBMA (Centre of Molecular and Environmental Biology)/ Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; IB-S Institute of Science and Innovation for Sustainability, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal.
| | - Andreia C Gomes
- CBMA (Centre of Molecular and Environmental Biology)/ Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; IB-S Institute of Science and Innovation for Sustainability, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
2
|
Sonkusle S, Singh V. Comparison of oncostatin M cytokine levels in saliva and serum in periodontitis: a clinicobiochemical study. CANADIAN JOURNAL OF DENTAL HYGIENE : CJDH = JOURNAL CANADIEN DE L'HYGIENE DENTAIRE : JCHD 2024; 58:155-160. [PMID: 39513097 PMCID: PMC11539946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/01/2023] [Accepted: 04/12/2024] [Indexed: 11/15/2024]
Abstract
Background Oncostatin M (OSM), a 28 kDa glycoprotein 130 pleiotropic cytokine belonging to the interleukin-6 (IL-6) family, is mainly produced by neutrophils, activated T cells, monocytes, and macrophages. In response to tissue injury, it may stimulate the production of IL-6 alone or act synergistically with IL-6 or TNF-α contributing to the inflammatory cycle. Periodontitis is an inflammatory disease resulting from a dysbiotic bacterial community, which has a strong association with increased OSM production. Objectives To investigate and compare the levels of salivary and serum OSM in healthy subjects and subjects with periodontitis. Materials and methods Eighty-eight (88) individuals between the ages of 25 and 60 years were divided into 2 groups of 44: a periodontally healthy group (Group A) and a periodontitis group (Group B) based on clinical examination and radiographic analysis. Evaluation of salivary and serum OSM by enzyme-linked immunosorbent assay (ELISA) was performed in both groups. Results There was a significant difference in OSM levels between Groups A and B ( p< 0.01), with higher values in Group B. There was a positive correlation between the clinical parameters and OSM levels, indicating that OSM plays a significant role in modulating the inflammatory response of periodontal tissues. Conclusion The expression of cytokine OSM may play a potential role in the immunopathogenesis of periodontitis, suggesting a role as an inflammatory diagnostic marker.
Collapse
Affiliation(s)
- Shweta Sonkusle
- Department of Periodontics, PMNM Dental College and Hospital, Karnataka, India
| | - Varsha Singh
- Department of Periodontics, PMNM Dental College and Hospital, Karnataka, India
| |
Collapse
|
3
|
Han L, Yan J, Li T, Lin W, Huang Y, Shen P, Ba X, Huang Y, Qin K, Geng Y, Wang H, Zheng K, Liu Y, Wang Y, Chen Z, Tu S. Multifaceted oncostatin M: novel roles and therapeutic potential of the oncostatin M signaling in rheumatoid arthritis. Front Immunol 2023; 14:1258765. [PMID: 38022540 PMCID: PMC10654622 DOI: 10.3389/fimmu.2023.1258765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Rheumatoid arthritis (RA) is a self-immune inflammatory disease characterized by joint damage. A series of cytokines are involved in the development of RA. Oncostatin M (OSM) is a pleiotropic cytokine that primarily activates the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway, the mitogen-activated protein kinase (MAPK) signaling pathway, and other physiological processes such as cell proliferation, inflammatory response, immune response, and hematopoiesis through its receptor complex. In this review, we first describe the characteristics of OSM and its receptor, and the biological functions of OSM signaling. Subsequently, we discuss the possible roles of OSM in the development of RA from clinical and basic research perspectives. Finally, we summarize the progress of clinical studies targeting OSM for the treatment of RA. This review provides researchers with a systematic understanding of the role of OSM signaling in RA, which can guide the development of drugs targeting OSM for the treatment of RA.
Collapse
Affiliation(s)
- Liang Han
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Yan
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Li
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiji Lin
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Shen
- Department of Rheumatology and Immunology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xin Ba
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Qin
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yinhong Geng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huanhuan Wang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kaifeng Zheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yafei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shenghao Tu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Caligiuri A, Gitto S, Lori G, Marra F, Parola M, Cannito S, Gentilini A. Oncostatin M: From Intracellular Signaling to Therapeutic Targets in Liver Cancer. Cancers (Basel) 2022; 14:4211. [PMID: 36077744 PMCID: PMC9454586 DOI: 10.3390/cancers14174211] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Primary liver cancers represent the third-most-common cause of cancer-related mortality worldwide, with an incidence of 80-90% for hepatocellular carcinoma (HCC) and 10-15% for cholangiocarcinoma (CCA), and an increasing morbidity and mortality rate. Although HCC and CCA originate from independent cell populations (hepatocytes and biliary epithelial cells, respectively), they develop in chronically inflamed livers. Evidence obtained in the last decade has revealed a role for cytokines of the IL-6 family in the development of primary liver cancers. These cytokines operate through the receptor subunit gp130 and the downstream Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathways. Oncostatin M (OSM), a member of the IL-6 family, plays a significant role in inflammation, autoimmunity, and cancer, including liver tumors. Although, in recent years, therapeutic approaches for the treatment of HCC and CCA have been implemented, limited treatment options with marginal clinical benefits are available. We discuss how OSM-related pathways can be selectively inhibited and therapeutically exploited for the treatment of liver malignancies.
Collapse
Affiliation(s)
- Alessandra Caligiuri
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| | - Stefano Gitto
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| | - Giulia Lori
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| | - Maurizio Parola
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology, University of Torino, 10125 Torino, Italy
| | - Stefania Cannito
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology, University of Torino, 10125 Torino, Italy
| | - Alessandra Gentilini
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| |
Collapse
|
5
|
Das A, Madeshiya AK, Biswas N, Ghosh N, Gorain M, Rawat A, Mahajan SP, Khanna S, Sen CK, Roy S. Oncostatin M Improves Cutaneous Wound Re-Epithelialization and Is Deficient under Diabetic Conditions. J Invest Dermatol 2022; 142:679-691.e3. [PMID: 34534575 PMCID: PMC8860865 DOI: 10.1016/j.jid.2021.04.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/03/2021] [Accepted: 04/12/2021] [Indexed: 11/29/2022]
Abstract
Impaired re-epithelialization characterized by hyperkeratotic nonmigratory wound epithelium is a hallmark of nonhealing diabetic wounds. In chronic wounds, the copious release of oncostatin M (OSM) from wound macrophages is evident. OSM is a potent keratinocyte (KC) activator. This work sought to understand the signal transduction pathway responsible for wound re-epithelialization, the primary mechanism underlying wound closure. Daily topical treatment of full-thickness excisional wounds of C57BL/6 mice with recombinant murine OSM improved wound re-epithelialization and accelerated wound closure by bolstering KC proliferation and migration. OSM activated the Jak-signal transducer and activator of transcription pathway as manifested by signal transducer and activator of transcription 3 phosphorylation. Such signal transduction in the human KC induced TP63, the master regulator of KC function. Elevated TP63 induced ITGB1, a known effector of KC migration. In diabetic wounds, OSM was more abundant than the level in nondiabetic wounds. However, in diabetic wounds, OSM activity was compromised by glycation. Aminoguanidine, a deglycation agent, rescued the compromised KC migration caused by glycated OSM. Finally, topical application of recombinant OSM improved KC migration and accelerated wound closure in db/db mice. This work recognizes that despite its abundance at the wound site, OSM is inactivated by glycation, and topical delivery of exogenous OSM is likely to be productive in accelerating diabetic wound closure.
Collapse
Affiliation(s)
- Amitava Das
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Amit K. Madeshiya
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Nirupam Biswas
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Nandini Ghosh
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Mahadeo Gorain
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Atul Rawat
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Sanskruti P. Mahajan
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Savita Khanna
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Chandan K. Sen
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Sashwati Roy
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| |
Collapse
|
6
|
Headland SE, Dengler HS, Xu D, Teng G, Everett C, Ratsimandresy RA, Yan D, Kang J, Ganeshan K, Nazarova EV, Gierke S, Wedeles CJ, Guidi R, DePianto DJ, Morshead KB, Huynh A, Mills J, Flanagan S, Hambro S, Nunez V, Klementowicz JE, Shi Y, Wang J, Bevers J, Ramirez-Carrozzi V, Pappu R, Abbas A, Vander Heiden J, Choy DF, Yadav R, Modrusan Z, Panettieri RA, Koziol-White C, Jester WF, Jenkins BJ, Cao Y, Clarke C, Austin C, Lafkas D, Xu M, Wolters PJ, Arron JR, West NR, Wilson MS. Oncostatin M expression induced by bacterial triggers drives airway inflammatory and mucus secretion in severe asthma. Sci Transl Med 2022; 14:eabf8188. [PMID: 35020406 DOI: 10.1126/scitranslmed.abf8188] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Sarah E Headland
- Immunology Discovery,Genentech Inc., South San Francisco, CA 94080, USA
| | - Hart S Dengler
- Immunology Discovery,Genentech Inc., South San Francisco, CA 94080, USA
| | - Daqi Xu
- Immunology Discovery,Genentech Inc., South San Francisco, CA 94080, USA
| | - Grace Teng
- Immunology Discovery,Genentech Inc., South San Francisco, CA 94080, USA
| | - Christine Everett
- Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA 94080, USA
| | | | - Donghong Yan
- Translational Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Jing Kang
- Translational Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Kirthana Ganeshan
- Immunology Discovery,Genentech Inc., South San Francisco, CA 94080, USA
| | | | - Sarah Gierke
- Center for Advanced Light Microscopy, Genentech Inc., South San Francisco, CA 94080, USA.,Pathology, Genentech Inc., South San Francisco, CA 94080, USA
| | | | - Riccardo Guidi
- Immunology Discovery,Genentech Inc., South San Francisco, CA 94080, USA
| | - Daryle J DePianto
- Immunology Discovery,Genentech Inc., South San Francisco, CA 94080, USA
| | | | - Alison Huynh
- Necropsy, Genentech Inc., South San Francisco, CA 94080, USA
| | - Jessica Mills
- Necropsy, Genentech Inc., South San Francisco, CA 94080, USA
| | - Sean Flanagan
- Necropsy, Genentech Inc., South San Francisco, CA 94080, USA
| | - Shannon Hambro
- Necropsy, Genentech Inc., South San Francisco, CA 94080, USA
| | - Victor Nunez
- Necropsy, Genentech Inc., South San Francisco, CA 94080, USA
| | | | - Yongchang Shi
- Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Jianyong Wang
- Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Jack Bevers
- Antibody Discovery, Genentech Inc., South San Francisco, CA 94080, USA
| | | | - Rajita Pappu
- Immunology Discovery,Genentech Inc., South San Francisco, CA 94080, USA
| | - Alex Abbas
- OMNI Bioinformatics, Genentech Inc., South San Francisco, CA 94080, USA
| | | | - David F Choy
- Biomarker Discovery OMNI, Genentech Inc., South San Francisco, CA 94080, USA
| | - Rajbharan Yadav
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc., South San Francisco, CA 94080, USA
| | - Zora Modrusan
- Molecular Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Cynthia Koziol-White
- Rutgers Institute for Translational Medicine and Science, State University of New Jersey, New Brunswick, NJ 08901, USA
| | - William F Jester
- Rutgers Institute for Translational Medicine and Science, State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular Translational Science, Faculty of Medicine, Nursing, and Health Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Yi Cao
- OMNI Bioinformatics, Genentech Inc., South San Francisco, CA 94080, USA
| | - Christine Clarke
- OMNI Bioinformatics, Genentech Inc., South San Francisco, CA 94080, USA
| | - Cary Austin
- Pathology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Daniel Lafkas
- Immunology Discovery,Genentech Inc., South San Francisco, CA 94080, USA
| | - Min Xu
- Translational Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Paul J Wolters
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Joseph R Arron
- Immunology Discovery,Genentech Inc., South San Francisco, CA 94080, USA
| | - Nathaniel R West
- Cancer Immunology Discovery, Genentech Inc., South San Francisco, CA 94080, USA
| | - Mark S Wilson
- Immunology Discovery,Genentech Inc., South San Francisco, CA 94080, USA
| |
Collapse
|
7
|
Barakat M, DiPietro LA, Chen L. Limited Treatment Options for Diabetic Wounds: Barriers to Clinical Translation Despite Therapeutic Success in Murine Models. Adv Wound Care (New Rochelle) 2021; 10:436-460. [PMID: 33050829 PMCID: PMC8236303 DOI: 10.1089/wound.2020.1254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022] Open
Abstract
Significance: Millions of people worldwide suffer from diabetes mellitus and its complications, including chronic diabetic wounds. To date, there are few widely successful clinical therapies specific to diabetic wounds beyond general wound care, despite the vast number of scientific discoveries in the pathogenesis of defective healing in diabetes. Recent Advances: In recent years, murine animal models of diabetes have enabled the investigation of many possible therapeutics for diabetic wound care. These include specific cell types, growth factors, cytokines, peptides, small molecules, plant extracts, microRNAs, extracellular vesicles, novel wound dressings, mechanical interventions, bioengineered materials, and more. Critical Issues: Despite many research discoveries, few have been translated from their success in murine models to clinical use in humans. This massive gap between bench discovery and bedside application begs the simple and critical question: what is still missing? The complexity and multiplicity of the diabetic wound makes it an immensely challenging therapeutic target, and this lopsided progress highlights the need for new methods to overcome the bench-to-bedside barrier. How can laboratory discoveries in animal models be effectively translated to novel clinical therapies for human patients? Future Directions: As research continues to decipher deficient healing in diabetes, new approaches and considerations are required to ensure that these discoveries can become translational, clinically usable therapies. Clinical progress requires the development of new, more accurate models of the human disease state, multifaceted investigations that address multiple critical components in wound repair, and more innovative research strategies that harness both the existing knowledge and the potential of new advances across disciplines.
Collapse
Affiliation(s)
- May Barakat
- Center for Wound Repair and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Luisa A. DiPietro
- Center for Wound Repair and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Lin Chen
- Center for Wound Repair and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
8
|
Rathod S, Khan F, Kolte A, Gupta M, Chari S, Gonde N. Quantitative analysis of oncostatin M levels in chronic periodontitis patients. JOURNAL OF THE INTERNATIONAL CLINICAL DENTAL RESEARCH ORGANIZATION 2020. [DOI: 10.4103/jicdro.jicdro_51_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
9
|
Abstract
Oncostain M, a member of the IL-6 family of cytokines, is produced by immune cells in response to infections and tissue injury. OSM has a broad, often context-dependent effect on various cellular processes including differentiation, hematopoiesis, cell proliferation, and cell survival. OSM signaling is initiated by binding to type I (LIFRβ/gp130) or type II (OSMRβ/gp130) receptor complexes and involves activation of Janus kinase/signal transducer and activator of transcription, mitogen-activated protein kinase, and phosphatidylinositol-3-kinase. High levels of OSM have been detected in many chronic inflammatory conditions characterized by fibrosis, giving a rationale to target OSM for the treatment of these diseases. Here we discuss the current knowledge on the role of OSM in various stages of the fibrotic process including inflammation, vascular dysfunction, and activation of fibroblasts.
Collapse
Affiliation(s)
| | - Maria Trojanowska
- Corresponding Author: Maria Trojanowska, Boston University School of Medicine, 72 East Concord St, E-5, Boston, MA 02118, Tel.: 617-638-4318; Fax: 617-638-5226
| |
Collapse
|
10
|
Lan Y, Theng S, Huang T, Choo K, Chen C, Kuo H, Chong K. Oncostatin M-Preconditioned Mesenchymal Stem Cells Alleviate Bleomycin-Induced Pulmonary Fibrosis Through Paracrine Effects of the Hepatocyte Growth Factor. Stem Cells Transl Med 2016; 6:1006-1017. [PMID: 28297588 PMCID: PMC5442768 DOI: 10.5966/sctm.2016-0054] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/29/2016] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are widely considered for treatment of pulmonary fibrosis based on the anti‐inflammatory, antifibrotic, antiapoptotic, and regenerative properties of the cells. Recently, elevated levels of oncostatin M (OSM) have been reported in the bronchoalveolar lavage fluid of a pulmonary fibrosis animal model and in patients. In this work, we aimed to prolong engrafted MSC survival and to enhance the effectiveness of pulmonary fibrosis transplantation therapy by using OSM‐preconditioned MSCs. OSM‐preconditioned MSCs were shown to overexpress type 2 OSM receptor (gp130/OSMRβ) and exhibited high susceptibility to OSM, resulting in upregulation of the paracrine factor, hepatocyte growth factor (HGF). Moreover, OSM‐preconditioned MSCs enhanced cell proliferation and migration, attenuated transforming growth factor‐β1‐ or OSM‐induced extracellular matrix production in MRC‐5 fibroblasts through paracrine effects. In bleomycin‐induced lung fibrotic mice, transplantation of OSM‐preconditioned MSCs significantly improved pulmonary respiratory functions and downregulated expression of inflammatory factors and fibrotic factors in the lung tissues. Histopathologic examination indicated remarkable amelioration of the lung fibrosis. LacZ‐tagged MSCs were detected in the lung tissues of the OSM‐preconditioned MSC‐treated mice 18 days after post‐transplantation. Taken together, our data further demonstrated that HGF upregulation played an important role in mediating the therapeutic effects of transplanted OSM‐preconditioned MSCs in alleviating lung fibrosis in the mice. Stem Cells Translational Medicine2017;6:1006–1017
Collapse
Affiliation(s)
- Ying‐Wei Lan
- Graduate Institute of Biomedical Sciences, Division of Biotechnology, College of Medicine, Chang Gung University, Tao‐Yuan, Taiwan, Republic of China
| | - Si‐Min Theng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao‐Yuan, Taiwan, Republic of China
| | - Tsung‐Teng Huang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao‐Yuan, Taiwan, Republic of China
- Center for Molecular and Clinical Immunology, College of Medicine, Chang Gung University, Tao‐Yuan, Taiwan, Republic of China
| | - Kong‐Bung Choo
- Department of Preclinical Sciences, Faculty of Medicine and Health Sciences, and Centre for Stem Cell Research, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Chuan‐Mu Chen
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, Republic of China
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, Republic of China
- Rong‐Hsing Translational Medicine Center, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Han‐Pin Kuo
- Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, Tao‐Yuan, Taiwan, Republic of China
- Department of Medicine, College of Medicine, Chang Gung University, Tao‐Yuan, Taiwan, Republic of China
- Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Tao‐Yuan, Taiwan, Republic of China
| | - Kowit‐Yu Chong
- Graduate Institute of Biomedical Sciences, Division of Biotechnology, College of Medicine, Chang Gung University, Tao‐Yuan, Taiwan, Republic of China
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao‐Yuan, Taiwan, Republic of China
- Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, Tao‐Yuan, Taiwan, Republic of China
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Tao‐Yuan, Taiwan, Republic of China
| |
Collapse
|
11
|
Beigel F, Friedrich M, Probst C, Sotlar K, Göke B, Diegelmann J, Brand S. Oncostatin M mediates STAT3-dependent intestinal epithelial restitution via increased cell proliferation, decreased apoptosis and upregulation of SERPIN family members. PLoS One 2014; 9:e93498. [PMID: 24710357 PMCID: PMC3977870 DOI: 10.1371/journal.pone.0093498] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 03/06/2014] [Indexed: 11/18/2022] Open
Abstract
Objective Oncostatin M (OSM) is produced by activated T cells, monocytes, and dendritic cells and signals through two distinct receptor complexes consisting of gp130 and LIFR (I) or OSMR-β and gp130 (II), respectively. Aim of this study was to analyze the role of OSM in intestinal epithelial cells (IEC) and intestinal inflammation. Methods OSM expression and OSM receptor distribution was analyzed by PCR and immunohistochemistry experiments, signal transduction by immunoblotting. Gene expression studies were performed by microarray analysis and RT-PCR. Apoptosis was measured by caspases-3/7 activity. IEC migration and proliferation was studied in wounding and water soluble tetrazolium assays. Results The IEC lines Caco-2, DLD-1, SW480, HCT116 and HT-29 express mRNA for the OSM receptor subunits gp130 and OSMR-β, while only HCT116, HT-29 and DLD-1 cells express LIFR mRNA. OSM binding to its receptor complex activates STAT1, STAT3, ERK-1/2, SAPK/JNK-1/2, and Akt. Microarray analysis revealed 79 genes that were significantly up-regulated (adj.-p≤0.05) by OSM in IEC. Most up-regulated genes belong to the functional categories “immunity and defense” (p = 2.1×10−7), “apoptosis” (p = 3.7×10−4) and “JAK/STAT cascade” (p = 3.4×10−6). Members of the SERPIN gene family were among the most strongly up-regulated genes. OSM significantly increased STAT3- and MEK1-dependent IEC cell proliferation (p<0.05) and wound healing (p = 3.9×10−5). OSM protein expression was increased in colonic biopsies of patients with active inflammatory bowel disease (IBD). Conclusions OSM promotes STAT3-dependent intestinal epithelial cell proliferation and wound healing in vitro. Considering the increased OSM expression in colonic biopsy specimens of patients with active IBD, OSM upregulation may modulate a barrier-protective host response in intestinal inflammation. Further in vivo studies are warranted to elucidate the exact role of OSM in intestinal inflammation and the potential of OSM as a drug target in IBD.
Collapse
Affiliation(s)
- Florian Beigel
- Department of Medicine II, University-Hospital Munich-Grosshadern, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Matthias Friedrich
- Department of Medicine II, University-Hospital Munich-Grosshadern, Ludwig-Maximilians-University Munich, Munich, Germany
- Clinic for Preventive Dentistry and Parodontology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Corina Probst
- Department of Medicine II, University-Hospital Munich-Grosshadern, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Karl Sotlar
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Burkhard Göke
- Department of Medicine II, University-Hospital Munich-Grosshadern, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Julia Diegelmann
- Department of Medicine II, University-Hospital Munich-Grosshadern, Ludwig-Maximilians-University Munich, Munich, Germany
- Clinic for Preventive Dentistry and Parodontology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Stephan Brand
- Department of Medicine II, University-Hospital Munich-Grosshadern, Ludwig-Maximilians-University Munich, Munich, Germany
- * E-mail:
| |
Collapse
|