1
|
Graceli JB, Dettogni RS, Merlo E, Niño O, da Costa CS, Zanol JF, Ríos Morris EA, Miranda-Alves L, Denicol AC. The impact of endocrine-disrupting chemical exposure in the mammalian hypothalamic-pituitary axis. Mol Cell Endocrinol 2020; 518:110997. [PMID: 32841708 DOI: 10.1016/j.mce.2020.110997] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022]
Abstract
The hypothalamic-pituitary axis (HP axis) plays a critical and integrative role in the endocrine system control to maintain homeostasis. The HP axis is responsible for the hormonal events necessary to regulate the thyroid, adrenal glands, gonads, somatic growth, among other functions. Endocrine-disrupting chemicals (EDCs) are a worldwide public health concern. There is growing evidence that exposure to EDCs such as bisphenol A (BPA), some phthalates, polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and biphenyls (PBBs), dichlorodiphenyltrichloroethane (DDT), tributyltin (TBT), and atrazine (ATR), is associated with HP axis abnormalities. EDCs act on hormone receptors and their downstream signaling pathways and can interfere with hormone synthesis, metabolism, and actions. Because the HP axis function is particularly sensitive to endogenous hormonal changes, disruptions by EDCs can alter HP axis proper function, leading to important endocrine irregularities. Here, we review the evidence that EDCs could directly affect the mammalian HP axis function.
Collapse
Affiliation(s)
- Jones B Graceli
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo. Av. Marechal Campos, 1468, CEP: 290440-090 Vitória, ES, Brazil.
| | - Raquel S Dettogni
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo. Av. Marechal Campos, 1468, CEP: 290440-090 Vitória, ES, Brazil.
| | - Eduardo Merlo
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo. Av. Marechal Campos, 1468, CEP: 290440-090 Vitória, ES, Brazil.
| | - Oscar Niño
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo. Av. Marechal Campos, 1468, CEP: 290440-090 Vitória, ES, Brazil.
| | - Charles S da Costa
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo. Av. Marechal Campos, 1468, CEP: 290440-090 Vitória, ES, Brazil.
| | - Jordana F Zanol
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo. Av. Marechal Campos, 1468, CEP: 290440-090 Vitória, ES, Brazil.
| | - Eduardo A Ríos Morris
- Laboratory of Experimental Endocrinology-LEEx, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil. Graduate Program in Endocrinology, Faculty of Medicine, Federal University of Rio de Janeiro, Brazil.
| | - Leandro Miranda-Alves
- Laboratory of Experimental Endocrinology-LEEx, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil. Graduate Program in Endocrinology, Faculty of Medicine, Federal University of Rio de Janeiro, Brazil. Graduate Program in Pharmacology and Medicinal Chemistry, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil.
| | - Anna C Denicol
- Department of Animal Science, University of California, Davis, One Shields Avenue Davis, CA, 95616, USA.
| |
Collapse
|
2
|
Cetkovic-Cvrlje M, Olson M, Schindler B, Gong HK. Exposure to DDT metabolite p,p'-DDE increases autoimmune type 1 diabetes incidence in NOD mouse model. J Immunotoxicol 2015; 13:108-18. [PMID: 25721050 DOI: 10.3109/1547691x.2015.1017060] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The incidence of autoimmune Type 1 diabetes (T1D) has been steadily rising in developed countries. Although the exact cause of T1D remains elusive, it is known that both genetics and environmental factors play a role in its immunopathogenesis. Whereas a positive association between p,p'-DDE, a DDT metabolite, and Type 2 diabetes (T2D) has been well established, its role in T1D development in an experimental animal model has never been elucidated. This study seeks to investigate the effects of DDE exposure on the development of T1D in a NOD mouse model. As T1D is a T-cell-mediated disease, the underlying mechanism of DDE action on T-cells was studied in vitro and, in the context of acute and chronic DDE exposure, in vivo by investigating lymphocytes' viability, proliferation, their subsets and cytokine profiles. Chronic high-dose DDE treatment, initiated in pre-diabetic 8-week-old NOD females administered twice weekly intraperitoneally with 50 mg/kg DDE, significantly increased diabetes incidence and augmented disease severity in treated animals. Whereas T-cell proliferation and cell viability in the spleens of treated mice were not affected, diabetogenic action of chronic DDE exposure was associated with a decrease in regulatory T-cells and a suppression of secretion of protective cytokines, such as IL-4 and IL-10. Interestingly, an acute high-dose in vivo treatment of 8-week-old NOD males with 100 mg DDE/kg, administered intraperitoneally every other day over a period of 10 days, increased T-cell proliferation and potentiated pro-inflammatory and TH1-type cytokine secretion, without affecting the splenocytes viability and the T-cell sub-populations. These results confirm that high-dose DDE treatments affect the immune system, in particularly T-cell function. In conclusion, this study shows for the first time that high-dose chronic DDE exposure exhibits a diabetogenic potential, with an underlying immunomodulatory mechanism of action, in the development of T1D in an experimental mouse NOD model.
Collapse
Affiliation(s)
- Marina Cetkovic-Cvrlje
- a Department of Biological Sciences and.,b Laboratory for Immunology , St. Cloud State University , St. Cloud , MN , USA
| | - Marin Olson
- a Department of Biological Sciences and.,b Laboratory for Immunology , St. Cloud State University , St. Cloud , MN , USA
| | | | | |
Collapse
|
3
|
Hobler C, Andrade AJM, Grande SW, Gericke C, Talsness CE, Appel KE, Chahoud I, Grote K. Sex-dependent aromatase activity in rat offspring after pre- and postnatal exposure to triphenyltin chloride. Toxicology 2010; 276:198-205. [PMID: 20708649 DOI: 10.1016/j.tox.2010.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 08/03/2010] [Accepted: 08/05/2010] [Indexed: 11/19/2022]
Abstract
Triphenyltin (TPT) is an organotin compound (OTC) previously widely used as an antifouling agent in paints applied in the marine environment, a fungicide, and as an agricultural pesticide. In female aquatic invertebrates, certain OTCs induce the so-called imposex, an abnormal induction of male sex characteristics. OTC-induced environmental endocrine disruption also occurs in fish and mammals and a number of in vivo and in vitro studies have argued that OTCs may act through inhibition of the aromatase enzyme. In vivo studies supporting the aromatase inhibition hypothesis in mammals are lacking. Recently, the causal relationship between inhibition of aromatase and imposex was questioned, suggesting aromatase independent mechanisms of action for this phenomenon. We conducted a comprehensive investigation to identify the most sensitive window of exposure to TPTCl and to examine the effects of pre- and postnatal exposure on postnatal development in rats. The results on brain and gonadal aromatase activity obtained from offspring of dams exposed to 2 mg TPTCl/kg bw are reported here. Female and male offspring rats were exposed to 2 mg TPTCl/kg bw/d in utero from gestation day 6 through lactation until weaning on PND 21, or from gestation day 6 until termination at adulthood. Male offspring were sacrificed from PND 58 and female offspring at first estrus after PND 58. Pre- and postnatal TPT exposure clearly affected brain and gonadal aromatase activity in a sex-dependent fashion. While brain aromatase activity was significantly increased on PND 21 and at adulthood in female offspring, male offspring exhibited a significant decrease in brain aromatase activity only at adulthood. Ovarian aromatase activity was unaffected at both time points investigated. In contrast, testicular aromatase activity was significantly increased in males on PND 21 and significantly decreased at adulthood independent from the duration of treatment. The results of the present study confirm our previously reported observations regarding sex-dependent differences in sexual development after TPT exposure with the male rat being more susceptible to disturbances through this endocrine active compound than the female. We conclude that TPT administered during the particularly vulnerable period of development can affect aromatase activity in rats.
Collapse
Affiliation(s)
- Carolin Hobler
- Inst. of Clinical Pharmacology and Toxicology, Charité University Medical School, Campus Benjamin Franklin, 14195 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Grote K, Hobler C, Andrade AJ, Grande SW, Gericke C, Talsness CE, Appel KE, Chahoud I. Sex differences in effects on sexual development in rat offspring after pre- and postnatal exposure to triphenyltin chloride. Toxicology 2009; 260:53-9. [DOI: 10.1016/j.tox.2009.03.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 02/27/2009] [Accepted: 03/08/2009] [Indexed: 10/21/2022]
|
5
|
Makita Y. Effects of perinatal combined exposure to 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (p,p'-DDE) and tributyltin (TBT) on rat female reproductive system. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2008; 25:380-385. [PMID: 21783877 DOI: 10.1016/j.etap.2007.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 11/30/2007] [Accepted: 12/02/2007] [Indexed: 05/31/2023]
Abstract
1,1-Dichloro-2,2-bis(p-chlorophenyl)ethylene (p,p'-DDE) is the most prevalent metabolite of DDT used as a pesticide before and tributyltin (TBT) compounds are used primarily as antifouling agents on vessels, ships, and aqua culture facilities, as they exert biocidal actions. Currently, p,p'-DDE and TBT are ubiquitously distributed in the environment and bio-accumulated in marine products, especially fish or shellfish. Thus, oral p,p'-DDE and TBT intake through marine products is demonstrated to be rather high in Japan. Consequently, the fetus and neonate will be exposed to p,p'-DDE and TBT via mother. Therefore, effects of perinatal combined exposure to p,p'-DDE and TBT on the female reproductive system after maturation have been investigated in rat female offspring of dams ingesting 125ppm p,p'-DDE (approximately 10mg/kg) and 25ppm TBT (approximately 2mg/kg) during the perinatal period from gestation to lactation. In the present study, no deleterious reproductive outcomes were recognized in p,p'-DDE and/or TBT-treated dams. In contrast, growth retardation had developed in rat female offspring following perinatal exposure to TBT and sustained even after cessation of exposures. Further, reduced ovarian weights with elevated serum follicle-stimulating hormone (FSH) concentrations were observed in the reproductive system of matured female offspring following perinatal exposure to TBT. At present, biological relevance of these alterations remains unknown, but there is a possibility that these alterations lead to reproductive malfunctions in matured female offspring.
Collapse
Affiliation(s)
- Yuji Makita
- Department of Hygiene, Graduate School of Medical Sciences, Kyushu University, 1-1 Maidashi 3-chome, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
6
|
Makita Y. Effects of perinatal, combined exposure to 1,4-dichlorobenzene and 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene on rat female reproductive system. Basic Clin Pharmacol Toxicol 2008; 102:360-4. [PMID: 18341512 DOI: 10.1111/j.1742-7843.2007.00179.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Prenatal or early postnatal exposure to some synthetic chemicals may affect the later reproductive system of the offspring. 1,4-Dichlorobenzene (DCB) is used as an air freshener and a moth repellent and 1,1-dichloro-2,2-bis(p-chlorophenyl) ethylene (p,p'-DDE) is a persistent metabolite of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane that was used as a pesticide before. DCB concentrations of residential air and oral p,p'-DDE intake through marine products are demonstrated to be rather high in Japan. Such situations lead to high body burden of these pollutants in pregnant women. Consequently, foetuses and neonates will be exposed much more to DCB and p,p'-DDE via the mother. Therefore, the effects of the perinatal, combined exposure to DCB and p,p'-DDE on the female reproductive system have been investigated in mature rat female offspring of dams ingesting 25 p.p.m. DCB (approximately 2 mg/kg) and 125 p.p.m. p,p'-DDE (approximately 10 mg/kg) during the gestational and lactational period. Sexual maturation was fully developed in the rat female offspring perinatally exposed to DCB and/or p,p'-DDE through maternal exposure. The combined effect of DCB and p,p'-DDE was observed, and the ovarian weight was seen to decrease to approximately 80% of the control rat in matured female offspring following perinatal exposure to DCB and p,p'-DDE. This alteration might lead to reproductive dysfunction in matured female offspring. However, biological relevance of the alteration in the ovary remained uncertain in the present study. Further investigations concerning the reproductive function and mechanistic implication are required for elucidating the combined effects of perinatal exposure to DCB and p,p'-DDE on the later female reproductive system entirely.
Collapse
Affiliation(s)
- Yuji Makita
- Department of Hygiene, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|