1
|
Mao S, Yao J, Zhang T, Zhang X, Tan W, Li C. Bilobalide attenuates lipopolysaccharide‑induced HepG2 cell injury by inhibiting TLR4‑NF‑κB signaling via the PI3K/Akt pathway. Exp Ther Med 2024; 27:24. [PMID: 38125341 PMCID: PMC10728898 DOI: 10.3892/etm.2023.12312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 09/23/2021] [Indexed: 12/23/2023] Open
Abstract
Inflammation is involved in the pathological process underlying a number of liver diseases. Bilobalide (BB) is a natural compound from Ginkgo biloba leaves that was recently demonstrated to exert hepatoprotective effects by inhibiting oxidative stress in the liver cancer cell line HepG2. The anti-inflammatory activity of BB has been reported in recent studies. The major objective of the present study was to investigate whether BB could attenuate inflammation-associated cell damage. HepG2 cells were cultured with lipopolysaccharide (LPS) and BB, and cell damage was evaluated by measuring cell viability using MTT assay. The activity of the NF-κB signaling pathway was assessed by measuring the levels of IκBα, NF-κB p65, phosphorylated (p)-IκBα, p-p65, p65 DNA-binding activity and inflammatory cytokines IL-1β, IL-6 and TNF-α. A toll-like receptor (TLR)4 inhibitor (CLI-095) was used to detect the involvement of TLR4 in cell injury caused by LPS. In addition, the PI3K/Akt inhibitor LY294002 was applied to explore the involvement of the PI3K/Akt axis in mediating the effects of BB. The results demonstrated that LPS induced HepG2 cell injury. LPS also elevated the levels of p-IκBα, p-p65, p65 DNA-binding activity and inflammatory cytokines. However, CLI-095 significantly attenuated the LPS-induced cell damage and inhibited the activation of NF-κB signaling. BB also dose-dependently attenuated the LPS-induced cell damage, activation of NF-κB signaling and TLR4 overexpression. Furthermore, it was observed that LY294002 diminished the cytoprotective effects of BB on cell injury, TLR4 expression and NF-κB activation. These findings indicated that BB could attenuate LPS-induced inflammatory injury to HepG2 cells by regulating TLR4-NF-κB signaling.
Collapse
Affiliation(s)
- Shumei Mao
- Department of Pharmacology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Jinpeng Yao
- Department of Cardiology, Yantai Kaifaqu Hospital, Yantai, Shandong 264006, P.R. China
| | - Teng Zhang
- Department of Pharmacology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Xiang Zhang
- Department of Pharmacology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Wei Tan
- Department of Respiratory Medicine, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Chengde Li
- Department of Clinical Pharmacy, Key Laboratory of Applied Pharmacology in Universities of Shandong, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
2
|
Abraham B, Syamnath VL, Arun KB, Fathima Zahra PM, Anjusha P, Kothakotta A, Chen YH, Ponnusamy VK, Nisha P. Lignin-based nanomaterials for food and pharmaceutical applications: Recent trends and future outlook. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163316. [PMID: 37028661 DOI: 10.1016/j.scitotenv.2023.163316] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/05/2023] [Accepted: 04/02/2023] [Indexed: 06/01/2023]
Abstract
Small particles of size ranging from 1 to 100 nm are referred to as nanoparticles. Nanoparticles have tremendous applications in various sectors, including the areas of food and pharmaceutics. They are being prepared from multiple natural sources widely. Lignin is one such source that deserves special mention due to its ecological compatibility, accessibility, abundance, and low cost. This amorphous heterogeneous phenolic polymer is the second most abundant molecule in nature after cellulose. Apart from being used as a biofuel source, lignin is less explored for its potential at a nano-level. In plants, lignin exhibits cross-linking structures with cellulose and hemicellulose. Numerous advancements have taken place in synthesizing nanolignins for manufacturing lignin-based materials to benefit from the untapped potential of lignin in high-value-added applications. Lignin and lignin-based nanoparticles have numerous applications, but in this review, we are mainly focusing on the applications in the food and pharmaceutical sectors. The exercise we undertake has great relevance as it helps scientists and industries gain valuable insights into lignin's capabilities and exploit its physical and chemical properties to facilitate the development of future lignin-based materials. We have summarized the available lignin resources and their potential in the food and pharmaceutical industries at various levels. This review attempts to understand various methods adopted for the preparation of nanolignin. Furthermore, the unique properties of nano-lignin-based materials and their applications in fields including the packaging industry, emulsions, nutrient delivery, drug delivery hydrogels, tissue engineering, and biomedical applications were well-discussed.
Collapse
Affiliation(s)
- Billu Abraham
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
| | - V L Syamnath
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum 695019, India
| | - K B Arun
- Department of Life Sciences, Christ (Deemed to be University), Bangalore 29, India
| | - P M Fathima Zahra
- College of Agriculture, Vellayani, Kerala Agricultural University, India
| | - P Anjusha
- College of Agriculture, Vellayani, Kerala Agricultural University, India
| | - Anjhinaeyulu Kothakotta
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Yi-Hsun Chen
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| | - Vinoth Kumar Ponnusamy
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City 807, Taiwan; Department of Chemistry, National Sun Yat-sen University (NSYSU), Kaohsiung City 804, Taiwan; Ph.D. Program of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City 811, Taiwan.
| | - P Nisha
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Karagoz P, Khiawjan S, Marques MPC, Santzouk S, Bugg TDH, Lye GJ. Pharmaceutical applications of lignin-derived chemicals and lignin-based materials: linking lignin source and processing with clinical indication. BIOMASS CONVERSION AND BIOREFINERY 2023; 14:26553-26574. [PMID: 39493283 PMCID: PMC11525408 DOI: 10.1007/s13399-023-03745-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/23/2022] [Accepted: 12/31/2022] [Indexed: 11/05/2024]
Abstract
Lignocellulosic biomass is one of the most abundant bioresources on Earth. Over recent decades, various valorisation techniques have been developed to produce value-added products from the cellulosic and hemicellulosic fractions of this biomass. Lignin is the third major component accounting for 10-30% (w/w). However, it currently remains a largely unused fraction due to its recalcitrance and complex structure. The increase in the global demand for lignocellulosic biomass, for energy and chemical production, is increasing the amount of waste lignin available. Approaches to date for valorizing this renewable but heterogeneous chemical resource have mainly focused on production of materials and fine chemicals. Greater value could be gained by developing higher value pharmaceutical applications which would help to improve integrated biorefinery economics. In this review, different lignin extraction methods, such as organosolv and ionic liquid, and the properties and potential of the extracted chemical building blocks are first summarized with respect to pharmaceutical use. The review then discusses the many recent advances made regarding the medical or therapeutic potential of lignin-derived materials such as antimicrobial, antiviral, and antitumor compounds and in controlled drug delivery. The aim is to draw out the link between the source and the processing of the biomass and potential clinical applications. We then highlight four key areas for future research if therapeutic applications of lignin-derived products are to become commercially viable. These relate to the availability and processing of lignocellulosic biomass, technologies for the purification of specific compounds, enhancements in process yield, and progression to human clinical trials.
Collapse
Affiliation(s)
- Pinar Karagoz
- Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT UK
- School of Engineering and Innovation, The Open University, Milton Keynes, MK7 6AA UK
| | - Sansanee Khiawjan
- Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT UK
| | - Marco P. C. Marques
- Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT UK
| | - Samir Santzouk
- Panax-Homeopathy and Phytotherapy Laboratory, Agrinio, Greece
| | | | - Gary J. Lye
- Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT UK
| |
Collapse
|
4
|
Chauhan PS, Agrawal R, Satlewal A, Kumar R, Gupta RP, Ramakumar SSV. Next generation applications of lignin derived commodity products, their life cycle, techno-economics and societal analysis. Int J Biol Macromol 2022; 197:179-200. [PMID: 34968542 DOI: 10.1016/j.ijbiomac.2021.12.146] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 12/31/2022]
Abstract
The pulp and biorefining industries produce their waste as lignin, which is one of the most abundant renewable resources. So far, lignin has been remained severely underutilized and generally burnt in a boiler as a low-value fuel. To demonstrate lignin's potential as a value-added product, we will review market opportunities for lignin related applications by utilizing the thermo-chemical/biological depolymerization strategies (with or without catalysts) and their comparative evaluation. The application of lignin and its derived aromatics in various sectors such as cement industry, bitumen modifier, energy materials, agriculture, nanocomposite, biomedical, H2 source, biosensor and bioimaging have been summarized. This comprehensive review article also highlights the technical, economic, environmental, and socio-economic variable that affect the market value of lignin-derived by-products. The review shows the importance of lignin, and its derived products are a platform for future bioeconomy and sustainability.
Collapse
Affiliation(s)
- Prakram Singh Chauhan
- DBT - IOC Advanced Bio Energy Research Center, Indian Oil Corporation Ltd. Research and Development Centre, Sector-13, Faridabad, Haryana 121007, India.
| | - Ruchi Agrawal
- DBT - IOC Advanced Bio Energy Research Center, Indian Oil Corporation Ltd. Research and Development Centre, Sector-13, Faridabad, Haryana 121007, India; TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, TERI Gram, Gurugram, India.
| | - Alok Satlewal
- Indian Oil Corporation Ltd. Research and Development Centre, Sector-13, Faridabad, Haryana 121007, India.
| | - Ravindra Kumar
- Indian Oil Corporation Ltd. Research and Development Centre, Sector-13, Faridabad, Haryana 121007, India.
| | - Ravi P Gupta
- Indian Oil Corporation Ltd. Research and Development Centre, Sector-13, Faridabad, Haryana 121007, India
| | - S S V Ramakumar
- Indian Oil Corporation Ltd. Research and Development Centre, Sector-13, Faridabad, Haryana 121007, India
| |
Collapse
|
5
|
Shu F, Jiang B, Yuan Y, Li M, Wu W, Jin Y, Xiao H. Biological Activities and Emerging Roles of Lignin and Lignin-Based Products─A Review. Biomacromolecules 2021; 22:4905-4918. [PMID: 34806363 DOI: 10.1021/acs.biomac.1c00805] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Bioactive substances, displaying excellent biocompatibility, chemical stability, and processability, could be extensively applied in biomedicine and tissue engineering. In recent years, plant-based bioactive substances such as flavonoids, vitamins, terpenes, and lignin have received considerable attention due to their human health benefits and pharmaceutical/medical applications. Among them is lignin, an amorphous biomacromolecule mainly derived from the combinatorial radical coupling of three phenylpropane units (p-hydroxypenyl, guaiacyl, and syringyl) during lignification. Lignin possesses intrinsic bioactivities (antioxidative, antibacterial, anti-UV activities, etc.) against phytopathogens. Lignin also enhances the plant resistance (adaptability) against environmental stresses. The abundant structural features of lignin offer other significant bioactivities including antitumor and antivirus bioactivities, regulation of plant growth, and enzymatic hydrolysis of cellulose. This Review reports the latest research results on the bioactive potential of lignin and lignin-based substances in biomedicine, agriculture, and biomass conversion. Moreover, the interfacial reactions and bonding mechanisms of lignin with biotissue/cells and other constituents were also discussed, aiming at promoting the conversion or evolution of lignin from industrial wastes to value-added bioactive materials.
Collapse
Affiliation(s)
- Fan Shu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Bo Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China.,Joint International Research Lab of Lignocellulosic Functional Materials, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yufeng Yuan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Mohan Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China.,Joint International Research Lab of Lignocellulosic Functional Materials, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B5A3, Canada
| |
Collapse
|
6
|
Phenolic Compounds from Mori Cortex Ameliorate Sodium Oleate-Induced Epithelial-Mesenchymal Transition and Fibrosis in NRK-52e Cells through CD36. Molecules 2021; 26:molecules26206133. [PMID: 34684716 PMCID: PMC8540367 DOI: 10.3390/molecules26206133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 11/25/2022] Open
Abstract
Lipid deposition in the kidney can cause serious damage to the kidney, and there is an obvious epithelial–mesenchymal transition (EMT) and fibrosis in the late stage. To investigate the interventional effects and mechanisms of phenolic compounds from Mori Cortex on the EMT and fibrosis induced by sodium oleate-induced lipid deposition in renal tubular epithelial cells (NRK-52e cells), and the role played by CD36 in the adjustment process, NRK-52e cells induced by 200 μmol/L sodium oleate were given 10 μmoL/L moracin-P-2″-O-β-d-glucopyranoside (Y-1), moracin-P-3′-O-β-d-glucopyranoside (Y-2), moracin-P-3′-O-α-l-arabinopyranoside (Y-3), and moracin-P-3′-O-[β-glucopyranoside-(1→2)arabinopyranoside] (Y-4), and Oil Red O staining was used to detect lipid deposition. A Western blot was used to detect lipid deposition-related protein CD36, inflammation-related protein (p-NF-κB-P65, NF-κB-P65, IL-1β), oxidative stress-related protein (NOX1, Nrf2, Keap1), EMT-related proteins (CD31, α-SMA), and fibrosis-related proteins (TGF-β, ZEB1, Snail1). A qRT-PCR test detected inflammation, EMT, and fibrosis-related gene mRNA levels. The TNF-α levels were detected by ELISA, and the colorimetric method was used to detects SOD and MDA levels. The ROS was measured by flow cytometry. A high-content imaging analysis system was applied to observe EMT and fibrosis-related proteins. At the same time, the experiment silenced CD36 and compared the difference between before and after drug treatment, then used molecular docking technology to predict the potential binding site of the active compounds with CD36. The research results show that sodium oleate can induce lipid deposition, inflammation, oxidative stress, and fibrosis in NRK-52e cells. Y-1 and Y-2 could significantly ameliorate the damage caused by sodium oleate, and Y-2 had a better ameliorating effect, while there was no significant change in Y-3 or Y-4. The amelioration effect of Y-1 and Y-2 disappeared after silencing CD36. Molecular docking technology showed that the Y-1 and Y-2 had hydrogen bonds to CD36 and that, compared with Y-1, Y-2 requires less binding energy. In summary, moracin-P-2″-O-β-d-glucopyranoside and moracin-P-3′-O-β-d-glucopyranoside from Mori Cortex ameliorated lipid deposition, EMT, and fibrosis induced by sodium oleate in NRK-52e cells through CD36.
Collapse
|
7
|
Recent Molecular Mechanisms and Beneficial Effects of Phytochemicals and Plant-Based Whole Foods in Reducing LDL-C and Preventing Cardiovascular Disease. Antioxidants (Basel) 2021; 10:antiox10050784. [PMID: 34063371 PMCID: PMC8157003 DOI: 10.3390/antiox10050784] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Abnormal lipid metabolism leads to the development of hyperlipidemia, a common cause of multiple chronic disorders, including cardiovascular disease (CVD), obesity, diabetes, and cerebrovascular disease. Low-density lipoprotein cholesterol (LDL-C) currently remains the primary target for treatment of hyperlipidemia. Despite the advancement of treatment and prevention of hyperlipidemia, medications used to manage hyperlipidemia are limited to allopathic drugs, which present certain limitations and adverse effects. Increasing evidence indicates that utilization of phytochemicals and plant-based whole foods is an alternative and promising strategy to prevent hyperlipidemia and CVD. The current review focuses on phytochemicals and their pharmacological mode of actions for the regulation of LDL-C and prevention of CVD. The important molecular mechanisms illustrated in detail in this review include elevation of reverse cholesterol transport, inhibition of intestinal cholesterol absorption, acceleration of cholesterol excretion in the liver, and reduction of cholesterol synthesis. Moreover, the beneficial effects of plant-based whole foods, such as fresh fruits, vegetables, dried nuts, flax seeds, whole grains, peas, beans, vegan diets, and dietary fibers in LDL-C reduction and cardiovascular health are summarized. This review concludes that phytochemicals and plant-based whole foods can reduce LDL-C levels and lower the risk for CVD.
Collapse
|
8
|
Arruda MDM, da Paz Leôncio Alves S, da Cruz Filho IJ, de Sousa GF, de Souza Silva GA, do Nascimento Santos DKD, do Carmo Alves de Lima M, de Moraes Rocha GJ, de Souza IA, de Melo CML. Characterization of a lignin from Crataeva tapia leaves and potential applications in medicinal and cosmetic formulations. Int J Biol Macromol 2021; 180:286-298. [PMID: 33737189 DOI: 10.1016/j.ijbiomac.2021.03.077] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/08/2021] [Accepted: 03/13/2021] [Indexed: 12/18/2022]
Abstract
Lignins are phenolic macromolecules that have several applications. In this work, we examine some biological activities of a lignin-like macromolecule isolated from the Crataeva tapia leaves, not yet studied to evaluate its potential applications in medicinal and cosmetic formulations. Lignin was obtained by alkaline delignification and its physical-chemical characterization was made by means of FT-IR, UV-Vis, NMR spectroscopy, elementary analysis, molecular mass determination and thermal analysis. Lignin is of the GSH type, with levels of hydrogen (5.10%), oxygen (27.18%), carbon (67.60%), nitrogen (0.12%) and phenolic content of 189.6 ± 9.6 mg GAE/g. In addition, it is a thermally stable macromolecule with low antioxidant activity. Cytotoxicity and cytokine production were assessed by flow cytometry. The photoprotective activity was evaluated by adding different concentrations of lignin to a commercial cream. Lignin was not cytotoxic, it stimulated the production of TNF-α, IL-6 and IL-10 and did not promote a significant change in nitric oxide levels. In addition, this macromolecule was able to promote increased absorption of ultraviolet light from a commercial cream. These results reinforce the ethnopharmacological use of C. tapia leaves and suggest the need for further studies to determine the potential medicinal and cosmetic applications (sunscreen) of lignin from C. tapia leaves.
Collapse
Affiliation(s)
- Marcela Daniela Muniz Arruda
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Artur de Sá, s/n, 50740-520 Recife, PE, Brazil
| | - Simone da Paz Leôncio Alves
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Artur de Sá, s/n, 50740-520 Recife, PE, Brazil
| | - Iranildo José da Cruz Filho
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Artur de Sá, s/n, 50740-520 Recife, PE, Brazil
| | - Georon Ferreira de Sousa
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Artur de Sá, s/n, 50740-520 Recife, PE, Brazil
| | - Guilherme Antonio de Souza Silva
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Artur de Sá, s/n, 50740-520 Recife, PE, Brazil
| | | | - Maria do Carmo Alves de Lima
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Artur de Sá, s/n, 50740-520 Recife, PE, Brazil
| | - George Jackson de Moraes Rocha
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Polo II de Alta Tecnologia, Rua Giuseppe Máximo Scolfaro, 10.000, PO Box 6192, 13083-100 Campinas, SP, Brazil.
| | - Ivone Antonia de Souza
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Artur de Sá, s/n, 50740-520 Recife, PE, Brazil
| | - Cristiane Moutinho Lagos de Melo
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Artur de Sá, s/n, 50740-520 Recife, PE, Brazil
| |
Collapse
|
9
|
Lignin to Materials: A Focused Review on Recent Novel Lignin Applications. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10134626] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In recent decades, advancements in lignin application include the synthesis of polymers, dyes, adhesives and fertilizers. There has recently been a shift from perceiving lignin as a waste product to viewing lignin as a potential raw material for valuable products. More recently, considerable attention has been placed in sectors, like the medical, electrochemical, and polymer sectors, where lignin can be significantly valorized. Despite some technical challenges in lignin recovery and depolymerization, lignin is viewed as a promising material due to it being biocompatible, cheap, and abundant in nature. In the medical sector, lignins can be used as wound dressings, pharmaceuticals, and drug delivery materials. They can also be used for electrochemical energy materials and 3D printing lignin–plastic composite materials. This review covers the recent research progress in lignin valorization, specifically focusing on medical, electrochemical, and 3D printing applications. The technoeconomic assessment of lignin application is also discussed.
Collapse
|
10
|
Ji X, Shi S, Liu B, Shan M, Tang D, Zhang W, Zhang Y, Zhang L, Zhang H, Lu C, Wang Y. Bioactive compounds from herbal medicines to manage dyslipidemia. Biomed Pharmacother 2019; 118:109338. [DOI: 10.1016/j.biopha.2019.109338] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/31/2019] [Accepted: 08/05/2019] [Indexed: 02/07/2023] Open
|
11
|
Tao J, Li S, Ye F, Zhou Y, Lei L, Zhao G. Lignin - An underutilized, renewable and valuable material for food industry. Crit Rev Food Sci Nutr 2019; 60:2011-2033. [PMID: 31547671 DOI: 10.1080/10408398.2019.1625025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Lignin is the second most abundant biorenewable polymers only next to cellulose and is ubiquitous in various plant foods. In food industry, lignin often presented as a major component of by-products from plant foods. In the last decade, the food and nutritional interests of lignin attracted more and more attentions and great progresses have been accomplished. In the present review, the structure, physicochemical properties, dietary occurrence and preparation methods of lignin from food resources were summarized. Then, the versatile activities of food lignin were introduced under the subtitles of antioxidant, antimicrobial, antiviral, antidiabetic and other activities. Finally, the potential applications of food lignin were proposed as a food bioactive ingredient, an improver of food package films and a novel material in fabricating drug delivery vehicles and contaminant passivators. Hopefully, this review could bring new insights in exploiting lignin from nutrition- and food-directed views.
Collapse
Affiliation(s)
- Jianming Tao
- College of Food Science, Southwest University, Chongqing, People's Republic of China
| | - Sheng Li
- College of Food Science, Southwest University, Chongqing, People's Republic of China
| | - Fayin Ye
- College of Food Science, Southwest University, Chongqing, People's Republic of China
| | - Yun Zhou
- College of Food Science, Southwest University, Chongqing, People's Republic of China
| | - Lin Lei
- College of Food Science, Southwest University, Chongqing, People's Republic of China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing, People's Republic of China.,Chongqing Engineering Research Centre of Regional Foods, Chongqing, People's Republic of China
| |
Collapse
|
12
|
da Cruz Filho IJ, da Silva Barros BR, de Souza Aguiar LM, Navarro CDC, Ruas JS, de Lorena VMB, de Moraes Rocha GJ, Vercesi AE, de Melo CML, Maior AMS. Lignins isolated from Prickly pear cladodes of the species Opuntia fícus-indica (Linnaeus) Miller and Opuntia cochenillifera (Linnaeus) Miller induces mice splenocytes activation, proliferation and cytokines production. Int J Biol Macromol 2018; 123:1331-1339. [PMID: 30244129 DOI: 10.1016/j.ijbiomac.2018.09.120] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/14/2018] [Accepted: 09/20/2018] [Indexed: 01/14/2023]
Abstract
Opuntia fícus-indica and Opuntia cochenillifera are species of Cactaceae, found in the arid regions of the planet. They present water, cellulose, hemicellulose, pectins, extractives, ashes and lignins. Here we aimed to study the immunomodulatory action of lignins from these two species against mice splenocytes, since no study for this purpose has yet been reported. The antioxidant activities of these lignins were evaluated by the DPPH, ABTS, NO assays and total antioxidant activity. Cytotoxicity was evaluated through Annexin V-FITC and propidium iodide-PE probs and cell proliferation was determined by CFSE. Immunomodulation studies with Opuntia lignins obtained were performed through investigation of ROS levels, cytosolic calcium release, changes on mitochondrial membrane potential, cytokine production and NO release. Results showed that Opuntia cochenillifera lignin presented more phenolic amount and antioxidant activities than Opuntia ficius-indica. Both lignins showed high cell viability (>96%) and cell proliferation. Activation signal was observed for both lignins with increase of ROS and cytosolic calcium levels, and changes in mitochondrial membrane potential. In addition, lignins induced high TNF-α, IL-6 and IL-10 production and reduced NO release. Therefore, these lignins present great potential to be used as molecules with a proinflammatory profile, being shown as a promising therapeutic agent.
Collapse
Affiliation(s)
- Iranildo José da Cruz Filho
- Laboratory of Biothecnological Process, Antibiotics Department, Federal University of Pernambuco, Pernambuco, Brazil
| | - Bárbara Rafaela da Silva Barros
- Laboratory of Immunological and Antitumor Analyzes, Antibiotics Department, Federal University of Pernambuco, Pernambuco, Brazil
| | - Lethícia Maria de Souza Aguiar
- Laboratory of Immunological and Antitumor Analyzes, Antibiotics Department, Federal University of Pernambuco, Pernambuco, Brazil
| | | | - Juliana Silveira Ruas
- Laboratory of Bioenergetic, Department of Clinical Patology, Campinas State University, São Paulo, Brazil
| | | | - George Jackson de Moraes Rocha
- National Laboratory of Bioethanol Science and Technology, National Center for Research in Energy and Materials, São Paulo, Brazil
| | - Aníbal Eugênio Vercesi
- Laboratory of Bioenergetic, Department of Clinical Patology, Campinas State University, São Paulo, Brazil
| | | | - Ana Maria Souto Maior
- Laboratory of Biothecnological Process, Antibiotics Department, Federal University of Pernambuco, Pernambuco, Brazil
| |
Collapse
|
13
|
Witzler M, Alzagameem A, Bergs M, Khaldi-Hansen BE, Klein SE, Hielscher D, Kamm B, Kreyenschmidt J, Tobiasch E, Schulze M. Lignin-Derived Biomaterials for Drug Release and Tissue Engineering. Molecules 2018; 23:E1885. [PMID: 30060536 PMCID: PMC6222784 DOI: 10.3390/molecules23081885] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/29/2022] Open
Abstract
Renewable resources are gaining increasing interest as a source for environmentally benign biomaterials, such as drug encapsulation/release compounds, and scaffolds for tissue engineering in regenerative medicine. Being the second largest naturally abundant polymer, the interest in lignin valorization for biomedical utilization is rapidly growing. Depending on its resource and isolation procedure, lignin shows specific antioxidant and antimicrobial activity. Today, efforts in research and industry are directed toward lignin utilization as a renewable macromolecular building block for the preparation of polymeric drug encapsulation and scaffold materials. Within the last five years, remarkable progress has been made in isolation, functionalization and modification of lignin and lignin-derived compounds. However, the literature so far mainly focuses lignin-derived fuels, lubricants and resins. The purpose of this review is to summarize the current state of the art and to highlight the most important results in the field of lignin-based materials for potential use in biomedicine (reported in 2014⁻2018). Special focus is placed on lignin-derived nanomaterials for drug encapsulation and release as well as lignin hybrid materials used as scaffolds for guided bone regeneration in stem cell-based therapies.
Collapse
Affiliation(s)
- Markus Witzler
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, D-53359 Rheinbach, Germany.
| | - Abla Alzagameem
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, D-53359 Rheinbach, Germany.
- Faculty of Environment and Natural Sciences, Brandenburg University of Technology BTU Cottbus-Senftenberg, Platz der Deutschen Einheit 1, D-03046 Cottbus, Germany.
| | - Michel Bergs
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, D-53359 Rheinbach, Germany.
- Rheinische Friedrich-Wilhelms-University Bonn, INRES, Klein-Altendorf 2, D-53359 Rheinbach, Germany.
| | - Basma El Khaldi-Hansen
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, D-53359 Rheinbach, Germany.
| | - Stephanie E Klein
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, D-53359 Rheinbach, Germany.
| | - Dorothee Hielscher
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, D-53359 Rheinbach, Germany.
| | - Birgit Kamm
- Faculty of Environment and Natural Sciences, Brandenburg University of Technology BTU Cottbus-Senftenberg, Platz der Deutschen Einheit 1, D-03046 Cottbus, Germany.
- Kompetenzzentrum Holz GmbH, Altenberger Strasse 69, A-4040 Linz, Austria.
| | - Judith Kreyenschmidt
- Rheinische Friedrich Wilhelms-University Bonn, Katzenburgweg 7-9, D-53115 Bonn, Germany.
| | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, D-53359 Rheinbach, Germany.
| | - Margit Schulze
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, D-53359 Rheinbach, Germany.
| |
Collapse
|
14
|
Molina E, Chew GS, Myers SA, Clarence EM, Eales JM, Tomaszewski M, Charchar FJ. A Novel Y-Specific Long Non-Coding RNA Associated with Cellular Lipid Accumulation in HepG2 cells and Atherosclerosis-related Genes. Sci Rep 2017; 7:16710. [PMID: 29196750 PMCID: PMC5711902 DOI: 10.1038/s41598-017-17165-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 11/22/2017] [Indexed: 01/22/2023] Open
Abstract
There is an increasing appreciation for the role of the human Y chromosome in phenotypic differences between the sexes in health and disease. Previous studies have shown that genetic variation within the Y chromosome is associated with cholesterol levels, which is an established risk factor for atherosclerosis, the underlying cause of coronary artery disease (CAD), a major cause of morbidity and mortality worldwide. However, the exact mechanism and potential genes implicated are still unidentified. To date, Y chromosome-linked long non-coding RNAs (lncRNAs) are poorly characterized and the potential link between these new regulatory RNA molecules and hepatic function in men has not been investigated. Advanced technologies of lncRNA subcellular localization and silencing were used to identify a novel intergenic Y-linked lncRNA, named lnc-KDM5D-4, and investigate its role in fatty liver-associated atherosclerosis. We found that lnc-KDM5D-4 is retained within the nucleus in hepatocytes. Its knockdown leads to changes in genes leading to increased lipid droplets formation in hepatocytes resulting in a downstream effect contributing to the chronic inflammatory process that underpin CAD. Our findings provide the first evidence for the implication of lnc-KDM5D-4 in key processes related to fatty liver and cellular inflammation associated with atherosclerosis and CAD in men.
Collapse
Affiliation(s)
- Elsa Molina
- School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University, Mount Helen Campus, Ballarat, VIC, Australia
| | - Guat S Chew
- School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University, Mount Helen Campus, Ballarat, VIC, Australia
| | - Stephen A Myers
- School of Health Sciences, Faculty of Health, University of Tasmania, Newnham Campus, Launceston, TAS, Australia
| | - Elyse M Clarence
- School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University, Mount Helen Campus, Ballarat, VIC, Australia
| | - James M Eales
- Institute of Cardiovascular Sciences, The University of Manchester, Manchester, UK
| | - Maciej Tomaszewski
- Institute of Cardiovascular Sciences, The University of Manchester, Manchester, UK
| | - Fadi J Charchar
- School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University, Mount Helen Campus, Ballarat, VIC, Australia. .,Department of Physiology, University of Melbourne, Melbourne, Australia. .,Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.
| |
Collapse
|
15
|
Vinardell MP, Mitjans M. Lignins and Their Derivatives with Beneficial Effects on Human Health. Int J Mol Sci 2017; 18:ijms18061219. [PMID: 28590454 PMCID: PMC5486042 DOI: 10.3390/ijms18061219] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 05/30/2017] [Accepted: 06/02/2017] [Indexed: 11/28/2022] Open
Abstract
A review of the pharmacological applications of lignins provides evidence of their protective role against the development of different diseases. In many cases, the effects of lignins could be explained by their antioxidant capacity. Here, we present a systematic review of the literature from the period 2010–2016 which provides information concerning new applications of lignins derived from recent research. The most promising findings are reported, including the methodologies employed and results obtained with lignins or their derivatives which may improve human health. We highlight potential applications in the treatment of obesity, diabetes, thrombosis, viral infections and cancer. Moreover, we report both that lignins can be used in the preparation of nanoparticles to deliver different drugs and also their use in photoprotection.
Collapse
Affiliation(s)
- Maria Pilar Vinardell
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Avinguda Joan XXIII 27-31, 08028 Barcelona, Spain.
| | - Montserrat Mitjans
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Avinguda Joan XXIII 27-31, 08028 Barcelona, Spain.
| |
Collapse
|
16
|
|
17
|
Sato S, Mukai Y, Tokuoka Y, Mikame K, Funaoka M, Fujita S. Effect of lignin-derived lignophenols on hepatic lipid metabolism in rats fed a high-fat diet. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 34:228-234. [PMID: 22561109 DOI: 10.1016/j.etap.2012.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 04/05/2012] [Accepted: 04/06/2012] [Indexed: 05/31/2023]
Abstract
The effect of lignin-derived lignophenols on lipid metabolism in the livers of rats fed a high-fat diet was investigated. Rats fed a diet providing 45% of energy from fat were divided into 2 groups, namely 0% and 0.5% lignophenols-containing diets. The controls were fed a diet providing 10% of energy from fat. Plasma blood parameters, protein expression of acetyl-CoA carboxylase (ACC) and sterol regulatory element-binding protein (SREBP)-1, and SREBP-1c mRNA expression in the livers were examined. The plasma triglyceride levels in the rats fed lignophenols-containing diets were decreased. SREBP-1c mRNA expression in the rats fed lignophenols-containing diets was significantly reduced compared with the rats fed high-fat diets, and phosphorylated ACC protein in the rats fed lignophenols-containing diets was significantly increased. Our results suggested that lignophenols suppress the expression of SREBP-1c mRNA and the phosphorylation of ACC in the liver, and may lead to a decrease in plasma triglyceride levels.
Collapse
Affiliation(s)
- Shin Sato
- Department of Nutrition, Faculty of Health Sciences, Aomori University of Health and Welfare, Mase 58-1, Hamadate, Aomori 030-0841, Japan.
| | - Yuuka Mukai
- Department of Nutrition, Faculty of Health Sciences, Aomori University of Health and Welfare, Mase 58-1, Hamadate, Aomori 030-0841, Japan
| | - Yukari Tokuoka
- Department of Nutrition, Faculty of Health Sciences, Aomori University of Health and Welfare, Mase 58-1, Hamadate, Aomori 030-0841, Japan
| | - Keigo Mikame
- Department of Environmental Science and Technology, Faculty of Bioresources, Mie University, Tsu 514-8507, Japan
| | - Masamitsu Funaoka
- Department of Environmental Science and Technology, Faculty of Bioresources, Mie University, Tsu 514-8507, Japan
| | - Shuzo Fujita
- Department of Nutrition, Faculty of Health Sciences, Aomori University of Health and Welfare, Mase 58-1, Hamadate, Aomori 030-0841, Japan
| |
Collapse
|
18
|
Effect of lignin-derived lignophenols on vascular oxidative stress and inflammation in streptozotocin-induced diabetic rats. Mol Cell Biochem 2010; 348:117-24. [DOI: 10.1007/s11010-010-0645-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 10/28/2010] [Indexed: 10/18/2022]
|