1
|
Pierzynowska K, Morcinek-Orłowska J, Gaffke L, Jaroszewicz W, Skowron PM, Węgrzyn G. Applications of the phage display technology in molecular biology, biotechnology and medicine. Crit Rev Microbiol 2024; 50:450-490. [PMID: 37270791 DOI: 10.1080/1040841x.2023.2219741] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 10/17/2022] [Accepted: 05/25/2023] [Indexed: 06/06/2023]
Abstract
The phage display technology is based on the presentation of peptide sequences on the surface of virions of bacteriophages. Its development led to creation of sophisticated systems based on the possibility of the presentation of a huge variability of peptides, attached to one of proteins of bacteriophage capsids. The use of such systems allowed for achieving enormous advantages in the processes of selection of bioactive molecules. In fact, the phage display technology has been employed in numerous fields of biotechnology, as diverse as immunological and biomedical applications (in both diagnostics and therapy), the formation of novel materials, and many others. In this paper, contrary to many other review articles which were focussed on either specific display systems or the use of phage display in selected fields, we present a comprehensive overview of various possibilities of applications of this technology. We discuss an usefulness of the phage display technology in various fields of science, medicine and the broad sense of biotechnology. This overview indicates the spread and importance of applications of microbial systems (exemplified by the phage display technology), pointing to the possibility of developing such sophisticated tools when advanced molecular methods are used in microbiological studies, accompanied with understanding of details of structures and functions of microbial entities (bacteriophages in this case).
Collapse
Affiliation(s)
- Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | | | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Weronika Jaroszewicz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Piotr M Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| |
Collapse
|
2
|
Gökmen TG, Yazgan H, Özdemir Y, Sevin S, Turut N, Karahan Ş, Eşki F, Kıvrak İ, Sezer O, Ütük AE. Chemical composition and antibacterial activity of bee venom against multi-drug resistant pathogens. Onderstepoort J Vet Res 2023; 90:e1-e5. [PMID: 37526529 PMCID: PMC10483431 DOI: 10.4102/ojvr.v90i1.2097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/28/2023] [Accepted: 06/01/2023] [Indexed: 08/02/2023] Open
Abstract
Bee venom with an antimicrobial effect is a powerful natural product. One of the most important areas where new antimicrobials are needed is in the prevention and control of multi-drug resistant pathogens. Today, antibacterial products used to treat multi-drug resistant pathogen infections in hospitals and healthcare facilities are insufficient to prevent colonisation and spread, and new products are needed. The aim of the study is to investigate the antibacterial effect of the bee venom (BV), a natural substance, on the species of Methicillin resistant Staphylococcus aureus, Vancomycin resistant Enterococcus faecalis, Carbapenem resistant Escherichia coli, Carbapenem resistant Klebsiella pneumoniae and Carbapenem resistant Acinetobacter baumannii. As a result of this study, it was found that MIC90 and MBC90 values ranged from 6.25 μg/mL - 12.5 μg/mL and numbers of bacteria decreased by 4-6 logs within 1-24 h for multi-drug resistant pathogens. In particular, Vancomycin resistant Enterococcus faecalis isolate decreased 6 log cfu/mL at 50 μg/mL and 100 μg/mL concentrations in the first hour. The effective bacterial inhibition rate of bee venom suggests that it could be a potential antibacterial agent for multi-drug resistant pathogens.Contribution: The treatment options of antibiotic-resistant pathogens are a major problem in both veterinary and human medicine fields. We have detected a high antibacterial effect against these agents in this bee venom study, which is a natural product. Apitherapy is a fashionable treatment method all over the world and is used in many areas of health. Bee venom is also a product that can be used as a drug or disinfectant raw material and can fill the natural product gap that can be used against resistant bacteria.
Collapse
Affiliation(s)
- Tülin G Gökmen
- Department of Microbiology, Ceyhan Veterinary Faculty, Cukurova University, Adana.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Wang R, Gao D, Yu F, Han J, Yuan H, Hu F. Phospholipase A 2 inhibitor varespladib prevents wasp sting-induced nephrotoxicity in rats. Toxicon 2022; 215:69-76. [PMID: 35724947 DOI: 10.1016/j.toxicon.2022.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 02/07/2023]
Abstract
This study aimed to clarify whether varespladib, a phospholipase A2 (PLA2) inhibitor, can be used as a therapeutic agent for wasp sting-induced acute kidney injury (AKI). Rats were divided into control, AKI, and AKI + varespladib groups. The AKI model was established by subcutaneously injecting wasp venom at five different sites in rats. Varespladib treatment showed a significant inhibitory effect on wasp venom PLA2in vitro and in vivo. Moreover, we observed that varespladib decreased the levels of rhabdomyolysis and hemolysis markers compared with that in the AKI group. Histopathological changes in the kidney decreased significantly, and rat serum creatinine levels were reduced after varespladib administration. The significantly regulated genes in the kidney of the AKI group were mostly involved in inflammatory response pathway, and the administration of varespladib remarkably attenuated the expression of these genes. Therefore, varespladib inhibited wasp sting-induced functional and pathological damage to the kidneys. We propose that the PLA2 inhibitor varespladib protects the kidney tissue in a wasp sting-induced AKI model by inhibiting PLA2 activity.
Collapse
Affiliation(s)
- Rui Wang
- School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China; Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China
| | - Dan Gao
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China
| | - Fanglin Yu
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China
| | - Jiamin Han
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China
| | - Hai Yuan
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China.
| | - Fengqi Hu
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China.
| |
Collapse
|
4
|
Leiva CL, Geoghegan P, Lammer M, Cangelosi A, Mariconda V, Celi AB, Brero ML, Chacana P. In vivo neutralization of bee venom lethality by IgY antibodies. Mol Immunol 2021; 135:183-190. [PMID: 33930713 DOI: 10.1016/j.molimm.2021.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/24/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
Bee venom is a complex mixture of molecules, among which melittin and phospholipase A2 (PLA2) are the toxic components involved in envenoming accidents with multiple honeybee stings. Traditionally, the treatment of envenomings has been based on the administration of specific antibodies to neutralize the deleterious effects of toxins. An alternative to mammalian polyclonal antibodies is the use of egg yolk immunoglobulins (IgY) due to their advantages regarding animal welfare and lower costs of production as compared to the conventional production methods. In this work, a novel composition containing specific IgY antibodies was developed. After four immunizations, IgY extracted from the egg yolks was able to recognize several components of the bee venom, including melittin and PLA2. The performance of IgY to neutralize the lethal activity was evaluated in a mouse model by using one median lethal dose (LD50) of the bee venom. The effective dose of the IgY extract was determined as 30.66 μg/mg. These results demonstrate the feasibility to produce IgY-based antivenoms to treat envenomings by multiple bee stings.
Collapse
Affiliation(s)
- Carlos Leónidas Leiva
- Instituto de Patobiología, Instituto Nacional de Tecnología Agropecuaria, Nicolas Repetto y Los Reseros S/N, Hurlingham, Buenos Aires, Argentina; Instituto de Patobiología Veterinaria, UEDD INTA-CONICET, Nicolas Repetto y Los Reseros S/N, Hurlingham, Buenos Aires, Argentina.
| | - Patricia Geoghegan
- Centro Nacional de Control de Calidad de Biológicos, ANLIS "Dr. Carlos G. Malbrán", Av. Vélez, Sarsfield 563, CABA, Argentina.
| | - Mónica Lammer
- Centro Nacional de Control de Calidad de Biológicos, ANLIS "Dr. Carlos G. Malbrán", Av. Vélez, Sarsfield 563, CABA, Argentina.
| | - Adriana Cangelosi
- Centro Nacional de Control de Calidad de Biológicos, ANLIS "Dr. Carlos G. Malbrán", Av. Vélez, Sarsfield 563, CABA, Argentina.
| | - Virginia Mariconda
- Centro Nacional de Control de Calidad de Biológicos, ANLIS "Dr. Carlos G. Malbrán", Av. Vélez, Sarsfield 563, CABA, Argentina.
| | - Ana Beatriz Celi
- Instituto de Patobiología, Instituto Nacional de Tecnología Agropecuaria, Nicolas Repetto y Los Reseros S/N, Hurlingham, Buenos Aires, Argentina; Instituto de Patobiología Veterinaria, UEDD INTA-CONICET, Nicolas Repetto y Los Reseros S/N, Hurlingham, Buenos Aires, Argentina.
| | - María Luisa Brero
- Centro Nacional de Control de Calidad de Biológicos, ANLIS "Dr. Carlos G. Malbrán", Av. Vélez, Sarsfield 563, CABA, Argentina.
| | - Pablo Chacana
- Instituto de Patobiología, Instituto Nacional de Tecnología Agropecuaria, Nicolas Repetto y Los Reseros S/N, Hurlingham, Buenos Aires, Argentina; Instituto de Patobiología Veterinaria, UEDD INTA-CONICET, Nicolas Repetto y Los Reseros S/N, Hurlingham, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Teixeira-Cruz JM, Strauch MA, Monteiro-Machado M, Tavares-Henriques MS, de Moraes JA, Ribeiro da Cunha LE, Ferreira, Jr. RS, Barraviera B, Quintas LEM, Melo PA. A Novel Apilic Antivenom to Treat Massive, Africanized Honeybee Attacks: A Preclinical Study from the Lethality to Some Biochemical and Pharmacological Activities Neutralization. Toxins (Basel) 2021; 13:toxins13010030. [PMID: 33466223 PMCID: PMC7824798 DOI: 10.3390/toxins13010030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/25/2022] Open
Abstract
Massive, Africanized honeybee attacks have increased in Brazil over the years. Humans and animals present local and systemic effects after envenomation, and there is no specific treatment for this potentially lethal event. This study evaluated the ability of a new Apilic antivenom, which is composed of F(ab’)2 fraction of specific immunoglobulins in heterologous and hyperimmune equine serum, to neutralize A. mellifera venom and melittin, in vitro and in vivo, in mice. Animal experiments were performed in according with local ethics committee license (UFRJ protocol no. DFBCICB072-04/16). Venom dose-dependent lethality was diminished with 0.25–0.5 μL of intravenous Apilic antivenom/μg honeybee venom. In vivo injection of 0.1–1 μg/g bee venom induced myotoxicity, hemoconcentration, paw edema, and increase of vascular permeability which were antagonized by Apilic antivenom. Cytotoxicity, assessed in renal LLC-PK1 cells and challenged with 10 μg/mL honeybee venom or melittin, was neutralized by preincubation with Apilic antivenom, as well the hemolytic activity. Apilic antivenom inhibited phospholipase and hyaluronidase enzymatic activities. In flow cytometry experiments, Apilic antivenom neutralized reduction of cell viability due to necrosis by honeybee venom or melittin. These results showed that this antivenom is effective inhibitor of honeybee venom actions. Thus, this next generation of Apilic antivenom emerges as a new promising immunobiological product for the treatment of massive, Africanized honeybee attacks.
Collapse
Affiliation(s)
- Jhonatha Mota Teixeira-Cruz
- Graduate Program in Pharmacology and Medicinal Chemistry, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.M.T.-C.); (M.M.-M.); (M.S.T.-H.); (J.A.d.M.)
| | - Marcelo Abrahão Strauch
- Graduate Program in Pharmacology and Medicinal Chemistry, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.M.T.-C.); (M.M.-M.); (M.S.T.-H.); (J.A.d.M.)
- Scientific Board, Vital Brazil Institute (IVB), Niterói, Rio de Janeiro 24230-410, Brazil;
- Correspondence: (M.A.S.); (L.E.M.Q.); (P.A.M.)
| | - Marcos Monteiro-Machado
- Graduate Program in Pharmacology and Medicinal Chemistry, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.M.T.-C.); (M.M.-M.); (M.S.T.-H.); (J.A.d.M.)
| | - Matheus Silva Tavares-Henriques
- Graduate Program in Pharmacology and Medicinal Chemistry, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.M.T.-C.); (M.M.-M.); (M.S.T.-H.); (J.A.d.M.)
| | - João Alfredo de Moraes
- Graduate Program in Pharmacology and Medicinal Chemistry, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.M.T.-C.); (M.M.-M.); (M.S.T.-H.); (J.A.d.M.)
| | | | - Rui Seabra Ferreira, Jr.
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, São Paulo 18610-307, Brazil; (R.S.F.J.); (B.B.)
| | - Benedito Barraviera
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, São Paulo 18610-307, Brazil; (R.S.F.J.); (B.B.)
| | - Luis Eduardo M. Quintas
- Graduate Program in Pharmacology and Medicinal Chemistry, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.M.T.-C.); (M.M.-M.); (M.S.T.-H.); (J.A.d.M.)
- Correspondence: (M.A.S.); (L.E.M.Q.); (P.A.M.)
| | - Paulo A. Melo
- Graduate Program in Pharmacology and Medicinal Chemistry, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.M.T.-C.); (M.M.-M.); (M.S.T.-H.); (J.A.d.M.)
- Correspondence: (M.A.S.); (L.E.M.Q.); (P.A.M.)
| |
Collapse
|
6
|
Alangode A, Rajan K, Nair BG. Snake antivenom: Challenges and alternate approaches. Biochem Pharmacol 2020; 181:114135. [DOI: 10.1016/j.bcp.2020.114135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/25/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
|
7
|
Nazari A, Samianifard M, Rabie H, Mirakabadi AZ. Recombinant antibodies against Iranian cobra venom as a new emerging therapy by phage display technology. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20190099. [PMID: 32695146 PMCID: PMC7346683 DOI: 10.1590/1678-9199-jvatitd-2019-0099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: The production of antivenom from immunized animals is an established treatment for snakebites; however, antibody phage display technology may have the capacity to delivery results more quickly and with a better match to local need. Naja oxiana, the Iranian cobra, is a medically important species, responsible for a significant number of deaths annually. This study was designed as proof of principle to determine whether recombinant antibodies with the capacity to neutralize cobra venom could be isolated by phage display. Methods: Toxic fractions from cobra venom were prepared by chromatography and used as targets in phage display to isolate recombinant antibodies from a human scFv library. Candidate antibodies were expressed in E. coli HB2151 and purified by IMAC chromatography. The selected clones were analyzed in in vivo and in vitro experiments. Results: Venom toxicity was contained in two fractions. Around a hundred phage clones were isolated against each fraction, those showing the best promise were G12F3 and G1F4. While all chosen clones showed low but detectable neutralizing effect against Naja oxiana venom, clone G12F3 could inhibit PLA2 activity. Conclusion: Therefore, phage display is believed to have a good potential as an approach to the development of snake antivenom.
Collapse
Affiliation(s)
- Ali Nazari
- Department of Biochemistry and Proteomics, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Maedeh Samianifard
- Department of Biochemistry and Proteomics, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Hadi Rabie
- Department of Venomous Animals, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Abbas Zare Mirakabadi
- Department of Venomous Animals, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
8
|
Campos LB, Pucca MB, Silva LC, Pessenda G, Filardi BA, Cerni FA, Oliveira IS, Laustsen AH, Arantes EC, Barbosa JE. Identification of cross-reactive human single-chain variable fragments against phospholipases A 2 from Lachesis muta and Bothrops spp venoms. Toxicon 2020; 184:116-121. [PMID: 32505638 DOI: 10.1016/j.toxicon.2020.05.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/28/2020] [Accepted: 05/31/2020] [Indexed: 01/05/2023]
Abstract
Bushmasters (Lachesis spp) and lancehead vipers (Bothrops spp) are two of the most dangerous snakes found in Latin America. Victims of envenoming by these snakes require urgent administration of antivenom. Here, we report the identification of a small set of broadly neutralizing human monoclonal single-chain variable fragment (scFv) antibodies targeting key phospholipases A2 from Lachesis and Bothrops spp using phage display technology and demonstrate their in vitro efficacy using a hemolysis assay.
Collapse
Affiliation(s)
- Lucas B Campos
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Manuela B Pucca
- Medical School, Federal University of Roraima, Boa Vista, RR, Brazil; Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Luciano C Silva
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Toronto Recombinant Antibody Centre, The Donnelly Centre, University of Toronto, Toronto, Canada
| | - Gabriela Pessenda
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Bruno A Filardi
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Felipe A Cerni
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark; Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Isadora S Oliveira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Eliane C Arantes
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - José E Barbosa
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
9
|
Pucca MB, Cerni FA, Oliveira IS, Jenkins TP, Argemí L, Sørensen CV, Ahmadi S, Barbosa JE, Laustsen AH. Bee Updated: Current Knowledge on Bee Venom and Bee Envenoming Therapy. Front Immunol 2019; 10:2090. [PMID: 31552038 PMCID: PMC6743376 DOI: 10.3389/fimmu.2019.02090] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022] Open
Abstract
Honey bees can be found all around the world and fulfill key pollination roles within their natural ecosystems, as well as in agriculture. Most species are typically docile, and most interactions between humans and bees are unproblematic, despite their ability to inject a complex venom into their victims as a defensive mechanism. Nevertheless, incidences of bee stings have been on the rise since the accidental release of Africanized bees to Brazil in 1956 and their subsequent spread across the Americas. These bee hybrids are more aggressive and are prone to attack, presenting a significant healthcare burden to the countries they have colonized. To date, treatment of such stings typically focuses on controlling potential allergic reactions, as no specific antivenoms against bee venom currently exist. Researchers have investigated the possibility of developing bee antivenoms, but this has been complicated by the very low immunogenicity of the key bee toxins, which fail to induce a strong antibody response in the immunized animals. However, with current cutting-edge technologies, such as phage display, alongside the rise of monoclonal antibody therapeutics, the development of a recombinant bee antivenom is achievable, and promising results towards this goal have been reported in recent years. Here, current knowledge on the venom biology of Africanized bees and current treatment options against bee envenoming are reviewed. Additionally, recent developments within next-generation bee antivenoms are presented and discussed.
Collapse
Affiliation(s)
- Manuela B. Pucca
- Medical School, Federal University of Roraima, Boa Vista, Brazil
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Felipe A. Cerni
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Isadora S. Oliveira
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Timothy P. Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Lídia Argemí
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Christoffer V. Sørensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Shirin Ahmadi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
- Department of Biotechnology and Biosafety, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - José E. Barbosa
- Department of Biochemistry and Immunology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
10
|
Pucca MB, Cerni FA, Janke R, Bermúdez-Méndez E, Ledsgaard L, Barbosa JE, Laustsen AH. History of Envenoming Therapy and Current Perspectives. Front Immunol 2019; 10:1598. [PMID: 31354735 PMCID: PMC6635583 DOI: 10.3389/fimmu.2019.01598] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/26/2019] [Indexed: 01/15/2023] Open
Abstract
Each year, millions of humans fall victim to animal envenomings, which may either be deadly or cause permanent disability to the effected individuals. The Nobel Prize-winning discovery of serum therapy for the treatment of bacterial infections (tetanus and diphtheria) paved the way for the introduction of antivenom therapies for envenomings caused by venomous animals. These antivenoms are based on polyclonal antibodies derived from the plasma of hyperimmunized animals and remain the only specific treatment against animal envenomings. Following the initial development of serum therapy for snakebite envenoming by French scientists in 1894, other countries with high incidences of animal envenomings, including Brazil, Australia, South Africa, Costa Rica, and Mexico, started taking up antivenom production against local venomous animals over the course of the twentieth century. These undertakings revolutionized envenoming therapy and have saved innumerous patients worldwide during the last 100 years. This review describes in detail the above-mentioned historical events surrounding the discovery and the application of serum therapy for envenomings, as well as it provides an overview of important developments and scientific breakthroughs that were of importance for antibody-based therapies in general. This begins with discoveries concerning the characterization of antibodies, including the events leading up to the elucidation of the antibody structure. These discoveries further paved the way for other milestones in antibody-based therapies, such as the introduction of hybridoma technology in 1975. Hybridoma technology enabled the expression and isolation of monoclonal antibodies, which in turn formed the basis for the development of phage display technology and transgenic mice, which can be harnessed to directly obtain fully human monoclonal antibodies. These developments were driven by the ultimate goal of producing potent neutralizing monoclonal antibodies with optimal pharmacokinetic properties and low immunogenicity. This review then provides an outline of the most recent achievements in antivenom research, which include the application of new biotechnologies, the development of the first human monoclonal antibodies that can neutralize animal toxins, and efforts toward creating fully recombinant antivenoms. Lastly, future perspectives in the field of envenoming therapies are discussed, including rational engineering of antibody cross-reactivity and the use of oligoclonal antibody mixtures.
Collapse
Affiliation(s)
- Manuela B. Pucca
- Medical School, Federal University of Roraima, Boa Vista, Brazil
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Felipe A. Cerni
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- Department of Biochemistry and Immunology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Rahel Janke
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Line Ledsgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - José E. Barbosa
- Department of Biochemistry and Immunology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
11
|
|
12
|
Knudsen C, Laustsen AH. Recent Advances in Next Generation Snakebite Antivenoms. Trop Med Infect Dis 2018; 3:tropicalmed3020042. [PMID: 30274438 PMCID: PMC6073149 DOI: 10.3390/tropicalmed3020042] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 12/26/2022] Open
Abstract
With the inclusion of snakebite envenoming on the World Health Organization’s list of Neglected Tropical Diseases, an incentive has been established to promote research and development effort in novel snakebite antivenom therapies. Various technological approaches are being pursued by different research groups, including the use of small molecule inhibitors against enzymatic toxins as well as peptide- and oligonucleotide-based aptamers and antibody-based biotherapeutics against both enzymatic and non-enzymatic toxins. In this article, the most recent advances in these fields are presented, and the advantages, disadvantages, and feasibility of using different toxin-neutralizing molecules are reviewed. Particular focus within small molecules is directed towards the inhibitors varespladib, batimastat, and marimastat, while in the field of antibody-based therapies, novel recombinant polyclonal plantivenom technology is discussed.
Collapse
Affiliation(s)
- Cecilie Knudsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, DK-2800, Denmark.
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, DK-2800, Denmark.
| |
Collapse
|
13
|
Silva LC, Pucca MB, Pessenda G, Campos LB, Martinez EZ, Cerni FA, Barbosa JE. Discovery of human scFvs that cross-neutralize the toxic effects of B. jararacussu and C. d. terrificus venoms. Acta Trop 2018; 177:66-73. [PMID: 28887121 DOI: 10.1016/j.actatropica.2017.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/21/2017] [Accepted: 09/04/2017] [Indexed: 12/16/2022]
Abstract
Accidents involving venomous snakes are a public health problem worldwide, causing a large number of deaths per year. In Brazil, the majority of accidents are caused by the Bothrops and Crotalus genera, which are responsible for approximately 80% of severe envenoming cases. The cross-neutralization of snake venoms by antibodies is an important issue for development of more effective treatments. Our group has previously reported the construction of human monoclonal antibody fragments towards Bothrops jararacussu and Crotalus durissus terrificus' venoms. This study aimed to select human single-chain variable fragments (scFvs) that recognize both bothropic and crotalic crude venoms following venoms neutralizing capacity in vitro and in vivo. The cross-reactivity of Cro-Bothrumabs were demonstrated by ELISA and in vitro and in vivo experiments showed that a combination of scFvs neutralizes in vitro toxic activities (e.g. indirect hemolysis and plasma-clotting) of crotalic and bothropic venoms as well as prolonged survival time of envenomed animals. Our results may contribute to the development of the first human polyvalent antivenom against Bothrops jararacussu and Crotalus durissus terrificus venoms, overcoming some undesirable effects caused by conventional serotherapy.
Collapse
|
14
|
Massive attack of honeybee on macaws ( Ara ararauna and Ara chloropterus ) in Brazil – A case report. Toxicon 2017. [DOI: 10.1016/j.toxicon.2017.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Burdmann EA, Jha V. Acute kidney injury due to tropical infectious diseases and animal venoms: a tale of 2 continents. Kidney Int 2017; 91:1033-1046. [PMID: 28088326 DOI: 10.1016/j.kint.2016.09.051] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/10/2016] [Accepted: 09/28/2016] [Indexed: 12/20/2022]
Abstract
South and Southeast Asia and Latin American together comprise 46 countries and are home to approximately 40% of the world population. The sociopolitical and economic heterogeneity, tropical climate, and malady transitions characteristic of the region strongly influence disease behavior and health care delivery. Acute kidney injury epidemiology mirrors these inequalities. In addition to hospital-acquired acute kidney injury in tertiary care centers, these countries face a large preventable burden of community-acquired acute kidney injury secondary to tropical infectious diseases or animal venoms, affecting previously healthy young individuals. This article reviews the epidemiology, clinical picture, prevention, risk factors, and pathophysiology of acute kidney injury associated with tropical diseases (malaria, dengue, leptospirosis, scrub typhus, and yellow fever) and animal venom (snakes, bees, caterpillars, spiders, and scorpions) in tropical regions of Asia and Latin America, and discusses the potential future challenges due to emerging issues.
Collapse
Affiliation(s)
- Emmanuel A Burdmann
- LIM 12, Division of Nephrology, University of São Paulo Medical School, São Paulo, Brazil.
| | - Vivekanand Jha
- George Institute for Global Health, New Delhi, India, and University of Oxford, Oxford, UK
| |
Collapse
|
16
|
Kuhn P, Fühner V, Unkauf T, Moreira GMSG, Frenzel A, Miethe S, Hust M. Recombinant antibodies for diagnostics and therapy against pathogens and toxins generated by phage display. Proteomics Clin Appl 2016; 10:922-948. [PMID: 27198131 PMCID: PMC7168043 DOI: 10.1002/prca.201600002] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/30/2016] [Accepted: 05/17/2016] [Indexed: 12/11/2022]
Abstract
Antibodies are valuable molecules for the diagnostic and treatment of diseases caused by pathogens and toxins. Traditionally, these antibodies are generated by hybridoma technology. An alternative to hybridoma technology is the use of antibody phage display to generate recombinant antibodies. This in vitro technology circumvents the limitations of the immune system and allows—in theory—the generation of antibodies against all conceivable molecules. Phage display technology enables obtaining human antibodies from naïve antibody gene libraries when either patients are not available or immunization is not ethically feasible. On the other hand, if patients or immunized/infected animals are available, it is common to construct immune phage display libraries to select in vivo affinity‐matured antibodies. Because the phage packaged DNA sequence encoding the antibodies is directly available, the antibodies can be smoothly engineered according to the requirements of the final application. In this review, an overview of phage display derived recombinant antibodies against bacterial, viral, and eukaryotic pathogens as well as toxins for diagnostics and therapy is given.
Collapse
Affiliation(s)
- Philipp Kuhn
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Viola Fühner
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Tobias Unkauf
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | | | - André Frenzel
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| | - Sebastian Miethe
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany.
| |
Collapse
|
17
|
Böldicke T, Miethe S, Fühner V, Schirrmann T, Frenzel A, Hust M. Generation of Recombinant Antibodies Against Toxins and Viruses by Phage Display for Diagnostics and Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 917:55-76. [PMID: 27236552 PMCID: PMC7121732 DOI: 10.1007/978-3-319-32805-8_4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Antibody phage display is an in vitro technology to generate recombinant antibodies. In particular for pathogens like viruses or toxins, antibody phage display is an alternative to hybridoma technology, since it circumvents the limitations of the immune system. Phage display allows the generation of human antibodies from naive antibody gene libraries when either immunized patients are not available or immunization is not ethically feasible. This technology also allows the construction of immune libraries to select in vivo affinity matured antibodies if immunized patients or animals are available.In this review, we describe the generation of human and human-like antibodies from naive antibody gene libraries and antibodies from immune antibody gene libraries. Furthermore, we give an overview about phage display derived recombinant antibodies against viruses and toxins for diagnostics and therapy.
Collapse
Affiliation(s)
- Thomas Böldicke
- grid.7490.aRecombinant protein exprsn/Intrabdy unit, Helmholtz-Centre for Infection Rese, Braunschweig, Germany
| | - Sebastian Miethe
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Viola Fühner
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Thomas Schirrmann
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany.,YUMAB GmbH, Rebenring 33, 38106, Braunschweig, Germany
| | - André Frenzel
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany.,YUMAB GmbH, Rebenring 33, 38106, Braunschweig, Germany
| | - Michael Hust
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany.
| |
Collapse
|
18
|
Pessenda G, Silva LC, Campos LB, Pacello EM, Pucca MB, Martinez EZ, Barbosa JE. Human scFv antibodies (Afribumabs) against Africanized bee venom: Advances in melittin recognition. Toxicon 2016; 112:59-67. [DOI: 10.1016/j.toxicon.2016.01.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/11/2016] [Accepted: 01/20/2016] [Indexed: 01/27/2023]
|
19
|
SU MANMAN, CHANG WEIQIN, ZHANG KUN, CUI MANHUA, WU SHUYING, XU TIANMIN. Expression and purification of recombinant ATF-mellitin, a new type fusion protein targeting ovarian cancer cells, in P. pastoris. Oncol Rep 2015; 35:1179-85. [DOI: 10.3892/or.2015.4448] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/22/2015] [Indexed: 11/05/2022] Open
|
20
|
Roncolato EC, Campos LB, Pessenda G, Costa e Silva L, Furtado GP, Barbosa JE. Phage display as a novel promising antivenom therapy: A review. Toxicon 2015; 93:79-84. [DOI: 10.1016/j.toxicon.2014.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/17/2014] [Accepted: 11/04/2014] [Indexed: 11/15/2022]
|
21
|
Engineering venom's toxin-neutralizing antibody fragments and its therapeutic potential. Toxins (Basel) 2014; 6:2541-67. [PMID: 25153256 PMCID: PMC4147596 DOI: 10.3390/toxins6082541] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/16/2014] [Accepted: 08/04/2014] [Indexed: 11/24/2022] Open
Abstract
Serum therapy remains the only specific treatment against envenoming, but anti-venoms are still prepared by fragmentation of polyclonal antibodies isolated from hyper-immunized horse serum. Most of these anti-venoms are considered to be efficient, but their production is tedious, and their use may be associated with adverse effects. Recombinant antibodies and smaller functional units are now emerging as credible alternatives and constitute a source of still unexploited biomolecules capable of neutralizing venoms. This review will be a walk through the technologies that have recently been applied leading to novel antibody formats with better properties in terms of homogeneity, specific activity and possible safety.
Collapse
|
22
|
Oliinyk OS. SINGLE CHAIN VARIABLE FRAGMENTS OF ANTIBODIES AGAINST DIPHTHERIA TOXIN B-SUBUNIT ISOLATED FROM PHAGE DISPLAY HUMAN ANTIBODY LIBRARY. BIOTECHNOLOGIA ACTA 2014. [DOI: 10.15407/biotech7.01.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
23
|
Neutralization of Apis mellifera bee venom activities by suramin. Toxicon 2013; 67:55-62. [PMID: 23474269 DOI: 10.1016/j.toxicon.2013.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 01/31/2013] [Accepted: 02/14/2013] [Indexed: 11/20/2022]
Abstract
In this work we evaluated the ability of suramin, a polysulfonated naphthylurea derivative, to antagonize the cytotoxic and enzymatic effects of the crude venom of Apis mellifera. Suramin was efficient to decrease the lethality in a dose-dependent way. The hemoconcentration caused by lethal dose injection of bee venom was abolished by suramin (30 μg/g). The edematogenic activity of the venom (0.3 μg/g) was antagonized by suramin (10 μg/g) in all treatment protocols. The changes in the vascular permeability caused by A. mellifera (1 μg/g) venom were inhibited by suramin (30 μg/g) in the pre- and posttreatment as well as when the venom was preincubated with suramin. In addition, suramin also inhibited cultured endothelial cell lesion, as well as in vitro myotoxicity, evaluated in mouse extensor digitorum longus muscle, which was inhibited by suramin (10 and 25 μM), decreasing the rate of CK release, showing that suramin protected the sarcolemma against damage induced by components of bee venom (2.5 μg/mL). Moreover, suramin inhibited the in vivo myotoxicity induced by i.m. injection of A. mellifera venom in mice (0.5 μg/g). The analysis of the area under the plasma CK vs. time curve showed that preincubation, pre- and posttreatment with suramin (30 μg/g) inhibited bee venom myotoxic activity in mice by about 89%, 45% and 40%, respectively. Suramin markedly inhibited the PLA2 activity in a concentration-dependent way (1-30 μM). Being suramin a polyanion molecule, the effects observed may be due to the interaction of its charges with the polycation components present in A. mellifera bee venom.
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Insect allergy remains an important cause of morbidity and mortality in the United States. In 2011, the third iteration of the stinging insect hypersensitivity practice parameter was published, the first being published in 1999 and the second in 2004. Since the 2004 edition, our understanding of insect hypersensitivity has continued to expand and has been incorporated into the 2011 edition. This work will review the relevant changes in the management of insect hypersensitivity occurring since 2004 and present our current understanding of the insect hypersensitivity diagnosis and management. RECENT FINDINGS Since the 2004 commissioning by the Joint Task Force (JTF) on Practice Parameters of 'Stinging insect hypersensitivity: a practice parameter update', there have been important contributions to our understanding of insect allergy. These contributions were incorporated into the 2011 iteration. Similar efforts were made by the European Allergy Asthma and Clinical Immunology Interest Group in 2005 and most recently in 2011 by the British Society of Allergy and Clinical Immunology. SUMMARY Our understanding of insect allergy, including the natural history, epidemiology, diagnostic testing, and risk factors, has greatly expanded. This evolution of knowledge should provide improved long-term management of stinging insect hypersensitivity. This review will focus primarily on the changes between the 2004 and 2011 stinging insect practice parameter commissioned by the JTF on Practice Parameters, but will, where appropriate, highlight the differences between working groups.
Collapse
|
25
|
Roncolato EC, Pucca MB, Funayama JC, Bertolini TB, Campos LB, Barbosa JE. Human antibody fragments specific for Bothrops jararacussu venom reduce the toxicity of other Bothrops sp. venoms. J Immunotoxicol 2012; 10:160-8. [PMID: 22954026 DOI: 10.3109/1547691x.2012.703253] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Approximately 20,000 snakebites are registered each year in Brazil. The classical treatment for venomous snakebite involves the administration of sera obtained from immunized horses. Moreover, the production and care of horses is costly, and the use of heterologous sera can cause hypersensitivity reactions. The production of human antibody fragments by phage display technology is seen as a means of overcoming some of these disadvantages. The studies here attempted to test human monoclonal antibodies specific to Bothrops jararacussu against other Bothrops sp. venoms, using the Griffin.1 library of human single-chain fragment-variable (scFv) phage antibodies. Using the Griffin.1 phage antibody library, this laboratory previously produced scFvs capable of inhibiting the phospholipase and myotoxic activities of Bothrops jararacussu venom. The structural and functional similarities of the various forms of phospholipase A2 (PLA₂) in Bothrops venom served as the basis for the present study wherein the effectiveness of those same scFvs were evaluated against B. jararaca, B. neuwiedi, and B. moojeni venoms. Each clone was found to recognize all three Bothrops venoms, and purified scFvs partially inhibited their in vitro phospholipase activity. In vivo assays demonstrated that the scFv clone P2B7 reduced myotoxicity and increased the survival of animals that received the test venoms. The results here indicate that the scFv P2B7 is a candidate for inclusion in a mixture of specific antibodies to produce a human anti-bothropic sera. This data demonstrates that the human scFv P2B7 represents an alternative therapeutic approach to heterologous anti-bothropic sera available today.
Collapse
Affiliation(s)
- Eduardo Crosara Roncolato
- Department of Biochemistry and Immunology, University of São Paulo at Ribeirão Preto School of Medicine, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|