1
|
Wang W, Liu Y, Zhu ZB, Pang K, Wang JK, Gu J, Li ZB, Wang J, Shi ZD, Han CH. Research Advances in Stem Cell Therapy for Erectile Dysfunction. BioDrugs 2024; 38:353-367. [PMID: 38520608 PMCID: PMC11055746 DOI: 10.1007/s40259-024-00650-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 03/25/2024]
Abstract
Erectile dysfunction (ED) is a common clinical condition that mainly affects men aged over 40 years. Various causes contribute to the progression of ED, including pelvic nerve injury, diabetes, metabolic syndrome, age, Peyronie's disease, smoking, and psychological disorders. Current treatments for ED are limited to symptom relief and do not address the root cause. Stem cells, with their powerful ability to proliferate and differentiate, are a promising approach for the treatment of male ED and are gradually gaining widespread attention. Current uses for treating ED have been studied primarily in experimental animals, with most studies observing improvements in erectile quality as well as improvements in erectile tissue. However, research on stem cell therapy for human ED is still limited. This article summarizes the recent literature on basic stem cell research on ED, including cavernous nerve injury, aging, diabetes, and sclerosing penile disease, and describes mechanisms of action and therapeutic effects of various stem cell therapies in experimental animals. Stem cells are also believed to interact with host tissue in a paracrine manner, and improved function can be supported through both implantation and paracrine factors. To date, stem cells have shown some preliminary promising results in animal and human models of ED.
Collapse
Affiliation(s)
- Wei Wang
- School of Medicine, Southeast University, Nanjing, China
| | - Ying Liu
- Department of Central Laboratory, Xuzhou Central Hospital, Xuzhou, China
| | - Zuo-Bin Zhu
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, China
| | - Kun Pang
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Jing-Kai Wang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jun Gu
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Zhen-Bei Li
- Department of Reproductive Medicine, Xuzhou Central Hospital, Xuzhou, China
| | - Jian Wang
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Zhen-Duo Shi
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China.
| | - Cong-Hui Han
- School of Medicine, Southeast University, Nanjing, China.
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China.
| |
Collapse
|
2
|
Sun T, Liu Y, Yuan P, Jia Z, Yang J. Bibliometric and Visualization Analysis of Stem Cell Therapy for Erectile Dysfunction. Drug Des Devel Ther 2024; 18:731-746. [PMID: 38476204 PMCID: PMC10929656 DOI: 10.2147/dddt.s448483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Purpose As a common male disease, erectile dysfunction (ED) seriously affects the physical and mental health of patients. In recent years, studies have continued to point out the great potential of stem cell therapy (SCT) in the treatment of ED. The purpose of this study is to comprehensively analyze the research of SCT for ED and understand the development trends and research frontiers in this field. Methods Publications regarding SCT and ED were retrieved and collected from the Web of Science Core Collection. CiteSpace and VOSviewer software were then utilized for bibliometric and visualization analysis. Results A total of 524 publications were eventually included in this study. The annual number of publications in this field was increasing year by year. China and the USA were the two most productive countries. Lin GT, Lue TF and Lin CS, and the University of California San Francisco where they worked were the most productive research group and institution, respectively. The journal with the largest number of publications was The Journal of Sexual Medicine, and the following were mostly professional journals of urology and andrology. Diabetes mellitus-induced ED and cavernous nerve injury-related ED were the two most commonly constructed models of ED in studies. Concerning the types of stem cells, mesenchymal stem cells derived from adipose and bone marrow were most frequently used. Moreover, future research would mainly focus on exosomes, tissue engineering technology, extracorporeal shockwave therapy, and clinical translation. Conclusion The research of SCT for ED will receive increasing global attention in the future. Our study provided bibliometric and visualization analysis of published literature, helping researchers understand the global landscape and frontiers in this field. More preclinical and clinical studies should be conducted to more deeply explore the underlying mechanisms of treatment and promote clinical translation.
Collapse
Affiliation(s)
- Taotao Sun
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
| | - Yipiao Liu
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
| | - Penghui Yuan
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
| | - Zhankui Jia
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
| | - Jinjian Yang
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
| |
Collapse
|
3
|
Zou H, Zhang X, Chen W, Tao Y, Li B, Liu H, Wang R, Zhao J. Vascular endothelium is the basic way for stem cells to treat erectile dysfunction: a bibliometric study. Cell Death Discov 2023; 9:143. [PMID: 37127677 PMCID: PMC10151332 DOI: 10.1038/s41420-023-01443-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/29/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023] Open
Abstract
Vascular endothelial is considered to be a key factor in the pathogenesis of erectile dysfunction (ED). The purpose is to reveal the research trend of the field of ED and vascular endothelium. In addition, the goal is to discover the role and mechanism of vascular endothelium in ED. Bibliometrics and visualization methods based on CiteSpace were selected. We conducted the co-authorship analysis of countries, institutions and authors, co-occurrence analysis of keywords, and co-citation analysis of literature and authors through CiteSpace 6.1.R3. 1431 articles from Web of Science Core Collection (WOSCC) were included in the analysis from 1991 to 2022. We found some influential and cutting-edge nodes in each map, including countries, institutions, authors, articles, etc. Stem cell, therapy, oxidative stress, cavernous nerve injury, radical prostatectomy, fibrosis, erectile function, mesenchymal stem cell, and apoptosis may be hot keywords. In conclusion, the efficacy and mechanisms of stem cells and their derivatives in the treatment of diabetes (DM) ED and cavernous nerve injury (CNI) ED are the future research trends. Stem cells therapy for ED is a hot spot in this field, which side notes that stem cells may work mainly through improving endothelial function. Vascular endothelial cells and VEGF may repair nerve and cavernous smooth muscle directly or indirectly, and finally polish up erectile function.
Collapse
Affiliation(s)
- Hede Zou
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuesong Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenkang Chen
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Tao
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bolin Li
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hanfei Liu
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Ruikun Wang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Jiayou Zhao
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Pérez-Aizpurua X, Garranzo-Ibarrola M, Simón-Rodríguez C, García-Cardoso JV, Chávez-Roa C, López-Martín L, Tufet i Jaumot JJ, Alonso-Román J, Maqueda-Arellano J, Gómez-Jordana B, Ruiz de Castroviejo-Blanco J, Osorio-Ospina F, González-Enguita C, García-Arranz M. Stem Cell Therapy for Erectile Dysfunction: A Step towards a Future Treatment. Life (Basel) 2023; 13:life13020502. [PMID: 36836859 PMCID: PMC9963846 DOI: 10.3390/life13020502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Background: The improvement of absent or partial response in the medical treatment of erectile dysfunction (ED) has led to the development of minimally invasive new treatment modalities in the field of regenerative medicine. Methods: A literature review on stem cell therapy for the treatment of ED was performed. We searched for the terms "erectile dysfunction" and "stem cell therapy" in PubMed and Clinicaltrials.gov. Literature searching was conducted in English and included articles from 2010 to 2022. Results: New treatment modalities for ED involving stem cell therapy are not only conceived with a curative intent but also aim to avoid unnecessary adverse effects. Several sources of stem cells have been described, each with unique characteristics and potential applications, and different delivery methods have been explored. A limited number of interventional studies over the past recent years have provided evidence of a safety profile in their use and promising results for the treatment of ED, although there are not enough studies to generate an appropriate protocol, dose or cell lineage, or to determine a mechanism of action. Conclusions: Stem cell therapy is a novel treatment for ED with potential future applications. However, most urological societies agree that further research is required to conclusively prove its potential benefit.
Collapse
Affiliation(s)
- Xabier Pérez-Aizpurua
- Urology Department, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
- Correspondence:
| | | | | | | | - César Chávez-Roa
- Urology Department, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Leticia López-Martín
- Urology Department, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
| | | | - Josué Alonso-Román
- Urology Department, Hospital Universitario Virgen de la Macarena, 41009 Sevilla, Spain
| | | | - Blanca Gómez-Jordana
- Urology Department, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
| | | | - Felipe Osorio-Ospina
- Urology Department, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
| | | | - Mariano García-Arranz
- Instituto de Investigación Sanitaria (IIS-FJD), Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
| |
Collapse
|
5
|
Fode M, Nadler N, Lund L, Azawi N. Feasibility of minimally invasive, same-day injection of autologous adipose-derived stem cells in the treatment of erectile dysfunction. Scand J Urol 2023; 57:110-114. [PMID: 36586416 DOI: 10.1080/21681805.2022.2162117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To investigate feasibility and safety of a new minimally invasive same-day method of autologous adipose derived stem cell (ADSC) transplantation in men suffering from ED. MATERIALS AND METHODS Prospective case series of 10 men with an IIEF-EF domain score <17. The IIEF questionnaire was filled out at baseline and 1, 2 and 3 months after treatment. Side effects were assessed by investigations and interviews until 6 months after treatment. The myStem® X2 kit was used for preparation of ADSC: Adipose tissue was harvested from the patient himself under local anesthesia and immediately prepared and injected into the penis. Primary endpoints were feasibility and safety. Secondary outcomes included effects on ED and changes in the remaining IIEF domains. RESULTS Ten men were included. Only one adverse event in the form of minor blue discoloration at the fat harvest site was registered. There were statistically significant improvements in IIEF-EF at one, two and three months after treatment compared to baseline with the median score increasing from 5.5 to 10.5, 10.5 and 10, respectively. Considering the individual patients, 3/10 men achieved an improvement equal to or greater than the minimal clinically important difference according to their baseline IIEF-EF score. CONCLUSIONS Our study confirms the feasibility and safety of this minimally invasive, same-day delivery of ADSC. Due to the design and size on the study, conclusions should not be drawn regarding efficacy, but the method seems worthy of further study.
Collapse
Affiliation(s)
- Mikkel Fode
- Department of Urology, Copenhagen University Hospital - Herlev and Gentofte Hospital, Herlev, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Naomi Nadler
- Department of Urology, Zealand University Hospital, Roskilde, Denmark
| | - Lars Lund
- Department of Urology, Odense University Hospital, Odense, Denmark.,Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Nessn Azawi
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Department of Urology, Zealand University Hospital, Roskilde, Denmark
| |
Collapse
|
6
|
Wang B, Gao W, Zheng MY, Lin G, Lue TF. Recent advances in stem cell therapy for erectile dysfunction: a narrative review. Expert Opin Biol Ther 2023; 23:565-573. [PMID: 37078259 PMCID: PMC10330142 DOI: 10.1080/14712598.2023.2203811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
INTRODUCTION While phosphodiesterase type 5 inhibitors (PDE5is) and others are used to treat Erectile dysfunction (ED), many patients are either unresponsive or resistant to it. Stem cell therapy (SCT) is a promising alternative approach. Numerous preclinical trials have demonstrated improved erectile function in animal models using SCT, although the number of clinical trials investigating SCT for men with ED is limited. Nonetheless, findings from human clinical trials suggest that SCT may be a useful treatment option. AREAS COVERED Biomedical literature, including PubMed, ClinicalTrials.gov, and European Union Clinical Trials Registry, were analyzed to summarize and synthesize information on stem cell therapy for ED in this narrative review. The achievements in preclinical and clinical evaluations are presented and critically analyzed. EXPERT OPINION SCT has demonstrated some benefits in improving erectile function, while further studies are urgently needed. Such studies would provide valuable insights into the optimal use of stem cell therapy and its potential as a therapeutic option for ED. Taking advantage of different mechanisms of action involved in various regenerative therapies, combination therapies such as SCT and low-energy shock waves or platelet-rich plasma may provide a more effective therapy and warrant further research.
Collapse
Affiliation(s)
- Bohan Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenjun Gao
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Micha Y. Zheng
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Guiting Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Tom F Lue
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
7
|
Feng H, Liu Q, Deng Z, Li H, Zhang H, Song J, Liu X, Liu J, Wen B, Wang T. Human umbilical cord mesenchymal stem cells ameliorate erectile dysfunction in rats with diabetes mellitus through the attenuation of ferroptosis. Stem Cell Res Ther 2022; 13:450. [PMID: 36064453 PMCID: PMC9444126 DOI: 10.1186/s13287-022-03147-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/18/2022] [Indexed: 11/15/2022] Open
Abstract
Background Erectile dysfunction (ED), as one of the most prevalent consequences in male diabetic patients, has a serious impact on men's physical and mental health, and the treatment effect of diabetic mellitus erectile dysfunction (DMED) is often worse. Therefore, the development of a novel therapeutic approach is urgent. As stem cells with high differentiation potential, human umbilical cord mesenchymal stem cells (HUCMSCs) have been widely used in the treatment of diseases in other systems, and are expected to be a promising strategy for the treatment of DMED. In this study, we investigated the role of HUCMSCs in managing erectile function in rat models of type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) and compared the effects of two different injection methods. Methods T1DM and T2DM ED rats were given labelled HUCMSCs by corpus cavernosum injection and tail vein injection, respectively. ICP and MAP were monitored simultaneously by electrical stimulation four weeks after injection to indicate the erectile function of rats. To track the development and colonisation capabilities of stem cells, we performed EdU assay with penile tissue. The histological changes of the penis were observed by hematoxylin–eosin staining, and Masson’s trichrome staining was conducted to evaluate the smooth muscle content and the degree of fibrosis in the rat penis. Then, we employed specific kits to measure the level of NO, cGMP, MDA, SOD and Fe in penis. Electron transmission microscopy was implemented to observe morphology of mitochondria. Besides, western blot and immunofluorescence staining were performed to demonstrate the expression of ferroptosis-related genes. Results We found that HUCMSCs improved erectile function in T1DM and T2DM ED rats, with no difference in efficacy between corpus cavernosum injection and tail vein injection. The EdU assay revealed that only a tiny percentage of HUCMSCs colonised the corpus cavernosum, while smooth muscle in the penis expanded and collagen decreased following HUCMSC injection. Moreover, the levels of oxidative stress in the penis of the rats given HUCMSCs were dramatically reduced, as was the tissue iron content. HUCMSCs normalised mitochondrial morphology within corpus cavernosum smooth muscle cells (CCSMCs), which were characteristically altered by high glucose. Furthermore, the expression of ferroptosis inhibitory genes SLC7A11 and GPX4 was obviously elevated in CCSMCs after stem cell management, but the abundances of ACSL4, LPCAT3 and ALOX15 showed the polar opposite tendency. Conclusions HUCMSCs can effectively and safely alleviate erectile dysfunction in T1DM and T2DM ED rats, while restoring erectile function by attenuating diabetes-induced ferroptosis in CCSMCs. Additionally, this study provides significant evidence for the development of HUCMSCs as a viable therapeutic strategy for DMED. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03147-w.
Collapse
Affiliation(s)
- Huan Feng
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qi Liu
- Department of Urology, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong, China
| | - Zhiyao Deng
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong, China
| | - Hao Li
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huajie Zhang
- Department of Urology, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong, China
| | - Jingyu Song
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaming Liu
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jihong Liu
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bo Wen
- Department of Urology, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong, China.
| | - Tao Wang
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China. .,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong, China.
| |
Collapse
|
8
|
Bonanni M, Rehak L, Massaro G, Benedetto D, Matteucci A, Russo G, Esperto F, Federici M, Mauriello A, Sangiorgi GM. Autologous Immune Cell-Based Regenerative Therapies to Treat Vasculogenic Erectile Dysfunction: Is the Immuno-Centric Revolution Ready for the Prime Time? Biomedicines 2022; 10:biomedicines10051091. [PMID: 35625828 PMCID: PMC9138496 DOI: 10.3390/biomedicines10051091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 02/04/2023] Open
Abstract
About 35% of patients affected by erectile dysfunction (ED) do not respond to oral phosphodiesterase-5 inhibitors (PDE5i) and more severe vasculogenic refractory ED affects diabetic patients. Innovative approaches, such as regenerative therapies, including stem cell therapy (SCT) and platelet-rich plasma (PRP), are currently under investigation. Recent data point out that the regenerative capacity of stem cells is strongly influenced by local immune responses, with macrophages playing a pivotal role in the injury response and as a coordinator of tissue regeneration, suggesting that control of the immune response could be an appealing approach in regenerative medicine. A new generation of autologous cell therapy based on immune cells instead of stem cells, which could change regenerative medicine for good, is discussed. Increasing safety and efficacy data are coming from clinical trials using peripheral blood mononuclear cells to treat no-option critical limb ischemia and diabetic foot. In this review, ongoing phase 1/phase 2 stem cell clinical trials are discussed. In addition, we examine the mechanism of action and rationale, as well as propose a new generation of regenerative therapies, evolving from typical stem cell or growth factor to immune cell-based medicine, based on autologous peripheral blood mononuclear cells (PBMNC) concentrates for the treatment of ED.
Collapse
Affiliation(s)
- Michela Bonanni
- Department of Biomedicine and Prevention, Institute of Cardiology, University of Rome Tor Vergata, 00133 Rome, Italy; (M.B.); (G.M.); (D.B.); (A.M.); (G.R.)
| | - Laura Rehak
- Athena Biomedical Innovations, 50126 Florence, Italy;
| | - Gianluca Massaro
- Department of Biomedicine and Prevention, Institute of Cardiology, University of Rome Tor Vergata, 00133 Rome, Italy; (M.B.); (G.M.); (D.B.); (A.M.); (G.R.)
| | - Daniela Benedetto
- Department of Biomedicine and Prevention, Institute of Cardiology, University of Rome Tor Vergata, 00133 Rome, Italy; (M.B.); (G.M.); (D.B.); (A.M.); (G.R.)
| | - Andrea Matteucci
- Department of Biomedicine and Prevention, Institute of Cardiology, University of Rome Tor Vergata, 00133 Rome, Italy; (M.B.); (G.M.); (D.B.); (A.M.); (G.R.)
- Division of Cardiology San Filippo Neri Hospital, 00135 Rome, Italy
| | - Giulio Russo
- Department of Biomedicine and Prevention, Institute of Cardiology, University of Rome Tor Vergata, 00133 Rome, Italy; (M.B.); (G.M.); (D.B.); (A.M.); (G.R.)
| | | | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Alessandro Mauriello
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Giuseppe Massimo Sangiorgi
- Department of Biomedicine and Prevention, Institute of Cardiology, University of Rome Tor Vergata, 00133 Rome, Italy; (M.B.); (G.M.); (D.B.); (A.M.); (G.R.)
- Correspondence:
| |
Collapse
|
9
|
Yao C, Zhang X, Yu Z, Jing J, Sun C, Chen M. Effects of Stem Cell Therapy on Diabetic Mellitus Erectile Dysfunction: A Systematic Review and Meta-analysis. J Sex Med 2022; 19:21-36. [PMID: 36963981 DOI: 10.1016/j.jsxm.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/25/2021] [Accepted: 10/06/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Stem cell is considered a potential therapy for treating erectile dysfunction (ED), including diabetic mellitus erectile dysfunction (DMED), which was investigated in some preclinical studies. Several trials introduced stem cell into clinical practice, but divergences emerged. AIM To further investigate the therapeutic effects of stem cell on DMED in preclinical studies and investigate some possible factors that influence curative effects. METHODS The literature research was conducted in Web of Science and PubMed to retrieve studies utilizing stem cell to treat DMED. Revman 5.3 was used to perform subgroup analysis of intracavernosal pressure/mean artery pressure (ICP/MAP) and structural changes. Publication bias was assessed with Egger's test, funnel plot, and sensitivity analysis by Stata 15.0. OUTCOMES The ICP/MAP and structural changes before and after stem cell treatment. RESULTS Of 2,115 studies retrieved, 23 studies are eligible. Plus 10 studies from a meta-analysis published in 2016, 33 studies were enrolled. Pooled analysis showed that stem cell ameliorates damaged ICP/MAP (WMD 0.26; 95% CI 0.23-0.29; P < .001) and structural changes induced by diabetes. Subgroup analysis indicated that adipose-derived mesenchymal stem cell (ADSC) may have better efficacy than bone marrow-derived mesenchymal stem cell (BMSC) (χ2= 4.21, P = .04; ADSC WMD 0.28, 95% CI [0.24-0.32] vs BMSC WMD 0.22 95% CI [0.17-0.26]). Transplantation type, diabetes type, and cell number make no difference to curative effects. Gene modification and therapy combination proved promising in improving the therapeutic effects of stem cell. CLINICAL TRANSLATION The evidence reminded that ADSC may be prior to BMSC in clinical trials and autotransplantation is probably not compulsory in the clinical practice of stem cell. STRENGTHS AND LIMITATIONS The study number and sample size are large enough. However, high degree of heterogeneity remains after subgroup analysis. CONCLUSION This meta-analysis suggests the efficacy of stem cell therapy for DMED and the possible superiority of ADSC over BMSC in erection restoration and structure renovation.
Collapse
Affiliation(s)
- Chi Yao
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
- Institute of Urology, Medical College, Southeast University, Nanjing, China
| | - Xiangyu Zhang
- Institute of Urology, Medical College, Southeast University, Nanjing, China
| | - Zhikang Yu
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
- Institute of Urology, Medical College, Southeast University, Nanjing, China
| | - Jibo Jing
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
- Institute of Urology, Medical College, Southeast University, Nanjing, China
| | - Chao Sun
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Ming Chen
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
- Zhongda Hospital Lishui branch, Southeast University, Nanjing, China
| |
Collapse
|
10
|
Pakpahan C, Ibrahim R, William W, Faizah Z, Juniastuti J, Lusida MI, Oceandy D. Stem cell therapy and diabetic erectile dysfunction: A critical review. World J Stem Cells 2021; 13:1549-1563. [PMID: 34786157 PMCID: PMC8567456 DOI: 10.4252/wjsc.v13.i10.1549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/04/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
Erectile dysfunction (ED) has been identified as one of the most frequent chronic complications of diabetes mellitus (DM). The prevalence of ED is estimated to be about 67.4% in all DM cases worldwide. The pathophysiological process leading to ED involves endothelial, neurological, hormonal, and psychological factors. In DM, endothelial and neurological factors play a crucial role. Damages in the blood vessels and erectile tissue due to insulin resistance are the hallmark of ED in DM. The current treatments for ED include phosphodiesterase-5 inhibitors and penile prosthesis surgery. However, these treatments are limited in terms of just relieving the symptoms, but not resolving the cause of the problem. The use of stem cells for treating ED is currently being studied mostly in experimental animals. The stem cells used are derived from adipose tissue, bone, or human urine. Most of the studies observed an improvement in erectile quality in the experimental animals as well as an improvement in erectile tissue. However, research on stem cell therapy for ED in humans remains to be limited. Nevertheless, significant findings from studies using animal models indicate a potential use of stem cells in the treatment of ED.
Collapse
Affiliation(s)
- Cennikon Pakpahan
- Department of Biomedical Sciences, Universitas Airlangga, Surabaya 60132, Indonesia
- Andrology Program, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Raditya Ibrahim
- Andrology Program, Universitas Airlangga, Surabaya 60132, Indonesia
| | - William William
- Andrology Program, Universitas Airlangga, Surabaya 60132, Indonesia
- Department of Medical Biology, School of Medicine and Health Sciences Atma Jaya Catholic University of Indonesia, Jakarta 14440, Indonesia
| | - Zakiyatul Faizah
- Department of Biomedical Sciences, Universitas Airlangga, Surabaya 60132, Indonesia
| | | | - Maria I Lusida
- Institute for Tropical Disease, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Delvac Oceandy
- Division of Cardiovascular Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| |
Collapse
|
11
|
Zhou J, Yin Y, Yang Y, Peng D, Wei J, Yin G, Tang Y. Knockdown of miR-423-5p simultaneously upgrades the eNOS and VEGFa pathways in ADSCs and improves erectile function in diabetic rats. J Cell Mol Med 2021; 25:9796-9804. [PMID: 34545676 PMCID: PMC8505849 DOI: 10.1111/jcmm.16927] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 12/11/2022] Open
Abstract
This study aimed to explore the possibility of miR‐423‐5p modified adipose‐derived stem cell (ADSCs) therapy on streptozotocin (STZ)‐induced diabetes mellitus erectile dysfunction (DMED) rats. MiR‐423‐5p was knocked down in ADSCs. ADSCs, NC‐miR‐ADSCs and miR‐ADSCs were co‐cultured with human umbilical vein endothelial cells (HUVECs). Normal and high glucose media were supplemented. The supernatant and HUVECs were collected for assessment of eNOS and VEGFa expression, cell proliferation, and apoptosis. HUVECs co‐cultured with ADSCs or miR‐ADSCs exhibited higher eNOS and VEGFa protein expression levels compared to DM groups. MiR‐ADSCs enhanced HUVEC proliferation compared to the ADSCs and NC‐miR‐ADSCs. Lower apoptotic rates were observed when HUVECs were co‐cultured with miR‐ADSCs, compared to ADSCs and NC‐miR‐ADSCs. Fifteen male Sprague‐Dawley (SD) rats aged 12 weeks were induced to develop diabetes mellitus by intraperitoneal injection with STZ, and five healthy SD rats were used as normal controls. Eight weeks after developing diabetes, the rats received ADSCs and miR‐ADSCs via injection into the corpora cavernosa, whereas normal controls and DM controls were injected with saline. Erectile function and histological assessment of penile tissues were performed 8 weeks after injection. The ICP/MAP indicated that erectile function was impaired in the DM rats compared with the normal group. Injection of ADSCs and miR‐ADSCs improved erectile function significantly and was associated with the overexpression of eNOS and VEGFa. MiR‐423‐5p knockdown in ADSCs ameliorated high glucose‐mediated damage to HUVECs and improved erectile function in DM rats by inducing eNOS and VEGFa overexpression, indicating that miR‐423‐5p may be a potential target in the treatment of DMED.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yinghao Yin
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yuan Yang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Dongyi Peng
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jingchao Wei
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Guangming Yin
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yuxin Tang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China.,Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| |
Collapse
|
12
|
Adipose-Derived Stem Cells and Their Derived Microvesicles Ameliorate Detrusor Overactivity Secondary to Bilateral Partial Iliac Arterial Occlusion-Induced Bladder Ischemia. Int J Mol Sci 2021; 22:ijms22137000. [PMID: 34210091 PMCID: PMC8269368 DOI: 10.3390/ijms22137000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 12/12/2022] Open
Abstract
(1) Background: We established a new bladder ischemia rat model through bilateral partial iliac arterial occlusion (BPAO) and investigated the therapeutic effect of adipose-derived stem cells (ADSCs) and ADSC-derived microvesicles (MVs); (2) Methods: The study included four groups: (1) sham, (2) BPAO, (3) BPAO + ADSCs, and (4) BPAO + ADSC-derived MVs. Female Wistar rats with BPAO were injected with ADSCs or ADSC-derived MVs through the femoral artery. Doppler flowmetry and real-time laser speckle contrast imaging were performed to quantify blood flow in the common iliac arteries and bladder microcirculation. A 24-h behavior study and transcystometrogram were conducted after 2 weeks. Bladder histology, immunostaining, and lipid peroxidation assay were performed. The expressions of P2X2, P2X3, M2, and M3 receptors and nerve growth factor (NGF) were evaluated; (3) Results: BPAO significantly reduced bladder microcirculation, intercontraction interval (ICI), and bladder volume and increased the amplitude of nonvoiding contraction, neutrophil infiltration, and malondialdehyde and NGF levels. ADSCs and ADSC-derived MVs significantly ameliorated these effects. The results of Western blot showed that the BPAO group exhibited the highest expression of M3 and P2X2 receptors. ADSCs significantly attenuated the expressions of M2 and P2X2 receptors. ADSC-derived MVs significantly attenuated the expressions of M3 and P2X2 receptors; (4) Conclusions: ADSCs and ADSC-derived MVs ameliorated the adverse effects of BPAO including bladder overactivity, bladder ischemia, and oxidative stress. Inflammation, muscarinic signaling, purinergic signaling, and NGF might be involved in the therapeutic mechanism.
Collapse
|
13
|
Zou Z, Chai M, Guo F, Fu X, Lan Y, Cao S, Liu J, Tian L, An G. MicroRNA-126 engineered muscle-derived stem cells attenuates cavernosa injury-induced erectile dysfunction in rats. Aging (Albany NY) 2021; 13:14399-14415. [PMID: 34031263 PMCID: PMC8202866 DOI: 10.18632/aging.203057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/25/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Cavernosa injury is a common cause of organic erectile dysfunction (ED), which requires safe and effective treatments. In the present study, the therapeutic efficiency of muscle-derived stem cells (MDSCs) modified with microRNA-126 (miR-126) was determined in rats with cavernosa injury. METHODS MDSCs were transfected with miR-126 and then were transplanted into rats with cavernosa injury. Erectile function, vascular function (western blot and immunofluorescence), extraction, and detection of exosomes were then undertaken. RESULTS On the 28th day after transplantation, the highest value of intra-cavernous pressure (ICP)/mean arterial pressure (MAP) in rats of miRNA-126 group (0.84 ± 0.14) was observed (Control: 0.38 ± 0.07; MDSC: 0.54 ± 0.11, Vector: 0.60 ± 0.02; respectively). Treatment of miRNA-126-modified-MDSCs remarkably strengthened vascular structure, supported by hematoxylin-eosin staining. The expression of CD31, von Willebrand Factor and vascular endothelial factors were higher than those in other groups, indicating improved vascular function. In vitro mechanism studies showed that exosomes containing miR-126 isolated from MDSCs promoted angiogenesis and attenuated apoptosis of human umbilical venous endothelial cells. Finally, insulin receptor substrate 1 and Krüppel-like factor 10 were determined as the direct target genes of miR-126. CONCLUSIONS MiR-126 engineered MDSCs notably repaired cavernosa injury in rats via vascular reconstruction by directly targeting IRS1 and KLF10, in which the exosomes secreted by MDSCs played a critical role.
Collapse
Affiliation(s)
- Zihao Zou
- Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Muyuan Chai
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, PR China
| | - Feixiang Guo
- Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Xin Fu
- Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Yu Lan
- Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Shuqi Cao
- Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Jianan Liu
- Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Long Tian
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, PR China
| | - Geng An
- Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, PR China
| |
Collapse
|
14
|
Irdam GA, Febriyani, Rasyid N, Taher A. A systematic review of intracavernosal injection of mesenchymal stem cells for diabetic erectile dysfunction. MEDICAL JOURNAL OF INDONESIA 2021. [DOI: 10.13181/mji.oa.204475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND As current erectile dysfunction (ED) treatments are limited, other treatment such as stem cells should be explored. Hence, this study aimed to review the sources, method of administration, and therapeutic effect of mesenchymal stem cells (MSCs) for diabetic ED treatment.
METHODS All relevant articles regarding the use of MSCs for diabetic ED were searched in PubMed and Google Scholar databases from December 15, 2019 to January 1, 2020 published in the past 10 years. The keywords were “mesenchymal stem cells” and “diabetic ED”. The selection and critical appraisal of the studies were discussed. Diabetic ED was evaluated for functional and structural outcome. Functional outcome in animal studies was assessed by intracavernosal pressure/mean arterial pressure (ICP/MAP) ratio, meanwhile the structural outcome was done microscopically. In human study, the assessments were done using international index of erectile function score (IIEF-5) to erection hardness score and penile Doppler ultrasonography.
RESULTS There were 10 animal studies and 3 human studies. The studies used MSCs from adipose (n = 6), bone marrow (n = 4), placenta (n = 1), umbilical cord (n = 1), and muscle tissue (n = 1). The MSCs were administrated through intracavernosal injection in all studies. In all animal studies, functional outcome was improved, shown in higher ICP/MAP ratio. Microscopically, there were an increase of cavernosal endothelial cells, vascular endothelial growth factor, nitric oxide synthase, and smooth muscle cells. In human studies, IIEF-5 and erection hardness score were improved. Peak systolic velocity was also higher.
CONCLUSIONS MSCs may be a promising therapy for diabetic ED; however, long-term safety concerns still need further investigations.
Collapse
|
15
|
Drury R, Natale C, Hellstrom WJG. Reviewing the evidence for shockwave- and cell-based regenerative therapies in the treatment of erectile dysfunction. Ther Adv Urol 2021; 13:17562872211002059. [PMID: 33796149 PMCID: PMC7968013 DOI: 10.1177/17562872211002059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Erectile dysfunction (ED) is both a common and complex disease process. Existing ED treatments do not always achieve adequate results. There is clinical interest in employing regenerative therapies, including low-intensity extracorporeal shockwave therapy (Li-ESWT), platelet rich plasma (PRP), and stem cell therapy (SCT), in the treatment of ED as adjunct or alternative treatments. Here, we present evidence for emerging shockwave- and cell-based regenerative therapies for the treatment of ED following a thorough review of the existing PubMed literature pertaining to Li-ESWT, PRP, and SCT in relation to the treatment of ED. Li-ESWT causes microtrauma in tissue that hypothetically upregulates angiogenesis and recruits stem cells. Several large-scale systematic reviews and meta-analyses have reported that Li-ESWT improved ED in humans. Additionally, evidence has commenced to show that Li-ESWT may be effective against two recognized and complex etiologies of ED: diabetic and neurogenic. PRP delivers an autologous sample rich in growth factors to damaged tissue. Animal model studies have demonstrated improved erectile function recovery as well as preservation of cavernous nerve axons. Studies with PRP in humans are limited. SCT utilizes the regenerative potential of stem cells for healing of damaged tissue. In the treatment of ED, SCT has been used in the setting of diabetic and post-prostatectomy ED. Results of human studies are varied, although SCT treatments did result in increased erectile rigidity with some patients recovering the ability to achieve penetration. While these regenerative therapies show potential to augment the current treatment regimen for ED, there is a paucity of evidence to support the safety and efficacy of these treatments. Further research is necessary to define the role of these alternative therapies in the treatment of ED.
Collapse
Affiliation(s)
- Robert Drury
- Tulane University School of Medicine, New Orleans, LA, USA
| | - Caleb Natale
- Tulane University School of Medicine, New Orleans, LA, USA
| | | |
Collapse
|
16
|
Combined Transplantation of Adipose Tissue-Derived Stem Cells and Endothelial Progenitor Cells Improve Diabetic Erectile Dysfunction in a Rat Model. Stem Cells Int 2020; 2020:2154053. [PMID: 32714394 PMCID: PMC7354671 DOI: 10.1155/2020/2154053] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/31/2020] [Accepted: 02/25/2020] [Indexed: 12/24/2022] Open
Abstract
Erectile dysfunction (ED) is a common complication in men suffered with diabetic mellitus. Stem cell transplantation is a promising strategy for the treatment of diabetic ED (DED). In this study, we evaluated whether combined transplantation of adipose tissue-derived stem cells (ADSCs) and endothelial progenitor cells (EPCs) could improve the erectile function of the DED rat model. DED rats were induced via intraperitoneal injection of streptozotocin (50 mg/kg), and ED was screened by apomorphine (100 mg/kg). DED rats were divided into 4 groups (n = 14 each): DED, ADSC, EPC, and ADSC/EPC group. Another 14 age-matched male SD rats with normal erectile function were served as the normal group. The normal group and the DED group were received intracavernous injection with phosphate-buffered saline (PBS). And the other groups were received intracavernous injection with ADSCs (1 × 106), EPCs (1 × 106), and ADSCs/EPCs (0.5 × 106/0.5 × 106), respectively. The total intracavernous pressure (ICP) and mean arterial pressure (MAP) were recorded at day 28 after injection. The endothelium, smooth muscle, and penile dorsal nerves were assessed within cavernoursal tissue. On day 28 after injection, the ADSC/EPC group displayed more significantly enhanced ICP and ICP/MAP than the DED or ADSC or EPC group (p < 0.05). Immunofluorescent analysis and western blot demonstrated that the improvement of erectile function in the ADSC/EPC5 group was associated with increased expression of endothelial marker (CD31) and the correction of eNOS-cGMP-NO signaling. More 5-ethynyl-2′-deoxyuridine- (EdU-) positive EPCs could be found lining in the cavernous endothelial layer in the ADSC/EPC group than the EPC group, which was attributed to the paracrine of vascular endothelial growth factor (VEGF) and stromal-derived factor-1 (SDF-1) by ADSCs. Combined transplantation of ADSCs and EPCs has a synergic effect in repairing the endothelial function of DED rats, and the underlying mechanism might be the paracrine of VEGF and SDF-1 by ADSCs, which improves the recruitment and proliferation of EPCs in the cavernosum.
Collapse
|
17
|
Gur S, Hellstrom WJ. Harnessing Stem Cell Potential for the Treatment of Erectile Function in Men with Diabetes Mellitus: From Preclinical/Clinical Perspectives to Penile Tissue Engineering. Curr Stem Cell Res Ther 2020; 15:308-320. [DOI: 10.2174/1574888x14666190828142045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/10/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022]
Abstract
Background::
According to the World Health Organization, more than 150 million people
are diabetic, and this number will increase twofold by the year 2025. Diabetes-related complications
affect all body organ systems, including the penis. Diabetes-induced Erectile Dysfunction (ED) is
caused by neuropathy of the penile nerves and vasculopathy involving the smooth muscle and endothelium
of the corpus cavernosum.
Objective::
This study aims to present an overview of Stem Cell (SC) research in diabetic animal models
of ED, focusing on the function, signaling, and niches that have a prominent role in the regeneration
of cavernosal cells and penile tissues. We highlight common erectile pathologies caused by diabetes
and review relevant preclinical trials. We also discuss paracrine mechanisms of various SC therapies
involved in the repair of endothelial cells and cavernous nerves in these diabetic models.
Method::
A PubMed search was performed, with dates ranging from inception until Mar 31, 2019.
Results::
This review provides a comprehensive evaluation of the various strategies that have been
investigated for improving SC delivery methods, through preclinical literature and published clinical
trials regarding ED in men with diabetes. Various cell-type applications have benefited erectile function
in diabetic models of ED.
Conclusion::
This review examines the progress and remaining challenges in diabetes-related SC research
regarding ED. Moving forward, it is only with a combined effort of basic biology and translational
work that the potential of SC-based therapies in diabetes in ED can be realized.
Collapse
Affiliation(s)
- Serap Gur
- Department of Urology, Tulane University Health Sciences Center, New Orleans, LA, United States
| | - Wayne J.G. Hellstrom
- Department of Urology, Tulane University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
18
|
Moussa M, Abou Chakra M, Moussa Y. Advances in stem cell therapy for the treatment of Peyronie's disease. Intractable Rare Dis Res 2020; 9:10-13. [PMID: 32201669 PMCID: PMC7062597 DOI: 10.5582/irdr.2019.01130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Peyronie's disease (PD) is a connective tissue disorder of the penis characterized by fibrosis and plaque formation within the tunica albuginea. PD is characterized by painful penile curvature that impairs sexual intercourse. Stem cell therapy is one of the recent non-invasive treatment options for patients with PD and it has promising results. Stem cells are undifferentiated cells that are capable of self-renewal and differentiation, promoting the repair of tissues via their immunomodulatory and anti-inflammatory action. Adipose-derived stem cells (ADSC) are used most widely due to their abundant tissue source and ease of isolation. Multiple studies have indicated the efficacy of stem cell therapy as a potential treatment for fibrotic diseases. Clearly, ADSCs may represent a way to treat and prevent PD in both rat and human models. Further clinical studies are needed to confirm the efficacy of stem cell therapy for PD in humans.
Collapse
Affiliation(s)
- Mohamad Moussa
- Department of Urology, Zahraa Hospital, University Medical Center, Lebanese University, Beirut, Lebanon
| | - Mohamad Abou Chakra
- Department of Urology, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
- Address correspondence to:Mohamad Abou Chakra, Department of Urology, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon. E-mail:
| | - Yasmin Moussa
- Clinic of Dermatology, Dr. Brinkmann, Schult & Samimi-Fard, Gladbeck, Germany
| |
Collapse
|
19
|
Chen S, Zhu J, Wang M, Huang Y, Qiu Z, Li J, Chen X, Chen H, Xu M, Liu J, She M, Li H, Yang X, Wang Y, Cai X. Comparison of the therapeutic effects of adipose‑derived and bone marrow mesenchymal stem cells on erectile dysfunction in diabetic rats. Int J Mol Med 2019; 44:1006-1014. [PMID: 31257465 PMCID: PMC6658012 DOI: 10.3892/ijmm.2019.4254] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 06/13/2019] [Indexed: 12/15/2022] Open
Abstract
The aim of the present study was to compare the effects of adipose‑derived mesenchymal stem cell (ADSC) and bone marrow mesenchymal stem cell (BMSC) transplantation into the corpora cavernosa of diabetic rats with erectile function. ADSCs and BMSCs were isolated and identified by flow cytometry. Rats with streptozocin‑induced diabetes were screened using apomorphine to obtain a rat model of diabetic erectile dysfunction, followed by transplantation of ADSCs and BMSCs into the corpora cavernosa. Two weeks later, the rats were again injected with apomorphine, the intracavernous pressure (ICP) and mean arterial pressure (MAP) of the penile tissue were measured, and the corpus cavernosum tissues were harvested. Angiogenic endothelial nitric oxide synthase (eNOS) expression was detected by western blotting and immunofluorescence analysis. The blood vessels in the corpus cavernosum were observed following hematoxylin and eosin (H&E) staining, and the expression of collagen was detected by Sirius Red staining. The cellular ultrastructure was examined by transmission electron microscopy. Intracavernous injection of ADSCs significantly increased ICP and ICP/MAP. Western blotting and immunofluorescence results revealed that ADSC treatment improved the expression of eNOS in the penile tissue of diabetic rats. The H&E staining results demonstrated that ADSC treatment promoted revascularization of the corpus cavernosum, and the results of Sirius Red staining revealed that ADSC treatment reduced penile collagen in diabetic rats. Transmission electron microscopy examination revealed that the ultrastructure of the tissues in the ADSC‑treated group was more complete compared with that in the untreated diabetic model group. In conclusion, ADSCs were found to be more effective compared with BMSCs in treating diabetes‑related erectile dysfunction.
Collapse
Affiliation(s)
- Sansan Chen
- Department of Urology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080
- Institute of Biotherapy, Southern Medical University, Guangzhou, Guangdong 510515
| | - Jianbin Zhu
- Technology Center, Guangdong Vitalife Bio-Tech Co., Ltd., Foshan, Guangdong 528200
| | - Mingzhu Wang
- Reproductive Center of Obstetrics and Gynecology, Southern Medical University, Guangzhou, Guangdong 510515
| | - Yanting Huang
- Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080
| | - Zhuolin Qiu
- Reproductive Center of Obstetrics and Gynecology, Southern Medical University, Guangzhou, Guangdong 510515
| | - Jingjing Li
- Technology Center, Guangdong Vitalife Bio-Tech Co., Ltd., Foshan, Guangdong 528200
| | - Xinglu Chen
- Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080
| | - Huiying Chen
- Institute of Biotherapy, Southern Medical University, Guangzhou, Guangdong 510515
| | - Mingyu Xu
- Institute of Biotherapy, Southern Medical University, Guangzhou, Guangdong 510515
| | - Jun Liu
- Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong 510091
| | - Miaoqin She
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510660
| | - Hongwei Li
- Institute of Biotherapy, Southern Medical University, Guangzhou, Guangdong 510515
| | - Xiaorong Yang
- Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080
- Correspondence to: Dr Xiangsheng Cai or Dr Xiaorong Yang, Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, 39 Nonglin Xia Road, Guangzhou, Guangdong 510080, P.R. China, E-mail: , E-mail:
| | - Yi Wang
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiangsheng Cai
- Institute of Biotherapy, Southern Medical University, Guangzhou, Guangdong 510515
- Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080
- Correspondence to: Dr Xiangsheng Cai or Dr Xiaorong Yang, Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, 39 Nonglin Xia Road, Guangzhou, Guangdong 510080, P.R. China, E-mail: , E-mail:
| |
Collapse
|
20
|
Zhang Y, Yang J, Zhuan L, Zang G, Wang T, Liu J. Transplantation of adipose-derived stem cells overexpressing inducible nitric oxide synthase ameliorates diabetes mellitus-induced erectile dysfunction in rats. PeerJ 2019; 7:e7507. [PMID: 31423366 PMCID: PMC6694783 DOI: 10.7717/peerj.7507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/17/2019] [Indexed: 12/18/2022] Open
Abstract
Background Erectile dysfunction is a major complication of diabetes mellitus. Adipose-derived stem cells (ADSCs) have attracted much attention as a promising tool for the treatment of diabetes mellitus-induced erectile dysfunction (DMED). Inducible nitric oxide synthase (iNOS) plays an important role in protecting penile tissues from fibrosis. The aim of this study was to determine the efficacy of ADSCs overexpressing iNOS on DMED in rats. Methods ADSCs were isolated and infected with adenovirus overexpressing iNOS (named as ADSCs-iNOS). The expression of iNOS was detected using western blot analysis and real-time PCR. Rats were randomly assigned into five groups: control group, DMED group, ADSCs group, ADSCs-EGFP group and ADSCs-iNOS group. 5 × 105 cells were given once via the intracorporal route. Two weeks after treatment, erectile function was assessed by electrical stimulation of the cavernous nerve. Penile tissues were obtained and evaluated at histology level. Results We found that ADSCs-iNOS had significantly higher expression of iNOS at mRNA and protein levels and generated more nitric oxide (NO). ADSCs-iNOS reduced collagen I and collagen IV expression of corpus cavernosum smooth muscle cells (CCSMCs) in cell co-culture model. Transforming growth factor-β1 expression in CCSMCs reduced following co-culture with ADSCs-iNOS. Injection of ADSCs-iNOS significantly ameliorated DMED in rats and decreased collagen/smooth muscle cell ratio of penile tissues. Moreover, elevated NO and cyclic guanosine monophosphate concentrations were detected in penile tissues of ADSCs-iNOS group. Conclusion Taken together, ADSCs-iNOS significantly improved erectile function of DMED rats. The therapeutic effect may be achieved by increased NO generation and the suppression of collagen I and collagen IV expression in the CCSMCs to decrease penile fibrosis.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Zhuan
- Department of Reproductive Medicine, the First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Guanghui Zang
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
21
|
Yang J, Yu Z, Zhang Y, Zang G, Zhuan L, Tang Z, Liu Y, Wang T, Wang S, Liu J. Preconditioning of adipose‐derived stem cells by phosphodiesterase‐5 inhibition enhances therapeutic efficacy against diabetes‐induced erectile dysfunction. Andrology 2019; 8:231-240. [DOI: 10.1111/andr.12661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 04/08/2019] [Accepted: 05/06/2019] [Indexed: 12/17/2022]
Affiliation(s)
- J. Yang
- Department of Urology, Tongji Medical CollegeHuazhong University of Science and Technology HubeiChina
- Institute of Urology of Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and Technology HubeiChina
| | - Z. Yu
- Department of Urology, Tongji Medical CollegeHuazhong University of Science and Technology HubeiChina
- Institute of Urology of Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and Technology HubeiChina
| | - Y. Zhang
- Department of Urology, Tongji Medical CollegeHuazhong University of Science and Technology HubeiChina
- Institute of Urology of Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and Technology HubeiChina
| | - G.‐H. Zang
- Department of Urology, Tongji Medical CollegeHuazhong University of Science and Technology HubeiChina
- Institute of Urology of Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and Technology HubeiChina
| | - L. Zhuan
- Department of Urology, Tongji Medical CollegeHuazhong University of Science and Technology HubeiChina
- Institute of Urology of Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and Technology HubeiChina
| | - Z. Tang
- Department of Urology, Tongji Medical CollegeHuazhong University of Science and Technology HubeiChina
- Institute of Urology of Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and Technology HubeiChina
| | - Y. Liu
- Department of Neurology, Tongji Medical College Huazhong University of Science and Technology Hubei China
| | - T. Wang
- Department of Urology, Tongji Medical CollegeHuazhong University of Science and Technology HubeiChina
- Institute of Urology of Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and Technology HubeiChina
| | - S.‐G. Wang
- Department of Urology, Tongji Medical CollegeHuazhong University of Science and Technology HubeiChina
- Institute of Urology of Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and Technology HubeiChina
| | - J.‐H. Liu
- Department of Urology, Tongji Medical CollegeHuazhong University of Science and Technology HubeiChina
- Institute of Urology of Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and Technology HubeiChina
| |
Collapse
|
22
|
Milenkovic U, Albersen M, Castiglione F. The mechanisms and potential of stem cell therapy for penile fibrosis. Nat Rev Urol 2018; 16:79-97. [DOI: 10.1038/s41585-018-0109-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Gur S, Abdel-Mageed AB, Sikka SC, Hellstrom WJG. Advances in stem cell therapy for erectile dysfunction. Expert Opin Biol Ther 2018; 18:1137-1150. [PMID: 30301368 DOI: 10.1080/14712598.2018.1534955] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Stem cell (SC) application is a promising area of research in regenerative medicine, with the potential to treat, prevent, and cure disease. In recent years, the number of studies focusing on SCs for the treatment of erectile dysfunction (ED) and other sexual dysfunctions has increased significantly. AREAS COVERED This review includes critical ED targets and preclinical studies, including the use of SCs and animal models in diabetes, aging, cavernous nerve injury, and Peyronie's disease. A literature search was performed on PubMed for English articles. EXPERT OPINION Combination treatment offers better results than monotherapy to improve pathological changes in diabetic ED. Regenerative medicine is a promising approach for the maintenance of sexual health and erectile function later in life. Cavernous nerve regeneration and vascular recovery employing SC treatment may be focused on radical prostatectomy-induced ED. Notwithstanding, there are a number of hurdles to overcome before SC-based therapies for ED are considered in clinical settings. Paracrine action, not cellular differentiation, appears to be the principal mechanism of action underlying SC treatment of ED. Intracavernosal injection of a single SC type should be the choice protocol for future clinical trials.
Collapse
Affiliation(s)
- Serap Gur
- a Department of Urology , Tulane University Health Sciences Center , New Orleans , LA , USA.,b Department of Pharmacology, Faculty of Pharmacy , Ankara University , Ankara , Turkey
| | - Asim B Abdel-Mageed
- a Department of Urology , Tulane University Health Sciences Center , New Orleans , LA , USA
| | - Suresh C Sikka
- a Department of Urology , Tulane University Health Sciences Center , New Orleans , LA , USA
| | - Wayne J G Hellstrom
- a Department of Urology , Tulane University Health Sciences Center , New Orleans , LA , USA
| |
Collapse
|
24
|
Yang BB, Hong ZW, Zhang Z, Yu W, Song T, Zhu LL, Jiang HS, Chen GT, Chen Y, Dai YT. Epalrestat, an Aldose Reductase Inhibitor, Restores Erectile Function in Streptozocin-induced Diabetic Rats. Int J Impot Res 2018; 31:97-104. [PMID: 30214006 PMCID: PMC6462873 DOI: 10.1038/s41443-018-0075-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/25/2018] [Accepted: 07/23/2018] [Indexed: 01/03/2023]
Abstract
Epalrestat, an aldose reductase inhibitor (ARI), was adopted to improve the function of peripheral nerves in diabetic patients. The aim of this study was to investigate whether epalrestat could restore the erectile function of diabetic erectile dysfunction using a rat model. From June 2016, 24 rats were given streptozocin (STZ) to induce the diabetic rat model, and epalrestat was administered to ten diabetic erectile dysfunction (DED) rats. Intracavernous pressure (ICP) and mean systemic arterial pressure (MAP), levels of aldose reductase (AR), nerve growth factor (NGF), neuronal nitric oxide synthase (nNOS), α-smooth muscle antigen (α-SMA), and von Willebrand factor (vWF) in the corpus cavernosum were analyzed. We discovered that epalrestat acted on cavernous tissue and partly restored erectile function. NGF and nNOS levels in the corpora were increased after treatment with epalrestat. We also found that the content of α-SMA-positive smooth muscle cells and vWF-positive endothelial cells in the corpora cavernosum were declined. Accordingly, epalrestat might improve erectile function by increasing the upregulation of NGF and nNOS to restore the function of the dorsal nerve of the penis.
Collapse
Affiliation(s)
- Bai-Bing Yang
- Department of Andrology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210000, China
| | - Zhi-Wei Hong
- Department of Urology, Fujian Provincial Hospital, Fuzhou, 350000, China
| | - Zheng Zhang
- Department of Andrology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210000, China
| | - Wen Yu
- Department of Andrology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210000, China
| | - Tao Song
- Department of Andrology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210000, China
| | - Lei-Lei Zhu
- Department of Andrology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210000, China
| | - He-Song Jiang
- Department of Andrology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210000, China
| | - Guo-Tao Chen
- Department of Andrology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210000, China
| | - Yun Chen
- Department of Andrology, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, 210000, China.
| | - Yu-Tian Dai
- Department of Andrology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210000, China.
| |
Collapse
|
25
|
Siddiquee AAM, Adaikan PG, Lau LC, Said BB, Chong M, Chan J, Teoh SH. Endothelial colony forming cells from human umbilical cord blood improved severe erectile dysfunction in obese type II diabetic rats. Life Sci 2018; 207:272-283. [PMID: 29920249 DOI: 10.1016/j.lfs.2018.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/07/2018] [Accepted: 06/15/2018] [Indexed: 01/03/2023]
Abstract
AIM To investigate the effect of intracavernous injection of human umbilical cord blood derived endothelial colony forming cells (HUCB ECFCs) on erectile dysfunction (ED) in Zucker Diabetic Fatty (ZDF) rat model. METHODS Erectile function was assessed by cavernous nerve electrostimulation in ZDF rats aged 20-28 weeks. Following confirmation of severe ED at the age of 28 weeks, 21 ZDF rats were randomly assigned to three experimental groups: 1 million ECFCs, 2 million ECFCs, and phosphate buffered saline (PBS). Four weeks after intracavernous injection, the efficacy of ECFCs was quantified by intracavernous pressure (ICP) measurement, Masson's trichrome staining, immunohistologic and immunoblot analyses and TUNEL assay. KEY FINDINGS Intracavernous ECFC administration improved ICP in a dose-dependent manner in comparison to the age-matched PBS group. Functional improvement in ICP was accompanied by a significant restoration of the cavernosal endothelial and smooth muscle cell content and cavernosal nerve function. The percentage eNOS and nNOS positive cavernosal cells, and their respective protein expression levels and nNOS positive cells in the dorsal penile nerve in 2 million ECFCs treated groups were significantly higher than the PBS group. TUNEL stain quantification showed a significant decrease in cavernosal apoptosis following ECFC treatment. SIGNIFICANCE The results are expected to provide a scientific basis to further study the clinical application of HUCB ECFCs in ameliorating ED in human. CONCLUSIONS HUCB ECFCs significantly improved severe ED in ZDF rats through improvement of the nerve and endothelium function and restoration of smooth muscle in the cavernosum by overcoming the cavernosal apoptosis.
Collapse
Affiliation(s)
- Abrar Al-Mahmood Siddiquee
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - P Ganesan Adaikan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228.
| | - Lang Chu Lau
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Baharudin Bin Said
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Mark Chong
- School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore
| | - Jerry Chan
- Kandang Kerbau Women's & Children's Hospital, Singapore
| | - Swee Hin Teoh
- School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
26
|
Yang J, Zhang Y, Zang G, Wang T, Yu Z, Wang S, Tang Z, Liu J. Adipose-derived stem cells improve erectile function partially through the secretion of IGF-1, bFGF, and VEGF in aged rats. Andrology 2018; 6:498-509. [PMID: 29603682 DOI: 10.1111/andr.12483] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 12/12/2022]
Affiliation(s)
- J. Yang
- Department of Urology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
- Institute of Urology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Y. Zhang
- Department of Urology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
- Institute of Urology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - G. Zang
- Department of Urology; Xuzhou City Centre Hospital; Xuzhou China
| | - T. Wang
- Department of Urology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
- Institute of Urology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Z. Yu
- Department of Urology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
- Institute of Urology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - S. Wang
- Department of Urology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
- Institute of Urology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Z. Tang
- Department of Urology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
- Institute of Urology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - J. Liu
- Department of Urology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
- Institute of Urology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| |
Collapse
|
27
|
Zhu LL, Zhang Z, Jiang HS, Chen H, Chen Y, Dai YT. Superparamagnetic iron oxide nanoparticle targeting of adipose tissue-derived stem cells in diabetes-associated erectile dysfunction. Asian J Androl 2018; 19:425-432. [PMID: 27157506 PMCID: PMC5507087 DOI: 10.4103/1008-682x.179532] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Erectile dysfunction (ED) is a major complication of diabetes, and many diabetic men with ED are refractory to common ED therapies. Adipose tissue-derived stem cells (ADSCs) have been shown to improve erectile function in diabetic animal models. However, inadequate cell homing to damaged sites has limited their efficacy. Therefore, we explored the effect of ADSCs labeled with superparamagnetic iron oxide nanoparticles (SPIONs) on improving the erectile function of streptozotocin-induced diabetic rats with an external magnetic field. We found that SPIONs effectively incorporated into ADSCs and did not exert any negative effects on stem cell properties. Magnetic targeting of ADSCs contributed to long-term cell retention in the corpus cavernosum and improved the erectile function of diabetic rats compared with ADSC injection alone. In addition, the paracrine effect of ADSCs appeared to play the major role in functional and structural recovery. Accordingly, magnetic field-guided ADSC therapy is an effective approach for diabetes-associated ED therapy.
Collapse
Affiliation(s)
- Lei-Lei Zhu
- Department of Andrology, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210008, China
| | - Zheng Zhang
- Department of Andrology, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210008, China
| | - He-Song Jiang
- Department of Andrology, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210008, China
| | - Hai Chen
- Department of Andrology, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210008, China
| | - Yun Chen
- Department of Andrology, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210008, China
| | - Yu-Tian Dai
- Department of Andrology, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210008, China
| |
Collapse
|
28
|
Gao L, Zhao Z, Guo F, Liu Y, Guo J, Zhao Y, Wang Z. Association of endothelial nitric oxide synthase polymorphisms with an increased risk of erectile dysfunction. Asian J Androl 2018; 19:330-337. [PMID: 26908069 PMCID: PMC5427790 DOI: 10.4103/1008-682x.163300] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The purpose of our meta-analysis is to examine the associations between three single nucleotide polymorphisms of endothelial nitric oxide synthase (eNOS) gene, G894T, intron 4 and T-786C, and the risk of erectile dysfunction. An electronic database search was performed to identify case-control studies reporting the association between single nucleotide polymorphisms of eNOS gene and erectile dysfunction. Stringent inclusion and exclusion criteria were employed to select high-quality studies for this meta-analysis. Comprehensive Meta-analysis 2.0 software (Biostat Inc., Englewood, New Jersey, USA) was used for statistical analysis of the data extracted from the selected studies. From the initial 203 articles retrieved from database search, this meta-analysis finally selected 12 high-quality case-control studies that conformed to our inclusion criteria. The 12 studies contained a total of 1962 patients with erectile dysfunction and 1752 healthy controls. The results of our meta-analysis showed that G894T correlated with an increased risk erectile dysfunction under both the allele and dominant models (allele: OR = 1.556, 95% CI = 1.064–2.275, P = 0.023; dominant: OR = 1.613, 95% CI = 1.050–2.476, P = 0.029). A similar association was found between T-786C and erectile dysfunction under the allele model (OR = 1.679, 95% CI = 1.341–2.102, P < 0.001), but not under the dominant model (all P > 0.05). Our meta-analysis showed that the two single nucleotide polymorphisms in eNOS gene, G894T and T-786C, are strongly associated with the risk of erectile dysfunction.
Collapse
Affiliation(s)
- Lei Gao
- Department of Urinary Surgery, Linyi People's Hospital, Linyi 276000, China
| | - Zhifeng Zhao
- Department of Urinary Surgery, Linyi People's Hospital, Linyi 276000, China
| | - Fengfu Guo
- Department of Urinary Surgery, Linyi People's Hospital, Linyi 276000, China
| | - Yan Liu
- Department of Urinary Surgery, Linyi Cancer Hospital, Linyi 276000, China
| | - Jianhua Guo
- Department of Urology and Andrology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China.,Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Centre, Shanghai 200011, China
| | - Yang Zhao
- Department of Urology and Andrology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Zhong Wang
- Department of Urology and Andrology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| |
Collapse
|
29
|
El Osta R, Decot V, Bensoussan D, Stoltz JF, Eschwege P, Hubert J. [Treatment by stem cell therapy of erectile dysfunction of diabetic origin: State of the art]. Prog Urol 2017; 28:74-84. [PMID: 29170014 DOI: 10.1016/j.purol.2017.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 10/11/2017] [Accepted: 10/20/2017] [Indexed: 01/15/2023]
Abstract
PURPOSE Review of various publications on stem cell therapy to treat erectile dysfunction of diabetic origin. MATERIAL AND METHODS Bibliographic search in PUBMED performed using the keywords cell therapy strain/erectile dysfunction associated with diabetes. Among the 51 articles obtained from the PUBMED research, we selected 16 articles for their specificity of studying erectile dysfunction (DE) related to diabetes. RESULTS Different types of stem cells have been studied: adipose derived mesenchymal stem cells/bone marrow derived mesenchymal stem cells as well as progenitor endothelial cells. The experimental protocols are quite similar from one study to the next with nevertheless some specifications concerning the studied cells and the monitoring of the latter. Intracavernous pressure (ICP) measured after the injection of stem cells into the corpus cavernosum was always significantly higher than the control populations. The addition of certain growth factors to stem cells by gene transfection improve the efficacy of the cells. No ideal tracking markers of the cells have been identified. CONCLUSION The positive effect of the injection of stem cells on the ICP belongs to the cellular trans-differentiation effect but especially to the paracrine effects which have not yet been completely elucidated.
Collapse
Affiliation(s)
- R El Osta
- Service d'urologie, hôpitaux de Brabois, CHRU de Nancy, 54500 Vandœuvre-lès-Nancy, France; IADI-UL-Inserm (U947), faculté de médecine, 54500 Vandœuvre-lès-Nancy, France.
| | - V Decot
- CNRS UMR 7563, Bio pôle, faculté de médecine, 54500 Vandœuvre-lès-Nancy, France; CNRS FR3208, UTCT, CHRU de Nancy, 54500 Vandœuvre-lès-Nancy, France
| | - D Bensoussan
- CNRS UMR 7563, Bio pôle, faculté de médecine, 54500 Vandœuvre-lès-Nancy, France; CNRS FR3208, UTCT, CHRU de Nancy, 54500 Vandœuvre-lès-Nancy, France
| | - J F Stoltz
- CNRS UMR 7563, Bio pôle, faculté de médecine, 54500 Vandœuvre-lès-Nancy, France; CNRS FR3208, UTCT, CHRU de Nancy, 54500 Vandœuvre-lès-Nancy, France
| | - P Eschwege
- Service d'urologie, hôpitaux de Brabois, CHRU de Nancy, 54500 Vandœuvre-lès-Nancy, France; CNRS, UMR 7039 CRAN, université de Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - J Hubert
- Service d'urologie, hôpitaux de Brabois, CHRU de Nancy, 54500 Vandœuvre-lès-Nancy, France; IADI-UL-Inserm (U947), faculté de médecine, 54500 Vandœuvre-lès-Nancy, France
| |
Collapse
|
30
|
Tao M, Tasdemir C, Tasdemir S, Shahabi A, Liu G. Penile alterations at early stage of type 1 diabetes in rats. Int Braz J Urol 2017; 43:753-761. [PMID: 28338308 PMCID: PMC5557453 DOI: 10.1590/s1677-5538.ibju.2016.0454] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/11/2016] [Indexed: 11/22/2022] Open
Abstract
Objective Diabetes affects the erectile function significantly. However, the penile alterations in the early stage of diabetes in experimental animal models have not been well studied. We examined the changes of the penis and its main erectile components in diabetic rats. Materials and methods Male Sprague-Dawley rats were divided into 2 groups: streptozotocin (STZ)-induced diabetics and age-matched controls. Three or nine weeks after diabetes induction, the penis was removed for immunohistochemical staining of smooth muscle and neuronal nitric oxide synthase (nNOS) in midshaft penile tissues. The cross-sectional areas of the whole midshaft penis and the corpora cavernosa were quantified. The smooth muscle in the corpora cavernosa and nNOS in the dorsal nerves were quantified. Results The weight, but not the length, of the penis was lower in diabetics. The cross-sectional areas of the total midshaft penis and the corpora cavernosa were lower in diabetic rats compared with controls 9 weeks, but not 3 weeks after diabetes induction. The cross-sectional area of smooth muscle in the corpora cavernosa as percentage of the overall area of the corpora cavernosa was lower in diabetic rats than in controls 9 weeks, but not 3 weeks after diabetes induction. Percentage change of nNOS in dorsal nerves was similar at 3 weeks, and has a decreased trend at 9 weeks in diabetic rats compared with controls. Conclusions Diabetes causes temporal alterations in the penis, and the significant changes in STZ rat model begin 3-9 weeks after induction. Further studies on the reversibility of the observed changes are warranted.
Collapse
Affiliation(s)
- Mingfang Tao
- Department of Urology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Cemal Tasdemir
- Department of Urology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Department of Urology, Inonu University, Medical Faculty, Malatya, Turkey
| | - Seda Tasdemir
- Department of Urology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Department of Pharmacology, Inonu University, Medical Faculty, Malatya, Turkey
| | - Ali Shahabi
- Department of Urology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Department of Surgery, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - Guiming Liu
- Department of Urology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Department of Surgery, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
31
|
Wu XJ, Shen WH, He P, Zhou XZ, Zhi Y, Dai Q, Chen ZW, Zhou ZS. Telomerase reverse transcriptase genetically modified adipose tissue derived stem cells improves erectile dysfunction by inhibiting oxidative stress and enhancing proliferation in rat model. Biomed Pharmacother 2017; 92:595-605. [DOI: 10.1016/j.biopha.2017.04.088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/17/2017] [Accepted: 04/19/2017] [Indexed: 12/21/2022] Open
|
32
|
Kovanecz I, Vernet D, Masouminia M, Gelfand R, Loni L, Aboagye J, Tsao J, Rajfer J, Gonzalez-Cadavid NF. Implanted Muscle-Derived Stem Cells Ameliorate Erectile Dysfunction in a Rat Model of Type 2 Diabetes, but Their Repair Capacity Is Impaired by Their Prior Exposure to the Diabetic Milieu. J Sex Med 2017; 13:786-97. [PMID: 27114192 DOI: 10.1016/j.jsxm.2016.02.168] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 02/02/2016] [Accepted: 02/17/2016] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Muscle-derived stem cells (MDSCs) and other SCs implanted into the penile corpora cavernosa ameliorate erectile dysfunction in type 1 diabetic rat models by replenishing lost corporal smooth muscle cells (SMCs) and decreasing fibrosis. However, there are no conclusive data from models of type 2 diabetes (T2D) and obesity. AIM To determine whether MDSCs from obese Zucker (OZ) rats with T2D at an early stage of diabetes (early diabetic SCs isolated and cultured in low-glucose medium [ED-SCs]) counteract corporal veno-occlusive dysfunction and corporal SMC loss or lipo-fibrosis when implanted in OZ rats at a late stage of diabetes and whether MDSCs from these OZ rats with late diabetes (late diabetic SCs isolated and cultured in high-glucose medium [LD-SC]) differ from ED-SCs in gene transcriptional phenotype and repair capacity. METHODS ED-SCs and LD-SCs were compared by DNA microarray assays, and ED-SCs were incubated in vitro under high-glucose conditions (ED-HG-SC). These three MDSC types were injected into the corpora cavernosa of OZ rats with late diabetes (OZ/ED, OZ/LD, and OZ/ED-HG rats, respectively). Untreated OZ and non-diabetic lean Zucker rats functioned as controls. Two months later, rats were subjected to cavernosometry and the penile shaft and corporal tissues were subjected to histopathology and DNA microarray assays. MAIN OUTCOME MEASURES In vivo erectile dysfunction assessment by Dynamic Infusion Cavernosometry followed by histopathology marker analysis of the penile tissues. RESULTS Implanted ED-SCs and ED-HG-SCs improved corporal veno-occlusive dysfunction, counteracted corporal decreases in the ratio of SMCs to collagen and fat infiltration in rats with long-term T2D, and upregulated neuronal and endothelial nitric oxide. LD-SCs acquired an inflammatory, pro-fibrotic, oxidative, and dyslipidemic transcriptional phenotype and failed to repair the corporal tissue. CONCLUSION MDSCs from pre-diabetic rats injected into the corpora cavernosa of rats with long-term T2D improve corporal veno-occlusive dysfunction and the underlying histopathology. In contrast, MDSCs from rats with long-term uncontrolled T2D are imprinted by the hyperglycemic and dyslipidemic milieu with a noxious phenotype associated with an impaired tissue repair capacity. SCs affected by diabetes could lack tissue repair efficacy as autografts and should be reprogrammed in vitro or substituted by SCs from allogenic non-diabetic sources.
Collapse
Affiliation(s)
- Istvan Kovanecz
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA; Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Dolores Vernet
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - Maryam Masouminia
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - Robert Gelfand
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA; Department of Medicine, Charles Drew University of Medicine and Science, Los Angeles, CA, USA
| | - Leila Loni
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - James Aboagye
- Department of Medicine, Charles Drew University of Medicine and Science, Los Angeles, CA, USA
| | - James Tsao
- Department of Medicine, Charles Drew University of Medicine and Science, Los Angeles, CA, USA
| | - Jacob Rajfer
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA; Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Nestor F Gonzalez-Cadavid
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA; Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Medicine, Charles Drew University of Medicine and Science, Los Angeles, CA, USA.
| |
Collapse
|
33
|
Hou QL, Ge MY, Zhang CD, Tian DD, Wang LK, Tian HZ, Wang WH, Zhang WD. Adipose tissue-derived stem cell therapy for erectile dysfunction in rats: a systematic review and meta-analysis. Int Urol Nephrol 2017; 49:1127-1137. [PMID: 28417342 DOI: 10.1007/s11255-017-1590-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/09/2017] [Indexed: 01/10/2023]
Abstract
OBJECTIVE We aimed to systematically assess the effect of adipose tissue-derived stem cell (ADSC) therapy and its influential factors on the treatment of erectile dysfunction (ED) in rats. METHODS Two authors independently searched for published studies through PubMed and EMBASE from study inception until August 31, 2016. A meta-analysis was used to combine the effect estimate from the published studies. A subgroup analysis was performed to identify the effect of some influential factors. The pooled standardized mean differences (SMDs) with 95% confidence intervals (CIs) were calculated by a fixed-effects or random-effects model analysis. RESULTS Twenty studies with a total of 248 rats were included in this meta-analysis. The pooled analysis showed that ADSC therapy significantly increased the ratio of intracavernous pressure and mean arterial pressure (ICP/MAP; SMD 3.46, 95% CI 2.85-4.06; P < 0.001) compared to control therapy. The levels of neuronal nitric oxide synthase (nNOS; SMD 6.37, 95% CI 4.35-8.39; P < 0.001), the cavernous smooth muscle content (CSMC; SMD 3.65, 95% CI 2.65-4.65; P < 0.001), the ratio of cavernous smooth muscle and collagen (CSM/collagen; SMD 4.16, 95% CI 2.59-5.72; P < 0.001), and the cyclic guanosine monophosphate (cGMP; SMD 7.12, 95% CI 2.76-11.48; P = 0.001) were higher following ADSC therapy than following control therapy. Subgroup analysis showed that ADSCs modified by growth or neurotrophic factors significantly recovered erectile function (P < 0.001) compared with ADSC therapy. CONCLUSION The adequate data indicated that ADSC therapy recovered erectile function and regenerated cavernous structures in ED rats, and ADSCs modified by some growth and neurotrophic factors accelerated the recovery of erectile function and cavernous structures in ED rats.
Collapse
Affiliation(s)
- Quan-Liang Hou
- Department of Epidemiology, College of Public Heath, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Meng-Ying Ge
- Department of Epidemiology, College of Public Heath, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Cheng-da Zhang
- School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
| | - Dan-Dan Tian
- Department of Epidemiology, College of Public Heath, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Lian-Ke Wang
- Department of Epidemiology, College of Public Heath, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Hui-Zi Tian
- Department of Epidemiology, College of Public Heath, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Wen-Hua Wang
- Department of Epidemiology, College of Public Heath, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Wei-Dong Zhang
- Department of Epidemiology, College of Public Heath, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
34
|
Bravo B, García de Durango C, González Á, Gortázar AR, Santos X, Forteza-Vila J, Vidal-Vanaclocha F. Opposite Effects of Mechanical Action of Fluid Flow on Proangiogenic Factor Secretion From Human Adipose-Derived Stem Cells With and Without Oxidative Stress. J Cell Physiol 2017; 232:2158-2167. [PMID: 27925206 DOI: 10.1002/jcp.25712] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 11/29/2016] [Indexed: 12/30/2022]
Abstract
Mechanical forces, hypoxia, and oxidative stress contribute to skin renewal, perfusion, and wound healing, but how are they regulating subcutaneous adipose-derived stem cells (ASCs) in the inflammatory microenvironment associated to skin repair and disorders is unknown. In this study, ASCs were isolated from lipoaspirate samples from plastic surgery patients, primary cultured and their differentiation and secretion of a panel of cytokines with pronounced effects on skin repair and angiogenesis were studied under mechanical stimulation by intermittent fluid flow, 1% hypoxia and oxidative stress by glutathione (GSH) depletion with buthionine sulfoximine (BSO) treatment. Mechanical action of fluid flow did not alter mesenchymal phenotype of CD90+ /CD29+ /CD44+ /CD34- /CD106- /CD45- ASCs; however, it remarkably induced ASC secretion of human umbilical vein endothelial cell (HUVEC) migration-stimulating factors. Multiplex Luminex assay further confirmed an increased secretion of VEGF, G-CSF, HGF, Leptin, IL-8, PDGF-BB, Angiopoietin-2, and Follistatin from mechanically-stimulated ASCs via cyclooxygenase-2. Consistent with this mechanism, GSH depletion and hypoxia also increased ASC secretion of VEGF, IL-8, leptin, Angiopoitein-2, and PDGF-BB. However, mechanical action of fluid flow abrogated VEGF and HUVEC migration-stimulating activity from GSH-depleted and hypoxic ASCs. Conversely, GSH depletion and hypoxia abrogated VEGF and HUVEC migration-stimulating activity from mechano-stimulated ASCs. Although mechanical action of fluid flow, hypoxia, and GSH-depletion had independent proangiogenic-stimulating activity on ASCs, mechanical stimulation had opposite effects on proangiogenic factor secretion from ASCs with and without oxidative stress. These data uncover the role of hypoxia and endogenous redox balance during the proangiogenic response of ASCs and other mesenchymal-derived cell types to mechanical action of interstitial fluid flow. J. Cell. Physiol. 232: 2158-2167, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Beatriz Bravo
- Institute of Applied Molecular Medicine (IMMA), CEU-San Pablo University School of Medicine, Boadilla del Monte, Madrid, Spain
| | - Cira García de Durango
- Institute of Applied Molecular Medicine (IMMA), CEU-San Pablo University School of Medicine, Boadilla del Monte, Madrid, Spain
| | - Álvaro González
- Department of Molecular and Cellular Oncology Houston, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Arancha R Gortázar
- Institute of Applied Molecular Medicine (IMMA), CEU-San Pablo University School of Medicine, Boadilla del Monte, Madrid, Spain
| | - Xavier Santos
- Institute of Applied Molecular Medicine (IMMA), CEU-San Pablo University School of Medicine, Boadilla del Monte, Madrid, Spain
| | - Jerónimo Forteza-Vila
- Valencia Institute of Pathology (IVP), Catholic University of Valencia School of Medicine and Odontology, Valencia, Spain
| | - Fernando Vidal-Vanaclocha
- Valencia Institute of Pathology (IVP), Catholic University of Valencia School of Medicine and Odontology, Valencia, Spain
| |
Collapse
|
35
|
Zhou F, Hui Y, Xin H, Xu YD, Lei HE, Yang BC, Guan RL, Li M, Hou JQ, Xin ZC. Therapeutic effects of adipose-derived stem cells-based microtissues on erectile dysfunction in streptozotocin-induced diabetic rats. Asian J Androl 2017; 19:91-97. [PMID: 27345005 PMCID: PMC5227681 DOI: 10.4103/1008-682x.182817] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study aimed to explore the therapeutic effects of adipose-derived stem cells (ADSCs)-based microtissues (MTs) on erectile dysfunction (ED) in streptozotocin (STZ)-induced diabetic rats. Fifty-six 8-week-old Sprague-Dawley rats received intraperitoneal injection of STZ (60 mg kg−1), and 8 weeks later, the determined diabetic rats randomly received intracavernous (IC) injection of phosphate buffer solution (PBS), ADSCs, or MTs. Another eight normal rats equally got IC injection of PBS. MTs were generated with a hanging drop method, and the injected cells were tracked in ADSC- and MT-injected rats. Four weeks after the treatments, intracavernous pressure (ICP), histopathological changes in corpus cavernosum (CC), and functional proteins were measured. Rat cytokine antibody array was used to detect ADSCs or MTs lysate. The results showed that MTs expressed vascular endothelial growth factor (VEGF), nerve growth factor (NGF), and tumor necrosis factor-stimulated gene-6 (TSG-6). MTs injection had a higher retention than ADSCs injection and MTs treatment improved ICP, neuronal nitric oxide synthase (nNOS) expression, smooth muscle, and endothelial contents in diabetic rats, ameliorated local inflammation in CC better. Thus, our findings demonstrate that IC injection of MTs improves erectile function and histopathological changes in STZ-induced diabetic rats and appears to be more promising than traditional ADSCs. The underlying mechanisms involve increased cell retention accompanied with neuroprotection and anti-inflammatory behaviors of the paracrine factors.
Collapse
Affiliation(s)
- Feng Zhou
- Molecular Biology Laboratory of Andrology Center, Peking University First Hospital, Peking University, Beijing 100034, China.,Department of Urology, First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Yu Hui
- Molecular Biology Laboratory of Andrology Center, Peking University First Hospital, Peking University, Beijing 100034, China.,Department of Urology, First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Hua Xin
- Department of Ophthalmology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100043, China
| | - Yong-De Xu
- Molecular Biology Laboratory of Andrology Center, Peking University First Hospital, Peking University, Beijing 100034, China
| | - Hong-En Lei
- Molecular Biology Laboratory of Andrology Center, Peking University First Hospital, Peking University, Beijing 100034, China
| | - Bi-Cheng Yang
- Molecular Biology Laboratory of Andrology Center, Peking University First Hospital, Peking University, Beijing 100034, China
| | - Rui-Li Guan
- Molecular Biology Laboratory of Andrology Center, Peking University First Hospital, Peking University, Beijing 100034, China
| | - Meng Li
- Department of Urology, General Hospital of Ningxia Medical University, Ningxia Medical University, Ningxia 750021, China
| | - Jian-Quan Hou
- Department of Urology, First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Zhong-Cheng Xin
- Molecular Biology Laboratory of Andrology Center, Peking University First Hospital, Peking University, Beijing 100034, China
| |
Collapse
|
36
|
Basic Fibroblast Growth Factor Inhibits Apoptosis and Promotes Proliferation of Adipose-Derived Mesenchymal Stromal Cells Isolated from Patients with Type 2 Diabetes by Reducing Cellular Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3027109. [PMID: 28168007 PMCID: PMC5267085 DOI: 10.1155/2017/3027109] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 12/15/2016] [Indexed: 01/09/2023]
Abstract
Type 2 diabetes (T2D) is a chronic metabolic disorder affecting increasing number of people in developed countries. Therefore new strategies for treatment of T2D and its complications are of special interest. Nowadays, cellular therapies involving mesenchymal stromal cells that reside in adipose tissue (ASCs) constitute a promising approach; however, there are still many obstacles concerning safety and effectiveness that need to be overcome before ASCs could be engaged for the treatment of diabetes mellitus. One of the challenges is preventing ASCs from deterioration caused by elevated oxidative stress present in diabetes milieu. In the current study we investigated the effect of basic fibroblast growth factor (bFGF) treatment on ASCs isolated from patients with diagnosed T2D. We demonstrate here that cell exposition to bFGF in 5 and 10 ng/mL dosages results in improved morphology, increased proliferative activity, reduced cellular senescence and apoptosis, and decreased oxidative stress, indicating recovery of ASCs' function impaired by T2D. Therefore our results provide a support for bFGF as a potential therapeutic agent for improving stem cell-based approaches for the treatment of diabetes mellitus and its complications.
Collapse
|
37
|
Musicki B, Burnett AL. Constitutive NOS uncoupling and NADPH oxidase upregulation in the penis of type 2 diabetic men with erectile dysfunction. Andrology 2017; 5:294-298. [PMID: 28076881 DOI: 10.1111/andr.12313] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/24/2016] [Accepted: 11/15/2016] [Indexed: 01/31/2023]
Abstract
Erectile dysfunction (ED) associated with type 2 diabetes mellitus (T2DM) involves dysfunctional nitric oxide (NO) signaling and increased oxidative stress in the penis. However, the mechanisms of endothelial NO synthase (eNOS) and neuronal NO synthase (nNOS) dysregulation, and the sources of oxidative stress, are not well defined, particularly at the human level. The objective of this study was to define whether uncoupled eNOS and nNOS, and NADPH oxidase upregulation, contribute to the pathogenesis of ED in T2DM men. Penile erectile tissue was obtained from 9 T2DM patients with ED who underwent penile prosthesis surgery for ED, and from six control patients without T2DM or ED who underwent penectomy for penile cancer. The dimer-to-monomer protein expression ratio, an indicator of uncoupling for both eNOS and nNOS, total protein expressions of eNOS and nNOS, as well as protein expressions of NADPH oxidase catalytic subunit gp91phox (an enzymatic source of oxidative stress) and 4-hydroxy-2-nonenal [4-HNE] and nitrotyrosine (markers of oxidative stress) were measured by western blot in this tissue. In the erectile tissue of T2DM men, eNOS and nNOS uncoupling and protein expressions of NADPH oxidase subunit gp91phox, 4-HNE- and nitrotyrosine-modified proteins were significantly (p < 0.05) increased compared to control values. Total eNOS and nNOS protein expressions were not significantly different between the groups. In conclusion, mechanisms of T2DM-associated ED in the human penis may involve uncoupled eNOS and nNOS and NADPH oxidase upregulation. Our description of molecular factors contributing to the pathogenesis of T2DM-associated ED at the human level is relevant to advancing clinically therapeutic approaches to restore erectile function in T2DM patients.
Collapse
Affiliation(s)
- B Musicki
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - A L Burnett
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
38
|
Lee HJ, Ryu JM, Jung YH, Lee SJ, Kim JY, Lee SH, Hwang IK, Seong JK, Han HJ. High glucose upregulates BACE1-mediated Aβ production through ROS-dependent HIF-1α and LXRα/ABCA1-regulated lipid raft reorganization in SK-N-MC cells. Sci Rep 2016; 6:36746. [PMID: 27829662 PMCID: PMC5103190 DOI: 10.1038/srep36746] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/20/2016] [Indexed: 01/07/2023] Open
Abstract
There is an accumulation of evidence indicating that the risk of Alzheimer’s disease is associated with diabetes mellitus, an indicator of high glucose concentrations in blood plasma. This study investigated the effect of high glucose on BACE1 expression and amyloidogenesis in vivo, and we present details of the mechanism associated with those effects. Our results, using ZLC and ZDF rat models, showed that ZDF rats have high levels of amyloid-beta (Aβ), phosphorylated tau, BACE1, and APP-C99. In vitro result with mouse hippocampal neuron and SK-N-MC, high glucose stimulated Aβ secretion and apoptosis in a dose-dependent manner. In addition, high glucose increased BACE1 and APP-C99 expressions, which were reversed by a reactive oxygen species (ROS) scavenger. Indeed, high glucose increased intracellular ROS levels and HIF-1α expression, associated with regulation of BACE1 and Liver X Receptor α (LXRα). In addition, high glucose induced ATP-binding cassette transporter A1 (ABCA1) down-regulation, was associated with LXR-induced lipid raft reorganization and BACE1 localization on the lipid raft. Furthermore, silencing of BACE1 expression was shown to regulate Aβ secretion and apoptosis of SK-N-MC. In conclusion, high glucose upregulates BACE1 expression and activity through HIF-1α and LXRα/ABCA1-regulated lipid raft reorganization, leading to Aβ production and apoptosis of SK-N-MC.
Collapse
Affiliation(s)
- Hyun Jik Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Korea
| | - Jung Min Ryu
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Korea
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Korea
| | - Sei-Jung Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Korea
| | - Jeong Yeon Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Korea
| | - Sang Hun Lee
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea.,Department of Biochemistry, Soonchunhyang University College of Medicine, Cheonan, 330-930, Republic of Korea
| | - In Koo Hwang
- BK21 PLUS Program for Creative Veterinary Science Research, and Research Institute for Veterinary Science; Seoul National University and Korea Mouse Phenotyping Center (KMPC), Seoul, Korea.,Department of Anatomy and Cell Biology; Korea Mouse Phenotyping Center (KMPC); College of Veterinary Medicine; Seoul National University, Seoul, Korea
| | - Je Kyung Seong
- BK21 PLUS Program for Creative Veterinary Science Research, and Research Institute for Veterinary Science; Seoul National University and Korea Mouse Phenotyping Center (KMPC), Seoul, Korea.,Department of Anatomy and Cell Biology; Korea Mouse Phenotyping Center (KMPC); College of Veterinary Medicine; Seoul National University, Seoul, Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW To summarize recent literature on basic stem cell research in erectile dysfunction in cavernous nerve injury, aging, diabetes, and Peyronie's disease and to provide a perspective on clinical translation of these cellular therapies. RECENT FINDINGS Stem cell research has been concentrated on mesenchymal stem (stromal) cells from bone marrow and adipose tissue. Application of both cell types has produced positive effects on erectile function in various animal models of erectile dysfunction. In acute animal models, such as cavernous nerve injury-induced erectile dysfunction and chemically induced Peyronie's disease, engraftment and differentiation have not been observed, and stem cells are believed to interact with the host tissue in a paracrine fashion, whereas in chronic disease models some evidence suggests both engraftment and paracrine factors may support improved function. Clinical trials are now investigating therapeutic efficacy of cellular therapy, whereas the first safety studies in humans have recently been published. SUMMARY Evidence from preclinical studies has established stem cells as a potential curative treatment for erectile dysfunction and early phase clinical trials are currently performed.
Collapse
|
40
|
Li M, Li H, Ruan Y, Wang T, Liu J. Stem Cell Therapy for Diabetic Erectile Dysfunction in Rats: A Meta-Analysis. PLoS One 2016; 11:e0154341. [PMID: 27111659 PMCID: PMC4844188 DOI: 10.1371/journal.pone.0154341] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/11/2016] [Indexed: 01/23/2023] Open
Abstract
Introduction Stem cell therapy is a novel method for the treatment of diabetic erectile dysfunction (ED). Many relative animal studies have been done to evaluate the efficacy of this therapy in rats. Aims This meta-analysis was performed to compare the efficacy of different stem cell therapies, to evaluate the influential factors and to determine the optimal stem cell therapeutic strategy for diabetic ED. Methods We searched the studies analyzing the efficacy of stem cell therapy for diabetic ED in rats published before September 30, 2015 in PubMed, Web of Science and EBSCO. A random effects meta-analysis was conducted to assess the outcomes of stem cell therapy. Subgroup analysis was also performed by separating these studies based on their different characteristics. Changes in the ratio of intracavernous pressure (ICP) to mean arterial pressure (MAP) and in the structure of the cavernous body were compared. Results 10 studies with 302 rats were enrolled in this meta-analysis. Pooled analysis of these studies showed a beneficial effect of stem cell therapy in improving erectile function of diabetic rats (SMD 4.03, 95% CI = 3.22 to 4.84, P< 0.001). In the stem cell therapy group, both the smooth muscle and endothelium content were much more than those in control group. There was also significant increase in the expression of endothelial nitric oxide synthase (eNOS) and neuronal nitric oxide synthase (nNOS), the ratio of smooth muscle to collagen, as well as the secretion of vascular endothelial growth factor (VEGF). Besides, apoptotic cells were reduced by stem cell treatment. The subgroup analysis indicated that modified stem cells were more effective than those without modification. Conclusions Our results confirmed that stem cell therapy could apparently improve the erectile function of diabetic rats. Some specific modification, especially the gene modification with growth factors, could improve the efficacy of stem cell therapy. Stem cell therapy has potential to be an effective therapeutic strategy for diabetic ED.
Collapse
Affiliation(s)
- Mingchao Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hao Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- * E-mail: (HL); (JL)
| | - Yajun Ruan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- * E-mail: (HL); (JL)
| |
Collapse
|
41
|
El-Sakka AI. What is the current role of intracavernosal injection in management of erectile dysfunction? Int J Impot Res 2016; 28:88-95. [DOI: 10.1038/ijir.2016.14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 11/14/2015] [Accepted: 03/14/2016] [Indexed: 12/15/2022]
|
42
|
Kim JH, Lee HJ, Song YS. Mesenchymal stem cell-based gene therapy for erectile dysfunction. Int J Impot Res 2016; 28:81-7. [PMID: 26888355 DOI: 10.1038/ijir.2016.3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 10/17/2015] [Accepted: 11/23/2015] [Indexed: 12/12/2022]
Abstract
Despite the overwhelming success of PDE5 inhibitor (PDE5I), the demand for novel pharmacotherapeutic and surgical options for ED continues to rise owing to the increased proportion of elderly individuals in the population, in addition to the growing percentage of ED patients who do not respond to PDE5I. Surgical treatment of ED is associated with many complications, thus warranting the need for nonsurgical therapies. Moreover, none of the above-mentioned treatments essentially corrects, cures or prevents ED. Although gene therapy is a promising option, many challenges and obstacles such as local inflammatory response and random transgene expression, in addition to other safety issues, limit its use at the clinical level. The use of stem cell therapy alone also has many shortcomings. To overcome these inadequacies, many scientists and clinicians are investigating new gene and stem cell therapies.
Collapse
Affiliation(s)
- J H Kim
- Department of Urology, Soonchunhyang University Hospital, College of Medicine, Soonchunhyang University, Seoul, Korea
| | - H J Lee
- Biomedical Research Institute, Chung-Ang School of Medicine, Seoul, Korea
| | - Y S Song
- Department of Urology, Soonchunhyang University Hospital, College of Medicine, Soonchunhyang University, Seoul, Korea
| |
Collapse
|
43
|
Effects of adipose-derived stem cells plus insulin on erectile function in streptozotocin-induced diabetic rats. Int Urol Nephrol 2016; 48:657-69. [DOI: 10.1007/s11255-016-1221-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/11/2016] [Indexed: 12/31/2022]
|
44
|
|
45
|
Ryu JK, Kim DH, Song KM, Ryu DS, Kim SN, Shin DH, Yi T, Suh JK, Song SU. Intracavernous delivery of clonal mesenchymal stem cells rescues erectile function in the streptozotocin-induced diabetic mouse. Andrology 2015; 4:172-84. [PMID: 26711324 DOI: 10.1111/andr.12138] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 09/02/2015] [Accepted: 10/26/2015] [Indexed: 12/24/2022]
Abstract
The major hurdle for the clinical application of stem cell therapy is the heterogeneous nature of the isolated cells, which may cause different treatment outcomes. The aim of this study was to examine the effectiveness of mouse clonal bone marrow-derived stem cells (BMSCs) obtained from a single colony by using subfractionation culturing method for erectile function in diabetic animals. Twelve-week-old C57BL/6J mice were divided into four groups: controls, diabetic mice, and diabetic mice treated with a single intracavernous injection of PBS (20 μL) or clonal BMSCs (3 × 10(5) cells/20 μL). Clonal BMSCs were isolated from 5-week-old C3H mice. Two weeks after treatment, erectile function was measured by electrical stimulation of the cavernous nerve. The penis was stained with antibodies to PECAM-1, smooth muscle α-actin, neuronal nitric oxide synthase (nNOS), neurofilament, and phosphorylated endothelial NOS (phospho-eNOS). We also performed Western blot for phospho-eNOS, and eNOS in the corpus cavernosum tissue. Local delivery of clonal BMSCs significantly restored cavernous endothelial and smooth muscle cell contents, and penile nNOS and neurofilament contents, and induced eNOS phosphorylation (Ser1177) in diabetic mice. Intracavernous injection of clonal BMSCs induced significant recovery of erectile function, which reached 80-90% of the control values. Clonal BMSCs successfully restored erectile function through dual angiogenic and neurotrophic effects in diabetic mice. The homogenous nature of clonal mesenchymal stem cells may allow their clinical applications and open a new avenue through which to treat diabetic erectile dysfunction.
Collapse
Affiliation(s)
- J-K Ryu
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea.,Inha Research Institute for Medical Sciences, Inha University School of Medicine, Incheon, Korea
| | - D-H Kim
- Translational Research Center, Inha University School of Medicine, Incheon, Korea
| | - K-M Song
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| | - D-S Ryu
- Department of Urology, Sungkyunkwan University School of Medicine, Samsung Changwon Hospital, Changwon, Korea
| | - S-N Kim
- Drug Development Program, Department of Medicine, Inha University School of Medicine, Incheon, Korea
| | - D-H Shin
- SCM Lifescience Co., Ltd., Incheon, Korea
| | - T Yi
- Translational Research Center, Inha University School of Medicine, Incheon, Korea
| | - J-K Suh
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| | - S U Song
- Translational Research Center, Inha University School of Medicine, Incheon, Korea
| |
Collapse
|
46
|
Wu C, Kovac JR. Models for erectile dysfunction and their importance to novel drug discovery. Expert Opin Drug Discov 2015; 11:185-96. [DOI: 10.1517/17460441.2016.1126243] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
47
|
Albersen M, Weyne E, Bivalacqua TJ. Stem Cell Therapy for Erectile Dysfunction: Progress and Future Directions. Sex Med Rev 2015; 1:50-64. [PMID: 27784560 DOI: 10.1002/smrj.5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Erectile dysfunction (ED) is the most common sexual disorder reported by men to their health-care providers and the most investigated male sexual dysfunction. Currently, the treatment of ED focuses on symptomatic relief of ED and therefore tends to provide temporary relief rather than providing a cure or reversing the underlying cause. Recently, stem cell-based therapies have received increasing attention regarding their potential for the recovery of erectile function. Preclinical studies have shown that these cells may reverse pathophysiological changes leading to ED rather than treating the symptom ED. AIM To review available evidence on the efficacy and mechanisms of action of stem cell application for the treatment of ED. METHODS A nonsystematic review was conducted on the available English literature between 1966 and 2013 on the search engines SciVerse-sciencedirect, SciVerse-scopus, Google Scholar, and PubMed. RESULTS Several preclinical studies have addressed stem cell-based therapies for the recovery of erectile function following cavernous nerve injury and in Peyronie's disease, diabetes, aging, and hyperlipidemia. Overall, these studies have shown beneficial effects of stem cell therapy, while evidence on the mechanisms of action of stem cell therapy still varies between studies. While many authors propose engraftment and differentiation of stem cells, a recent paradigm shift toward paracrine mechanisms of action is observed. One clinical study investigated stem cell therapy in diabetic patients, and two more clinical trials are currently recruiting patients. CONCLUSIONS The development of methods to deliver stem cells to the penis has kindled a keen interest in understanding stem cell biology as it related to restoration of normal penile vascular and neuronal homeostasis. The use of stem cells for the treatment of ED represents an exciting new field, which still requires extensive basic research and human trials in diverse ED patient populations in order to define its role in the treatment of ED. Albersen M, Weyne E, and Bivalacqua TJ. Stem cell therapy for erectile dysfunction: Progress and future directions. Sex Med Rev 2013;1:50-64.
Collapse
Affiliation(s)
- Maarten Albersen
- Laboratory for Experimental Urology, Gene and Stem Cells Applications, Department of Development and Regeneration, University of Leuven, Leuven, Belgium.
| | - Emmanuel Weyne
- Laboratory for Experimental Urology, Gene and Stem Cells Applications, Department of Development and Regeneration, University of Leuven, Leuven, Belgium
| | - Trinity J Bivalacqua
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| |
Collapse
|
48
|
Yang R, Fang F, Wang J, Guo H. Adipose-derived stem cells ameliorate erectile dysfunction after cavernous nerve cryoinjury. Andrology 2015. [PMID: 26198799 DOI: 10.1111/andr.12047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- R. Yang
- Department of Urology; the Affiliated Drum Tower Hospital of Nanjing University; Nanjing China
| | - F. Fang
- Department of Pharmacology; Nanjing Medical University; Nanjing China
| | - J. Wang
- The first people's Hospital of Xiaoshan District; Hangzhou China
| | - H. Guo
- Department of Urology; the Affiliated Drum Tower Hospital of Nanjing University; Nanjing China
| |
Collapse
|
49
|
Stem cell treatment of erectile dysfunction. Adv Drug Deliv Rev 2015; 82-83:137-44. [PMID: 25446142 DOI: 10.1016/j.addr.2014.11.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 09/09/2014] [Accepted: 11/08/2014] [Indexed: 12/31/2022]
Abstract
Erectile Dysfunction (ED) is a common disease that typically affects older men. While oral type-5 phosphodieserase inhibitors (PDE5Is) represent a successful first-line therapy, many patients do not respond to this treatment leading researchers to look for alternative treatment modalities. Stem cell (SC) therapy is a promising new frontier for the treatment of those patients and many studies demonstrated its therapeutic effects. In this article, using a Medline database search of all relevant articles, we present a summary of the scientific principles behind SCs and their use for treatment of ED. We discuss specifically the different types of SCs used in ED, the methods of delivery tested, and the methods attempted to enhance SC therapy effect. In addition, we review the current preclinical literature on SC therapy for ED and present a summary of its findings in addition to the single clinical trial published.
Collapse
|
50
|
Liu T, Peng Y, Jia C, Fang X, Li J, Zhong W. Hepatocyte growth factor-modified adipose tissue-derived stem cells improve erectile function in streptozotocin-induced diabetic rats. Growth Factors 2015; 33:282-9. [PMID: 26339935 DOI: 10.3109/08977194.2015.1077825] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
TGFβ1-Smad signaling pathway is closely related to various tissues fibrosis. Hepatocyte growth factor (HGF) has been shown to antagonize TGFβ1-Smad signaling and may improve kidney tissue fibrosis in diabetic models. Penile fibrosis is a pathological condition which occurs during diabetic erectile dysfunction (ED). The aim of this study was to examine the effect of the treatment of ED in diabetic rats with a combination of HGF and adipose tissue-derived stem cells (ADSC). In this diabetes model, rats were injected intraperitoneally with 60 mg streptozotocin (STZ) to induce diabetes. Three months later, the diabetic rats were divided into a negative control(NC) group, an ADSC-treated group and an ADSC + HGF-treated group while normal rats were assigned into a sham group. Rats in the sham and NC groups were injected in the corpus cavernosum with phosphate-buffered saline, while rats in the other groups were injected with either ADSC or ADSC + HGF. One month later, erectile function was examined in each group and penile tissues were collected for experiments. The expression of smooth muscle actin (SMA) and platelet-endothelial cell adhesion molecule-1 (PECAM-1) was analyzed by Western blotting. The smooth muscle and collagen deposition in corpus cavernosum was evaluated by Masson staining, while endothelial changes were assessed immunohistochemically. Cell apoptosis was detected by the TdT-mediated dUTP nick-end labeling (TUNEL) assay. The results revealed that ADSC alone can significantly improve erectile function in diabetic rats, but in combination with HGF the improvement was more prominent, showing higher content of smooth muscle and endothelial cells and lower cell apoptotic index in corpus cavernosum. Treatment with HGF can significantly enhance the beneficial effect of ADSC on erectile function in diabetic rats, and this effect might be closely related to the down-regulation of TGFβ1-Smad signaling.
Collapse
Affiliation(s)
- Tao Liu
- a Yijishan Hospital of Wannan Medical College , Wuhu , China
| | - Yifeng Peng
- a Yijishan Hospital of Wannan Medical College , Wuhu , China
| | - Chao Jia
- a Yijishan Hospital of Wannan Medical College , Wuhu , China
| | - Xiang Fang
- a Yijishan Hospital of Wannan Medical College , Wuhu , China
| | - Jing Li
- a Yijishan Hospital of Wannan Medical College , Wuhu , China
| | - Wan Zhong
- a Yijishan Hospital of Wannan Medical College , Wuhu , China
| |
Collapse
|