1
|
da Silveira BP, Cohen ND, Lawhon SD, Watson RO, Bordin AI. Protective immune response against Rhodococcus equi: An innate immunity-focused review. Equine Vet J 2024. [PMID: 39258739 DOI: 10.1111/evj.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/30/2024] [Indexed: 09/12/2024]
Abstract
Rhodococcus equi causes pyogranulomatous pneumonia in foals and immunocompromised people. Despite decades of research efforts, no vaccine is available against this common cause of disease and death in foals. The purpose of this narrative review is to summarise the current understanding of interactions between R. equi and the host innate immune system, to describe features of the immune response that are associated with resistance or susceptibility to R. equi infection, and help guide strategies for developing novel approaches for preventing R. equi infections. Virulence of R. equi in foals has been attributed to the virulence associated protein A which allows intracellular survival in macrophages by preventing acidification of R. equi-containing vacuole. Additionally, foal susceptibility to R. equi infection is associated with immaturity and naivety of innate and adaptive immune systems, while adult horses with fully functional immune system are resistant to pneumonia. Specific interaction between R. equi and innate immune cells can result in bacterial survival or death; learning how to manipulate these responses to control infection is critical to prevent pneumonia in foals. Administration of live vaccines and stimulation of innate immune responses appears to improve foals' immune response and has the potential to overcome the challenges of foal active vaccination and elicit protection against pneumonia.
Collapse
Affiliation(s)
- Bibiana Petri da Silveira
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| | - Noah D Cohen
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| | - Sara D Lawhon
- Department of Veterinary Pathobiology, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| | - Robert O Watson
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, School of Medicine, College Station, Texas, USA
| | - Angela I Bordin
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| |
Collapse
|
2
|
Tallmadge RL, Antczak DF, Felippe MJB. Genetics of Immune Disease in the Horse. Vet Clin North Am Equine Pract 2020; 36:273-288. [PMID: 32654783 DOI: 10.1016/j.cveq.2020.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Host defenses against infection by viruses, bacteria, fungi, and parasites are critical to survival. It has been estimated that upwards of 7% of the coding genes of mammals function in immunity and inflammation. This high level of genomic investment in defense has resulted in an immune system characterized by extraordinary complexity and many levels of redundancy. Because so many genes are involved with immunity, there are many opportunities for mutations to arise that have negative effects. However, redundancy in the mammalian defense system and the adaptive nature of key immune mechanisms buffer the untoward outcomes of many such deleterious mutations.
Collapse
Affiliation(s)
- Rebecca L Tallmadge
- Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, 240 Farrier Road, Ithaca, NY 14853, USA
| | - Douglas F Antczak
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY 14853, USA.
| | - Maria Julia Bevilaqua Felippe
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, 930 Campus Road, Ithaca, NY 14853, USA
| |
Collapse
|
3
|
Abstract
Genetic factors influence the development of guttural pouch tympany, recurrent laryngeal neuropathy, severe equine asthma, exercise-induced pulmonary hemorrhage, and possibly also some malformations and infectious diseases of the respiratory tract. The current data suggest that most of these diseases are complex, resulting from the interaction between several genes and environmental factors. To date, no specific genes or causative mutations have been identified that would allow the development of practical genetic tests. In the future, genetic profiling panels, based on multiple genetic markers and environmental risk factors, may allow identification of individuals with an increased genetic risk.
Collapse
Affiliation(s)
- Vinzenz Gerber
- Department of Clinical Veterinary Medicine, Vetsuisse Faculty, Swiss Institute of Equine Medicine (ISME), University of Bern, and Agroscope, Laenggassstrasse 124, Berne 3012, Switzerland.
| |
Collapse
|
4
|
McQueen CM, Whitfield-Cargile CM, Konganti K, Blodgett GP, Dindot SV, Cohen ND. TRPM2 SNP genotype previously associated with susceptibility to Rhodococcus equi pneumonia in Quarter Horse foals displays differential gene expression identified using RNA-Seq. BMC Genomics 2016; 17:993. [PMID: 27919223 PMCID: PMC5139010 DOI: 10.1186/s12864-016-3345-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/25/2016] [Indexed: 01/02/2023] Open
Abstract
Background Rhodococcus equi (R. equi) is an intracellular bacterium that affects young foals and immuno-compromised individuals causing severe pneumonia. Currently, the genetic mechanisms that confer susceptibility and/or resistance to R. equi are not fully understood. Previously, using a SNP-based genome-wide association study, we identified a region on equine chromosome 26 associated with culture-confirmed clinical pneumonia. To better characterize this region and understand the function of the SNP located within TRPM2 that was associated with R. equi pneumonia, we performed RNA-Seq on 12 horses representing the 3 genotypic forms of this SNP. Results We identified differentially expressed genes in the innate immune response pathway when comparing homozygous A allele horses with the AB and BB horses. Isoform analyses of the RNA-Seq data predicted the existence of multiple transcripts and provided evidence of differential expression at the TRPM2 locus. This finding is consistent with previously demonstrated work in human cell lines in which isoform-specific expression of TRPM2 was critical for cell viability. Conclusions This work demonstrates that SNPs in TRPM2 are associated with differences in gene expression, suggesting that modulation of expression of this innate immune gene contributes to susceptibility to R. equi pneumonia.
Collapse
Affiliation(s)
- Cole M McQueen
- Department of Large Animal Clinical Sciences, Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, TX, USA
| | - Canaan M Whitfield-Cargile
- Department of Large Animal Clinical Sciences, Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, TX, USA
| | - Kranti Konganti
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, USA.,Department of Veterinary Pathobiology, Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, TX, USA
| | | | - Scott V Dindot
- Department of Veterinary Pathobiology, Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, TX, USA.
| | - Noah D Cohen
- Department of Large Animal Clinical Sciences, Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, TX, USA.
| |
Collapse
|
5
|
McQueen CM, Dindot SV, Foster MJ, Cohen ND. Genetic Susceptibility to Rhodococcus equi. J Vet Intern Med 2015; 29:1648-59. [PMID: 26340305 PMCID: PMC4895676 DOI: 10.1111/jvim.13616] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/29/2015] [Accepted: 08/10/2015] [Indexed: 02/02/2023] Open
Abstract
Rhodococcus equi pneumonia is a major cause of morbidity and mortality in neonatal foals. Much effort has been made to identify preventative measures and new treatments for R. equi with limited success. With a growing focus in the medical community on understanding the genetic basis of disease susceptibility, investigators have begun to evaluate the interaction of the genetics of the foal with R. equi. This review describes past efforts to understand the genetic basis underlying R. equi susceptibility and tolerance. It also highlights the genetic technology available to study horses and describes the use of this technology in investigating R. equi. This review provides readers with a foundational understanding of candidate gene approaches, single nucleotide polymorphism‐based, and copy number variant‐based genome‐wide association studies, and next generation sequencing (both DNA and RNA).
Collapse
Affiliation(s)
- C M McQueen
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX
| | - S V Dindot
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX
| | - M J Foster
- Medical Sciences Library, Texas A&M University, College Station, TX
| | - N D Cohen
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX
| |
Collapse
|
6
|
|
7
|
Kaur N, Townsend H, Lohmann K, Marques F, Singh B. Analyses of lipid rafts, Toll-like receptors 2 and 4, and cytokines in foals vaccinated with Virulence Associated Protein A/CpG oligonucleotide vaccine against Rhodococcus equi. Vet Immunol Immunopathol 2014; 156:182-9. [PMID: 24422228 DOI: 10.1016/j.vetimm.2013.09.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rhodococcus equi establishes long-term pulmonary infection, survives in phagolysosomes of alveolar macrophages and causes pneumonia in foals. The failure of the foal to clear R. equi bacteria is believed to be due to its inability to produce IFN-γ and defects in Toll-like receptor(TLR) signaling. Lipid rafts sequester immune receptors such as TLRs and facilitate efficient cell signaling and therefore, a deficiency in accumulation of receptors in lipid rafts may result in failure to activate. We tested whether a Virulence Associated Protein A (VapA)/CpG vaccine against R. equi would impact the production of IL-10, IFN-γ and TNF-α in lung tissue and fluid samples, alter expression of TLR2 and TLR4 and alter their association with the lipid rafts in broncho-alveolar lavage (BAL) cells. Eight foals, 1–6 days of age, were vaccinated against R. equi followed by a booster at day 14 and challenged with R. equi (5 x 10(6) CFU/ml;10 ml) on day 28. This group was termed "vaccinated pre-challenge" before the infection and "vaccinated post-challenge" after the infection. A second group of foals (n = 7) was not vaccinated but challenged with R. equi on day 28 of the study. This group was termed "non-vaccinated pre-challenge" and after infection with R. equi was named "non-vaccinated post-challenged. We report adaptation of previous protocols to isolate plasma membrane fractions from BAL cells and identification of lipid raft fractions based on the presence of flotillin-1 and GM-1 and absence of transferrin receptor. TLR2 and TLR4 were restricted to plasma membrane fractions 7–9 of alveolar cells collected from vaccinated foals before and after the challenge. Western blots showed that vaccinated post-challenge foals had higher expression of TLR2 in their lung tissues compared to non-vaccinated pre-challenge foals. TNF- concentration was higher in BAL fluid collected from the vaccinated compared to the non-vaccinated foals on day 28. Lung tissue extracts collected on day 49 from the non-vaccinated R. equi challenged foals showed higher expression of IL-10 compared to the vaccinated-challenged foals. However, there were no differences among the groups with respect to the concentration of IFN-γ in BAL fluid or lung tissue extracts. Taken together, we modified previous protocols to isolate plasma membrane fractions from BAL cells of foals and report that the vaccination with a VapA/CPG vaccine increases association of TLR2 and TLR4 with lipid raft fractions and alters expression of TNF-α and IL-10. The data point to a subtle effect of vaccination on the association of TLR2 and TLR4 with lipid rafts in BAL cells.
Collapse
|
8
|
Identification of genomic loci associated with Rhodococcus equi susceptibility in foals. PLoS One 2014; 9:e98710. [PMID: 24892408 PMCID: PMC4043894 DOI: 10.1371/journal.pone.0098710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/04/2014] [Indexed: 11/30/2022] Open
Abstract
Pneumonia caused by Rhodococcus equi is a common cause of disease and death in foals. Although agent and environmental factors contribute to the incidence of this disease, the genetic factors influencing the clinical outcomes of R. equi pneumonia are ill-defined. Here, we performed independent single nucleotide polymorphism (SNP)- and copy number variant (CNV)-based genome-wide association studies to identify genomic loci associated with R. equi pneumonia in foals. Foals at a large Quarter Horse breeding farm were categorized into 3 groups: 1) foals with R. equi pneumonia (clinical group [N = 43]); 2) foals with ultrasonographic evidence of pulmonary lesions that never developed clinical signs of pneumonia (subclinical group [N = 156]); and, 3) foals without clinical signs or ultrasonographic evidence of pneumonia (unaffected group [N = 49]). From each group, 24 foals were randomly selected and used for independent SNP- and CNV-based genome-wide association studies (GWAS). The SNP-based GWAS identified a region on chromosome 26 that had moderate evidence of association with R. equi pneumonia when comparing clinical and subclinical foals. A joint analysis including all study foals revealed a 3- to 4-fold increase in odds of disease for a homozygous SNP within the associated region when comparing the clinical group with either of the other 2 groups of foals or their combination. The region contains the transient receptor potential cation channel, subfamily M, member 2 (TRPM2) gene, which is involved in neutrophil function. No associations were identified in the CNV-based GWAS. Collectively, these data identify a region on chromosome 26 associated with R. equi pneumonia in foals, providing evidence that genetic factors may indeed contribute to this important disease of foals.
Collapse
|
9
|
Gerber V, Tessier C, Marti E. Genetics of upper and lower airway diseases in the horse. Equine Vet J 2014; 47:390-7. [PMID: 24773614 DOI: 10.1111/evj.12289] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 04/12/2014] [Indexed: 11/30/2022]
Abstract
Genetic predispositions for guttural pouch tympany, recurrent laryngeal neuropathy and recurrent airway obstruction (RAO) are well documented. There is also evidence that exercise-induced pulmonary haemorrhage and infectious diseases of the respiratory tract in horses have a genetic component. The clinical expression of equine respiratory diseases with a genetic basis results from complex interactions between the environment and the genetic make-up of each individual horse. The genetic effects are likely to be due to variations in several genes, i.e. they are polygenic. It is therefore unlikely that single gene tests will be diagnostically useful in these disorders. Genetic profiling panels, combining several genetic factors with an assessment of environmental risk factors, may have greater value, but much work is still needed to uncover diagnostically useful genetic markers or even causative variants for equine respiratory diseases. Nonetheless, chromosomal regions associated with guttural pouch tympany, recurrent laryngeal neuropathy and RAO have been identified. The association of RAO with other hypersensitivities and with resistance to intestinal parasites requires further study. This review aims to provide an overview of the available data and current thoughts on the genetics of equine airway diseases.
Collapse
Affiliation(s)
- V Gerber
- Swiss Institute of Equine Medicine (ISME), DKV, Vetsuisse Faculty, University of Berne and ALP-Haras Avenches, Switzerland
| | - C Tessier
- ONIRIS, Ecole Nationale Vétérinaire, Agro-Alimentaire et de l'Alimentation Nantes-Atlantique, Equine Surgery, Nantes, France
| | - E Marti
- Division of Clinical Immunology, DCR-VPH, University of Berne, Switzerland
| |
Collapse
|
10
|
Zhou J, Seeley WW. Network dysfunction in Alzheimer's disease and frontotemporal dementia: implications for psychiatry. Biol Psychiatry 2014; 75:565-73. [PMID: 24629669 DOI: 10.1016/j.biopsych.2014.01.020] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 01/15/2014] [Accepted: 01/17/2014] [Indexed: 12/14/2022]
Abstract
Structural and functional connectivity methods are changing how researchers conceptualize and explore neuropsychiatric disease. Here, we summarize emerging evidence of large-scale network dysfunction in Alzheimer's disease and behavioral variant frontotemporal dementia, focusing on the divergent impact these disorders have on the default mode network and the salience network. We update a working model for understanding the functions of these networks within a broader anatomical context and highlight the relevance of this model for understanding psychiatric illness. Finally, we look ahead to persistent challenges in the application of network-based imaging methods to patients with Alzheimer's disease, behavioral variant frontotemporal dementia, and other neuropsychiatric conditions. Recent advances and persistent needs are discussed, with an eye toward anticipating the hurdles that must be overcome for a network-based framework to clarify the biology of psychiatric illness and aid in the drug discovery process.
Collapse
Affiliation(s)
- Juan Zhou
- Center for Cognitive Neuroscience, Neuroscience and Behavior Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, University of California at San Francisco, San Franciso, California.
| |
Collapse
|
11
|
Mensikova M, Stepanova H, Faldyna M. Interleukin-17 in veterinary animal species and its role in various diseases: A review. Cytokine 2013; 64:11-7. [DOI: 10.1016/j.cyto.2013.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 05/28/2013] [Accepted: 06/03/2013] [Indexed: 12/13/2022]
|
12
|
Rhodococcus equi pneumonia in the foal--part 1: pathogenesis and epidemiology. Vet J 2011; 192:20-6. [PMID: 22015138 DOI: 10.1016/j.tvjl.2011.08.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 06/20/2011] [Accepted: 08/12/2011] [Indexed: 10/16/2022]
Abstract
Rhodococcus equi pneumonia is a worldwide infectious disease of major concern to the equine breeding industry. The disease typically manifests in foals as pyogranulomatous bronchopneumonia, resulting in significant morbidity and mortality. Inhalation of aerosolised virulent R. equi from the environment and intracellular replication within alveolar macrophages are essential components of the pathogenesis of R. equi pneumonia in the foal. Recently documented evidence of airborne transmission between foals indicates the potential for an alternative contagious route of disease transmission. In the first of this two-part review, the complexity of the host, pathogen and environmental interactions that underpin R. equi pneumonia will be discussed through an exploration of current understanding of the epidemiology and pathogenesis of R. equi pneumonia in the foal.
Collapse
|