1
|
Chen J, Mei S, Zheng P, Guo J, Zeng Z, Lu H, Sun B. A multi-omics view of the preservation effect on Camellia sinensis leaves during low temperature postharvest transportation. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
2
|
Sasi JM, Gupta S, Singh A, Kujur A, Agarwal M, Katiyar-Agarwal S. Know when and how to die: gaining insights into the molecular regulation of leaf senescence. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1515-1534. [PMID: 36389097 PMCID: PMC9530073 DOI: 10.1007/s12298-022-01224-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 06/16/2023]
Abstract
Senescence is the ultimate phase in the life cycle of leaves which is crucial for recycling of nutrients to maintain plant fitness and reproductive success. The earliest visible manifestation of leaf senescence is their yellowing, which usually commences with the breakdown of chlorophyll. The degradation process involves a gradual and highly coordinated disassembly of macromolecules resulting in the accumulation of nutrients, which are subsequently mobilized from the senescing leaves to the developing organs. Leaf senescence progresses under overly tight genetic and molecular control involving a well-orchestrated and intricate network of regulators that coordinate spatio-temporally with the influence of both internal and external cues. Owing to the advancements in omics technologies, the availability of mutant resources, scalability of molecular analyses methodologies and the advanced capacity to integrate multidimensional data, our understanding of the genetic and molecular basis of leaf ageing has greatly expanded. The review provides a compilation of the multitier regulation of senescence process and the interrelation between the environment and the terminal phase of leaf development. The knowledge gained would benefit in devising the strategies for manipulation of leaf senescence process to improve crop quality and productivity.
Collapse
Affiliation(s)
- Jyothish Madambikattil Sasi
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Shitij Gupta
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Apurva Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Alice Kujur
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
- USDA-ARS Plant Genetics Research Unit, The Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
- Centre of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana 502324 India
| | - Manu Agarwal
- Department of Botany, University of Delhi North Campus, Delhi, 110007 India
| | - Surekha Katiyar-Agarwal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| |
Collapse
|
3
|
Xu H, Hassan MA, Sun D, Wu Z, Jiang G, Liu B, Ni Q, Yang W, Fang H, Li J, Chen X. Effects of Low Temperature Stress on Source-Sink Organs in Wheat and Phosphorus Mitigation Strategies. FRONTIERS IN PLANT SCIENCE 2022; 13:807844. [PMID: 35222472 PMCID: PMC8873184 DOI: 10.3389/fpls.2022.807844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
The 21st century presents many challenges to mankind, including climate change, fast growing human population, and serious concerns over food security. Wheat is a leading cereal crop that largely fulfills the global food needs. Low temperature stress accompanied by nutrient-starved soils is badly disrupting the source-sink relationship of wheat, thus causing an acute decline in final yield and deteriorating the grain quality. This review paper aimed to understand how low temperature stress affects wheat source-sink organs (i.e., leaves, roots, and spikes) and how phosphorus application reliefs in alleviating its harmful consequences. Also, we discussed mitigation strategies to enhance wheat capacity to adapt to varying temperature extremes and made rational recommendations based on modern agronomic and breeding approaches. Therefore, this study is likely to establish a solid foundation for improving the tolerance to low temperature stress and to improve its phosphorus utilization efficiency in wheat.
Collapse
Affiliation(s)
- Hui Xu
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | | | - Dongyue Sun
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Zhaochen Wu
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Gang Jiang
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Binbin Liu
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Qianqian Ni
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Wenkang Yang
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Hao Fang
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Jincai Li
- College of Agronomy, Anhui Agricultural University, Hefei, China
- Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing, China
| | - Xiang Chen
- College of Agronomy, Anhui Agricultural University, Hefei, China
| |
Collapse
|
4
|
Zhu L, Liu L, Sun H, Zhang Y, Zhu J, Zhang K, Li A, Bai Z, Wang G, Li C. Physiological and Comparative Transcriptomic Analysis Provide Insight Into Cotton ( Gossypium hirsutum L.) Root Senescence in Response. FRONTIERS IN PLANT SCIENCE 2021; 12:748715. [PMID: 34733305 PMCID: PMC8558499 DOI: 10.3389/fpls.2021.748715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Nitrogen (N) deficiency is one of the pivotal environmental factors that induce leaf senescence. However, little is known regarding the impact of low N on root senescence in cotton. Thus, the objective of this study was to investigate the effect of low nitrogen on root senescence. In this study, the molecular mechanism of cotton root senescence in response to nitrogen deficiency was investigated by combing physiological and transcriptomic analysis when no nitrogen and normal nitrogen (138mg N·kg-1 soil). The results showed that: (1) nitrogen starvation induced the premature senescence of leaf, while delaying root senescence. (2) The increase in catalase (CAT) activity at 60, 80, and 100days after emergence (DAE), combined with decrease of malonaldehyde content at 60, 80, and 100 DAE, and the content of abscisic acid (ABA), all of these contributed to the delay of root senescence by low nitrogen treatment. (3) To study the molecular mechanisms underlying root senescence, the gene expression profiling between low nitrogen and normal nitrogen treatments were compared pairwise at 20, 40, 60, 80, and 100 DAE. A total of 14,607 genes were identified to be differentially expressed at these five points. (5) Most genes involved in glutathione (GSH) and ascorbate peroxidase (APX) synthesis were upregulated, while ABA, apoptosis, caspase, and cell cycle-related differentially expressed genes (DEGs) were downregulated. Coupled with the physiology data, these results provide new insights into the effect of nitrogen starvation on root senescence.
Collapse
Affiliation(s)
- Lingxiao Zhu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Liantao Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Hongchun Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Yongjiang Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Jijie Zhu
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Science, Shijiazhuang, China
| | - Ke Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Anchang Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Zhiying Bai
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Guiyan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Cundong Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, China
| |
Collapse
|
5
|
Beukert U, Pfeiffer N, Ebmeyer E, Hinterberger V, Lueck S, Serfling A, Ordon F, Schulthess AW, Reif JC. Efficiency of a Seedling Phenotyping Strategy to Support European Wheat Breeding Focusing on Leaf Rust Resistance. BIOLOGY 2021; 10:628. [PMID: 34356483 PMCID: PMC8301088 DOI: 10.3390/biology10070628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 10/26/2022]
Abstract
Leaf rust resistance is of high importance for a sustainable European wheat production. The expression of known resistance genes starts at different developmental stages of wheat. Breeding for resistance can be supported by a fast, precise, and resource-saving phenotyping. The examination of detached leaf assays of juvenile plants inoculated under controlled conditions and phenotyped by a robotic- and computer-based, high-throughput system is a promising approach in this respect. Within this study, the validation of the phenotyping workflow was conducted based on a winter wheat set derived from Central Europe and examined at different plant developmental stages. Moderate Pearson correlations of 0.38-0.45 comparing leaf rust resistance of juvenile and adult plants were calculated and may be mainly due to different environmental conditions. Specially, the infection under controlled conditions was limited by the application of a single rust race at only one time point. Our results suggest that the diversification with respect to the applied rust race spectrum is promising to increase the consistency of detached leaf assays and the transferability of its results to the field.
Collapse
Affiliation(s)
- Ulrike Beukert
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute (JKI), 06484 Quedlinburg, Germany; (U.B.); (A.S.); (F.O.)
| | - Nina Pfeiffer
- KWS LOCHOW GmbH, 29303 Bergen, Germany; (N.P.); (E.E.)
| | | | - Valentin Hinterberger
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany; (V.H.); (S.L.); (A.W.S.)
| | - Stefanie Lueck
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany; (V.H.); (S.L.); (A.W.S.)
| | - Albrecht Serfling
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute (JKI), 06484 Quedlinburg, Germany; (U.B.); (A.S.); (F.O.)
| | - Frank Ordon
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute (JKI), 06484 Quedlinburg, Germany; (U.B.); (A.S.); (F.O.)
| | - Albert Wilhelm Schulthess
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany; (V.H.); (S.L.); (A.W.S.)
| | - Jochen Christoph Reif
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany; (V.H.); (S.L.); (A.W.S.)
| |
Collapse
|
6
|
Bovet L, Cheval C, Hilfiker A, Battey J, Langlet D, Broye H, Schwaar J, Ozelley P, Lang G, Bakaher N, Laparra H, Goepfert S. Asparagine Synthesis During Tobacco Leaf Curing. PLANTS 2019; 8:plants8110492. [PMID: 31718005 PMCID: PMC6918383 DOI: 10.3390/plants8110492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 12/22/2022]
Abstract
Senescence is a genetically controlled mechanism that modifies leaf chemistry. This involves significant changes in the accumulation of carbon- and nitrogen-containing compounds, including asparagine through the activity of asparagine synthetases. These enzymes are required for nitrogen re-assimilation and remobilization in plants; however, their mechanisms are not fully understood. Here, we report how leaf curing—a senescence-induced process that allows tobacco leaves to dry out—modifies the asparagine metabolism. We show that leaf curing strongly alters the concentration of the four main amino acids, asparagine, glutamine, aspartate, and glutamate. We demonstrate that detached tobacco leaf or stalk curing has a different impact on the expression of asparagine synthetase genes and accumulation of asparagine. Additionally, we characterize the main asparagine synthetases involved in the production of asparagine during curing. The expression of ASN1 and ASN5 genes is upregulated during curing. The ASN1-RNAi and ASN5-RNAi tobacco plant lines display significant alterations in the accumulation of asparagine, glutamine, and aspartate relative to wild-type plants. These results support the idea that ASN1 and ASN5 are key regulators of asparagine metabolism during leaf curing.
Collapse
|
7
|
Liang Y, Jiang Y, Du M, Li B, Chen L, Chen M, Jin D, Wu J. ZmASR3 from the Maize ASR Gene Family Positively Regulates Drought Tolerance in Transgenic Arabidopsis. Int J Mol Sci 2019; 20:E2278. [PMID: 31072025 PMCID: PMC6539908 DOI: 10.3390/ijms20092278] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/04/2019] [Accepted: 05/06/2019] [Indexed: 01/08/2023] Open
Abstract
Abscisic acid (ABA)-, stress-, and ripening-induced (ASR) proteins are reported to be involved in drought stress responses. However, the function of maize ASR genes in enhancing drought tolerance is not known. Here, nine maize ASR members were cloned, and the molecular features of these genes were analyzed. Phenotype results of overexpression of maize ZmASR3 gene in Arabidopsis showed lower malondialdehyde (MDA) levels and higher relative water content (RWC) and proline content than the wild type under drought conditions, demonstrating that ZmASR3 can improve drought tolerance. Further experiments showed that ZmASR3-overexpressing transgenic lines displayed increased stomatal closure and reduced reactive oxygen species (ROS) accumulation by increasing the enzyme activities of superoxide dismutase (SOD) and catalase (CAT) under drought conditions. Moreover, overexpression of ZmASR3 in Arabidopsis increased ABA content and reduced sensitivity to exogenous ABA in both the germination and post-germination stages. In addition, the ROS-related, stress-responsive, and ABA-dependent pathway genes were activated in transgenic lines under drought stress. Taken together, these results suggest that ZmASR3 acts as a positive regulator of drought tolerance in plants.
Collapse
Affiliation(s)
- Yani Liang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Yingli Jiang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Ming Du
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Baoyan Li
- Institute of Plant Protection, Yantai Academy of Agricultural Sciences, Yantai 265500, China.
| | - Long Chen
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Mingchao Chen
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Demiao Jin
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Jiandong Wu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
8
|
Wang G, Li K, Zhou C. Identification and Functional Analysis of Senescence-Associated Genes in Wheat. Methods Mol Biol 2018; 1744:237-246. [PMID: 29392670 DOI: 10.1007/978-1-4939-7672-0_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Senescence is the final stage of leaf development. During this process, different macromolecules undergo degradation, and the resulting components are transported to developing and storage tissues of the plant. Senescence-associated genes (SAGs) play important roles in this process. Identification and characterization of SAGs are the first steps to interpret the function of these genes and to elucidate the mechanisms of leaf senescence. One of the most effective ways to identify SAGs is to screen for candidate genes using massive genome-scale transcriptomic data such as microarray, RNA-seq, digital RNA expression level data, etc. The basic functional analysis of candidate genes is to observe the phenotypes of transgenic plants, in which the candidate SAGs are overexpressed, knocked down, or knocked out. In this chapter, we outline methods for identifying and characterizing SAGs by microarray analysis in wheat. Methods of gene functional analyses by screening transgenic plants are also described. The protocols described in this chapter could also be used in other plant species, especially for Poaceae plants.
Collapse
Affiliation(s)
- Geng Wang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Ke Li
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Chunjiang Zhou
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China.
| |
Collapse
|
9
|
Wang F, Liu J, Chen M, Zhou L, Li Z, Zhao Q, Pan G, Zaidi SHR, Cheng F. Involvement of Abscisic Acid in PSII Photodamage and D1 Protein Turnover for Light-Induced Premature Senescence of Rice Flag Leaves. PLoS One 2016; 11:e0161203. [PMID: 27532299 PMCID: PMC4988704 DOI: 10.1371/journal.pone.0161203] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/01/2016] [Indexed: 01/03/2023] Open
Abstract
D1 protein in the PSII reaction center is the major target of photodamage, and it exhibits the highest turnover rate among all the thylakoid proteins. In this paper, rice psf (premature senescence of flag leaves) mutant and its wild type were used to investigate the genotype-dependent alteration in PSII photo-damage and D1 protein turnover during leaf senescence and its relation to ABA accumulation in senescent leaves. The symptom and extent of leaf senescence of the psf mutant appeared to be sunlight-dependent under natural field condition. The psf also displayed significantly higher levels of ABA accumulation in senescent leaves than the wild type. However, the premature senescence lesion of psf leaves could be alleviated by shaded treatment, concomitantly with the strikingly suppressed ABA level in the shaded areas of flag leaves. The change in ABA concentration contributed to the regulation of shade-delayed leaf senescence. The participation of ABA in the timing of senescence initiation and in the subsequent rate of leaf senescence was closely associated with PSII photodamage and D1 protein turnover during leaf senescence, in which the transcriptional expression of several key genes (psbA, psbB, psbC and OsFtsH2) involved in D1 protein biosynthesis and PSII repair cycle was seriously suppressed by the significantly increased ABA level. This response resulted in the low rate of D1 protein synthesis and impaired repair recovery in the presence of ABA. The psf showed evidently decreased D1 protein amount in the senescent leaves. Both the inhibition of de novo synthesized D1 protein and the slow rate of proteolytic removal for the photodamaged D1 protein was among the most crucial steps for the linkage between light-dependent leaf senescence and the varying ABA concentration in psf mutant leaves. OsFtsH2 transcriptional expression possibly played an important role in the regulation of D1 protein turnover and PSII repair cycle in relation to ABA mediated leaf senescence.
Collapse
Affiliation(s)
- Fubiao Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jianchao Liu
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| | - Minxue Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Lujian Zhou
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhaowei Li
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| | - Qian Zhao
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Gang Pan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Syed-Hassan-Raza Zaidi
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fangmin Cheng
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
- * E-mail:
| |
Collapse
|
10
|
Zhang H, Zhao M, Song Q, Zhao L, Wang G, Zhou C. Identification and function analyses of senescence-associated WRKYs in wheat. Biochem Biophys Res Commun 2016; 474:761-767. [PMID: 27166153 DOI: 10.1016/j.bbrc.2016.05.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 11/28/2022]
Abstract
Leaf senescence is a positive, highly regulated, complex process, and transcription factors play important roles in the regulation of this process. We identified and characterized 116 WRKYs from the wheat genome database. Thirteen TaWRKYs were confirmed as senescence-associated genes. We focused on TaWRKY7, which is up-regulated in the natural leaf senescence process. TaWRKY7 is expressed in different tissues of wheat and is localized in the nucleus. It shows transcriptional activation activity in yeast cells. The ectopic over-expression of TaWRKY7 in Arabidopsis (Arabidopsis thaliana) significantly promoted early leaf senescence under darkness treatment and prevented leaf moisture losses. TaWRKY7 played important roles in the senescence process and was involved in abiotic stress responses. Our transcriptomic and genetic studies on WRKYs suggest that WRKY transcription factors are a type of vital regulator in leaf senescence in wheat (Triticum aestivum L.).
Collapse
Affiliation(s)
- Haoshan Zhang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024 PR China
| | - Mingming Zhao
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024 PR China
| | - Qiuhang Song
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024 PR China
| | - Lifeng Zhao
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024 PR China
| | - Geng Wang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024 PR China
| | - Chunjiang Zhou
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024 PR China.
| |
Collapse
|
11
|
Yang X, Gong P, Li K, Huang F, Cheng F, Pan G. A single cytosine deletion in the OsPLS1 gene encoding vacuolar-type H+-ATPase subunit A1 leads to premature leaf senescence and seed dormancy in rice. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2761-76. [PMID: 26994476 PMCID: PMC4861022 DOI: 10.1093/jxb/erw109] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Leaf senescence is a programmed developmental process orchestrated by many factors, but its molecular regulation is not yet fully understood. In this study, a novel Oryza sativa premature leaf senescence mutant (ospls1) was examined. Despite normal development in early seedlings, the ospls1 mutant leaves displayed lesion-mimics and early senescence, and a high transpiration rate after tillering. The mutant also showed seed dormancy attributable to physical (defect of micropyle structure) and physiological (abscisic acid sensitivity) factors. Using a map-based cloning approach, we determined that a cytosine deletion in the OsPLS1 gene encoding vacuolar H(+)-ATPase subunit A1 (VHA-A1) underlies the phenotypic abnormalities in the ospls1 mutant. The OsPSL1/VHA-A1 transcript levels progressively declined with the age-dependent leaf senescence in both the ospls1 mutant and its wild type. The significant decrease in both OsPSL1/VHA-A1 gene expression and VHA enzyme activity in the ospls1 mutant strongly suggests a negative regulatory role for the normal OsPLS1/VHA-A1 gene in the onset of rice leaf senescence. The ospls1 mutant featured higher salicylic acid (SA) levels and reactive oxygen species (ROS) accumulation, and activation of signal transduction by up-regulation of WRKY genes in leaves. Consistent with this, the ospls1 mutant exhibited hypersensitivity to exogenous SA and/or H2O2 Collectively, these results indicated that the OsPSL1/VAH-A1 mutation played a causal role in premature leaf senescence through a combination of ROS and SA signals. To conclude, OsPLS1 is implicated in leaf senescence and seed dormancy in rice.
Collapse
Affiliation(s)
- Xi Yang
- Department of Agronomy, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Pan Gong
- Department of Agronomy, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Kunyu Li
- Department of Agronomy, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Fudeng Huang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Fangmin Cheng
- Department of Agronomy, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Gang Pan
- Department of Agronomy, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
12
|
La Porta N, Sablok G, Emilliani G, Hietala AM, Giovannelli A, Fontana P, Potenza E, Baldi P. Identification of Low Temperature Stress Regulated Transcript Sequences and Gene Families in Italian Cypress. Mol Biotechnol 2014; 57:407-18. [DOI: 10.1007/s12033-014-9833-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Hu W, Huang C, Deng X, Zhou S, Chen L, Li Y, Wang C, Ma Z, Yuan Q, Wang Y, Cai R, Liang X, Yang G, He G. TaASR1, a transcription factor gene in wheat, confers drought stress tolerance in transgenic tobacco. PLANT, CELL & ENVIRONMENT 2013; 36:1449-64. [PMID: 23356734 DOI: 10.1111/pce.12074] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 01/15/2013] [Accepted: 01/22/2013] [Indexed: 05/06/2023]
Abstract
Abscisic acid (ABA)-, stress-, and ripening-induced (ASR) proteins are reported to be involved in abiotic stresses. However, it is not known whether ASR genes confer drought stress tolerance by utilizing the antioxidant system. In this study, a wheat ASR gene, TaASR1, was cloned and characterized. TaASR1 transcripts increased after treatments with PEG6000, ABA and H(2)O(2). Overexpression of TaASR1 in tobacco resulted in increased drought/osmotic tolerance, which was demonstrated that transgenic lines had lesser malondialdehyde (MDA), ion leakage (IL) and reactive oxygen species (ROS), but higher relative water content (RWC) and superoxide dismutase (SOD) and catalase (CAT) activities than wild type (WT) under drought stress. Overexpression of TaASR1 in tobacco also enhanced the expression of ROS-related and stress-responsive genes under osmotic stress. In addition, transgenic lines exhibited improved tolerance to oxidative stress by retaining more effective antioxidant system. Finally, TaASR1 was localized in the cell nucleus and functioned as a transcriptional activator. Taken together, our results showed that TaASR1 functions as a positive factor under drought/osmotic stress, involved in the regulation of ROS homeostasis by activating antioxidant system and transcription of stress-associated genes.
Collapse
Affiliation(s)
- Wei Hu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, 430074, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhang H, Zhou C. Signal transduction in leaf senescence. PLANT MOLECULAR BIOLOGY 2013; 82:539-45. [PMID: 23096425 DOI: 10.1007/s11103-012-9980-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 10/17/2012] [Indexed: 05/18/2023]
Abstract
Leaf senescence is a complex developmental phase that involves both degenerative and nutrient recycling processes. It is characterized by loss of chlorophyll and the degradation of proteins, nucleic acids, lipids, and nutrient remobilization. The onset and progression of leaf senescence are controlled by an array of environmental cues (such as drought, darkness, extreme temperatures, and pathogen attack) and endogenous factors (including age, ethylene, jasmonic acid, salicylic acid, abscisic acid, and cytokinin). This review discusses the major breakthroughs in signal transduction during the onset of leaf senescence, in dark- and drought-mediated leaf senescence, and in various hormones regulating leaf senescence achieved in the past several years. Various signals show different mechanisms of controlling leaf senescence, and cross-talks between different signaling pathways make it more complex. Key senescence regulatory networks still need to be elucidated, including cross-talks and the interaction mechanisms of various environmental signals and internal factors.
Collapse
Affiliation(s)
- Haoshan Zhang
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, People's Republic of China
| | | |
Collapse
|
15
|
Jing HC, Nam HG. Leaf senescence in plants: from model plants to crops, still so many unknowns. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:514-5. [PMID: 22830955 DOI: 10.1111/j.1744-7909.2012.01148.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|
16
|
Gregersen PL, Holm PB, Krupinska K. Leaf senescence and nutrient remobilisation in barley and wheat. PLANT BIOLOGY (STUTTGART, GERMANY) 2008. [PMID: 18721310 DOI: 10.1007/s11104-013-2012-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Extensive studies have been undertaken on senescence processes in barley and wheat and their importance for the nitrogen use efficiency of these crop plants. During the senescence processes, proteins are degraded and nutrients are re-mobilised from senescing leaves to other organs, especially the developing grain. Most of the proteins degraded reside in the chloroplasts, with Rubisco constituting the most dominant protein fraction. Despite intensive studies, the proteases responsible for Rubisco degradation have not yet been identified. Evidence for degradation of stromal proteins outside of chloroplasts is summarised. Rubisco is thought to be released from chloroplasts into vesicles containing stroma material (RCB = Rubisco-containing bodies). These vesicles may then take different routes for their degradation. Transcriptome analyses on barley and wheat senescence have identified genes involved in degradative, metabolic and regulatory processes that could be used in future strategies aimed at modifying the senescence process. The breeding of crops for characters related to senescence processes, e.g. higher yields and better nutrient use efficiency, is complex. Such breeding has to cope with the dilemma that delayed senescence, which could lead to higher yields, is correlated with a decrease in nutrient use efficiency. Pinpointing regulatory genes involved in senescence might lead to tools that could effectively overcome this dilemma.
Collapse
Affiliation(s)
- P L Gregersen
- Department of Genetics and Biotechnology, DJF, University of Aarhus, Research Center Flakkebjerg, Slagelse, Denmark
| | | | | |
Collapse
|