1
|
Weng BBC, Yuan HD, Chen LG, Chu C, Hsieh CW. Soy yoghurts produced with efficient GABA (γ-aminobutyric acid)-producing Lactiplantibacillus plantarum ameliorate hyperglycaemia and re-establish gut microbiota in streptozotocin (STZ)-induced diabetic mice. Food Funct 2023; 14:1699-1709. [PMID: 36722409 DOI: 10.1039/d2fo02708a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Soy yogurt has been gaining popularity as a vegan food produced simply by soymilk fermentation with proper microbial manipulation. It is well known that soy containing rich isoflavones is beneficial for ameliorating hyperglycaemic disorders. Soy fermentation can improve the bioavailability of these precious nutrients. Lactiplantibacillus plantarum is one of the most abundant and frequently isolated species in soymilk manufacturing. Soy yogurts produced with efficient GABA (γ-aminobutyric acid)-producing L. plantarum and the deglycosylating activity of L. plantarum were functionally assessed in a STZ-induced hyperglycaemic mouse model. Hyperglycaemic mice were assigned into groups and treated with daily gavage of either dH2O, soymilk, soy yoghurts produced with high GABA-producing L. plantarum GA30 (LPGA30), low GABA-producing L. plantarum PV30 (LPPV30) or the soy yoghurts fortified with additional 30 mg g-1 GABA counterparts (GA + GABA and PV + GABA groups). Except the dH2O group, all soy yoghurt groups retained body weight with improved glucose homeostasis, glucose tolerance test results and renal tissue integrity, while the soymilk group shows partial benefits. Plasma GABA concentrations in the daily soy yoghurt-supplemented groups (LPGA30 and LPPV30) plateaued at 5 times higher than the average 0.5 μM in dH2O and soymilk groups, and their GABA-fortified soy yoghurt counterparts (GA + GABA and PV + GABA) groups were accountable for the restored plasma insulin levels. Gut microbiome analysis revealed dysbiosis in STZ-induced hyperglycemic mice of the dH2O group with breached out facultative anaerobic Proteobacteria over the normal phyla Firmicutes and Bacteroidetes. Restored gut microbiota with transitionally populated Actinobacteria was demonstrated in the LPGA30 group but not in the LPPV30 group. Soy yoghurts produced with efficient GABA-producing L. plantarum GA30 showed exceptional benefits in modulating gut microbiota with dominant genera of Enterococcus, Lactobacillus and Bifidobacterium, and the presence of some minor beneficial microbial communities including Akkermansia muciniphila, Butyricicoccus pullicaecorum, Corynebacterium spp. and Adlercreutzia spp. Efficient GABA-producing L. plantarum GA30 fermented soymilk to produce soy yoghurts that exhibit profound synergistic protections over rich soy isoflavones to restore pancreatic β-cell functions for insulin production in STZ-induced hyperglycaemic mice. Additionally, the probiotic role of GABA-producing L. plantarum in re-establishing healthy gut microbiota in hyperglycaemic mice implies a possible symbiotic relationship, awaiting further exploration.
Collapse
Affiliation(s)
- Brian Bor-Chun Weng
- Dept. Microb. Immunol. Biopharm., No. 300, University Rd., Chiayi City, Taiwan, 600355, Republic of China.
| | - Hung-De Yuan
- Dept. Microb. Immunol. Biopharm., No. 300, University Rd., Chiayi City, Taiwan, 600355, Republic of China.
| | - Lih-Geeng Chen
- Dept. Microb. Immunol. Biopharm., No. 300, University Rd., Chiayi City, Taiwan, 600355, Republic of China.
| | - Chishih Chu
- Dept. Microb. Immunol. Biopharm., No. 300, University Rd., Chiayi City, Taiwan, 600355, Republic of China.
| | - Chia-Wen Hsieh
- Dept. Microb. Immunol. Biopharm., No. 300, University Rd., Chiayi City, Taiwan, 600355, Republic of China.
| |
Collapse
|
2
|
Gu J, Wang D, Wang Q, Liu W, Chen X, Li X, Yang F. Novel β-Glucosidase Mibgl3 from Microbacterium sp. XT11 with Oligoxanthan-Hydrolyzing Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8713-8724. [PMID: 35793414 DOI: 10.1021/acs.jafc.2c03386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The enzymatic pathway of xanthan depolymerization has been predicted previously; however, the β-glucosidase and unsaturated glucuronyl hydrolase in this system have not been cloned and characterized. This lack of knowledge hinders rational modification of xanthan and exploration of new applications. In this work, we report on the properties of Mibgl3, a xanthan-degrading enzyme isolated from Microbacterium sp. XT11. Mibgl3 exhibits typical structural features of the GH3 family but shares low sequence identity with reported GH3 enzymes. The activity of Mibgl3 can be inhibited by Cu2+, Fe2+, Zn2+, and glucose. Unlike most β-glucosidases, Mibgl3 can tolerate a wide pH range and is activated by high concentrations of NaCl. This improves the commercial value of Mibgl3. In particular, Mibgl3 exhibits higher substrate specificity toward oligoxanthan than other β-glucosidases. Ion chromatography, ultrahigh-performance liquid chromatography-mass spectrometry (UPLC-MS), and GC-MS results showed that Mibgl3 could effectively hydrolyze oligoxanthan to release glucose and glucuronate. Therefore, Mibgl3 might play an important role in xanthan depolymerization by functioning as hydrolase of both the xanthan backbone and sidechains. This knowledge of the enzymatic properties and hydrolysis mechanism of a β-glucosidase will be beneficial for future applications.
Collapse
Affiliation(s)
- Jinyun Gu
- School of Biological Engineering, Dalian Polytechnic University, Ganjingzi-qu, Dalian 116034, P. R. China
| | - Dandan Wang
- School of Biological Engineering, Dalian Polytechnic University, Ganjingzi-qu, Dalian 116034, P. R. China
| | - Qian Wang
- School of Biological Engineering, Dalian Polytechnic University, Ganjingzi-qu, Dalian 116034, P. R. China
| | - Weiming Liu
- School of Biological Engineering, Dalian Polytechnic University, Ganjingzi-qu, Dalian 116034, P. R. China
| | - Xiaoyi Chen
- School of Biological Engineering, Dalian Polytechnic University, Ganjingzi-qu, Dalian 116034, P. R. China
| | - Xianzhen Li
- School of Biological Engineering, Dalian Polytechnic University, Ganjingzi-qu, Dalian 116034, P. R. China
| | - Fan Yang
- School of Biological Engineering, Dalian Polytechnic University, Ganjingzi-qu, Dalian 116034, P. R. China
| |
Collapse
|
3
|
Zhang X, Liu Z, Kang B, Huang Y, Fu C, Li W, Wu Q, Liu Z, Li D, Wang C, Xu N. Effect of
Lactobacillus plantarum
or
Enterococcus faecalis
as co‐inoculants with
Aspergillus oryzae
in koji making on the physicochemical properties of soy sauce. J Food Sci 2022; 87:714-727. [DOI: 10.1111/1750-3841.16035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/10/2021] [Accepted: 12/17/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaolong Zhang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics
| | - Zeping Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics
| | - Bo Kang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics
| | - Yao Huang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics
| | - Caixia Fu
- Hubei Research Center of Food Fermentation Engineering and Technology Hubei University of Technology Wuhan China
| | - Wei Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics
| | - Qian Wu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics
| | - Zhijie Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics
| | - Dongsheng Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics
| | - Chao Wang
- Research Center of Fermentation Flavouring Engineering and Technology of Hubei Hubei Tulaohan Flavouring and Food Co., Ltd. Yichang China
| | - Ning Xu
- Research Center of Fermentation Flavouring Engineering and Technology of Hubei Hubei Tulaohan Flavouring and Food Co., Ltd. Yichang China
| |
Collapse
|
4
|
Hati S, Ningtyas DW, Khanuja JK, Prakash S. β-Glucosidase from almonds and yoghurt cultures in the biotransformation of isoflavones in soy milk. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Lim YJ, Lim B, Kim HY, Kwon SJ, Eom SH. Deglycosylation patterns of isoflavones in soybean extracts inoculated with two enzymatically different strains of lactobacillus species. Enzyme Microb Technol 2020; 132:109394. [PMID: 31731960 DOI: 10.1016/j.enzmictec.2019.109394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/02/2019] [Accepted: 08/04/2019] [Indexed: 01/06/2023]
Abstract
Microorganism selection is critical to deglycosylation in soybean fermentation for producing beneficial phytochemicals. This study investigated isoflavone bioconversion in soybean extract inoculated with Lactobacillus plantarum K2-12 and Lactobacillus curvatus JD0-31 exhibiting different enzyme activities. L. plantarum showed higher esterase (C4), esterase (C8), β-galactosidase, α-glucosidase, β-glucosidase, and N-acetyl-β-glucosaminase activities. We found that isoflavone bioconversion was distinguished into isoflavone backbone structure types. Malonyl- and acetyl- types of isoflavones except for malonyl daidzin were not significantly differed their contents between lactobacilli. Deglycosylating severity was observed in malonyl genistin in both lactobacilli, resulting mass production of genistein. On the other hand, daidzein glycosides were dependable to lactobacilli, in which L. plantarum efficiently degraded malonyl daidzin and daidzin in fast time. Glycitein was most degradable among the three aglycones by fermentation. These results suggest that efficient control of isoflavone deglycosylation by Lactobacillus species should be controlled to the inoculation period and select target isoflavones.
Collapse
Affiliation(s)
- You Jin Lim
- Department of Horticultural Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Bora Lim
- Department of Food Science & Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hae Yeong Kim
- Department of Food Science & Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Soon-Jae Kwon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Seok Hyun Eom
- Department of Horticultural Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
6
|
Yao R, Wong CB, Nakamura K, Mitsuyama E, Tanaka A, Kuhara T, Odamaki T, Xiao JZ. Bifidobacterium breve MCC1274 with glycosidic activity enhances in vivo isoflavone bioavailability. Benef Microbes 2019; 10:521-531. [PMID: 31090459 DOI: 10.3920/bm2018.0179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Polyphenols are plant derived compounds that exert many beneficial health effects to the human host. However, associated health benefits of dietary polyphenol are highly dependent on their intestinal metabolism, bioavailability, and absorption. Bifidobacteria, which represent the key members of gut microbiota, have been suggested to promote gut microbial homeostasis and may be involved in the metabolism of polyphenols. In this study, the capabilities of thirteen Bifidobacterium strains in hydrolysing polyphenol glycosides were evaluated. Among the tested strains, Bifidobacterium breve MCC1274 was found to possess the highest β-glucosidase activity and strong capability to convert daidzin and trans-polydatin to their aglycones; while kinetic analysis revealed that B. breve MCC1274 hydrolysed more than 50% of daidzin and trans-polydatin at less than 3 h of incubation. Further investigation using rats with an antibiotics-disturbed microbiome revealed that following the ingestion of daidzin glycoside, oral administration of B. breve MCC1274 significantly enhanced the plasma concentration of daidzein in rats pre-treated with antibiotics as compared to antibiotics-pre-treated control and non-treated control groups. The relative abundance of Actinobacteria and the total numbers of B. breve were also significantly higher in antibiotics-pre-treated rats administered with B. breve MCC1274 than that of the control groups. These findings suggest that B. breve MCC1274 is effective in enhancing the bioavailability of daidzein in the gut under dysbiosis conditions and may potentially improve intestinal absorption of isoflavones and promote human health.
Collapse
Affiliation(s)
- R Yao
- 1 Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama, Kanagawa 252-8583, Japan
| | - C B Wong
- 1 Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama, Kanagawa 252-8583, Japan
| | - K Nakamura
- 1 Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama, Kanagawa 252-8583, Japan
| | - E Mitsuyama
- 1 Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama, Kanagawa 252-8583, Japan
| | - A Tanaka
- 1 Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama, Kanagawa 252-8583, Japan
| | - T Kuhara
- 1 Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama, Kanagawa 252-8583, Japan
| | - T Odamaki
- 1 Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama, Kanagawa 252-8583, Japan
| | - J-Z Xiao
- 1 Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama, Kanagawa 252-8583, Japan
| |
Collapse
|
7
|
Peng M, Liu J, Huang Y, Zhou M, Hu Y, Fu C, Dai J, Wang C, Li D, Gao B, Xu N. Effects of a mixed koji culture of Aspergillus oryzae
HG-26 and Aspergillus niger
HG-35 on the levels of enzymes, antioxidants and phenolic compounds in soy sauce during the fermentation process. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13431] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mingye Peng
- Hubei Cooperative Innovation Center for Industrial Fermentation; Research Center of Food Fermentation Engineering and Technology of Hubei; Hubei University of Technology; Wuhan 430068 China
| | - Jingyi Liu
- Hubei Cooperative Innovation Center for Industrial Fermentation; Research Center of Food Fermentation Engineering and Technology of Hubei; Hubei University of Technology; Wuhan 430068 China
| | - Yao Huang
- Hubei Cooperative Innovation Center for Industrial Fermentation; Research Center of Food Fermentation Engineering and Technology of Hubei; Hubei University of Technology; Wuhan 430068 China
| | - Mengzhou Zhou
- Hubei Cooperative Innovation Center for Industrial Fermentation; Research Center of Food Fermentation Engineering and Technology of Hubei; Hubei University of Technology; Wuhan 430068 China
| | - Yong Hu
- Hubei Cooperative Innovation Center for Industrial Fermentation; Research Center of Food Fermentation Engineering and Technology of Hubei; Hubei University of Technology; Wuhan 430068 China
| | - Caixia Fu
- Research Center of Fermentation flavouring Engineering and Technology of Hubei; Hubei Tulaohan Flavouring and Food Co., Ltd.; Yichang 443000 China
| | - Jun Dai
- Hubei Cooperative Innovation Center for Industrial Fermentation; Research Center of Food Fermentation Engineering and Technology of Hubei; Hubei University of Technology; Wuhan 430068 China
| | - Chao Wang
- Hubei Cooperative Innovation Center for Industrial Fermentation; Research Center of Food Fermentation Engineering and Technology of Hubei; Hubei University of Technology; Wuhan 430068 China
| | - Dongsheng Li
- Hubei Cooperative Innovation Center for Industrial Fermentation; Research Center of Food Fermentation Engineering and Technology of Hubei; Hubei University of Technology; Wuhan 430068 China
| | - Bing Gao
- Hubei Cooperative Innovation Center for Industrial Fermentation; Research Center of Food Fermentation Engineering and Technology of Hubei; Hubei University of Technology; Wuhan 430068 China
| | - Ning Xu
- Hubei Cooperative Innovation Center for Industrial Fermentation; Research Center of Food Fermentation Engineering and Technology of Hubei; Hubei University of Technology; Wuhan 430068 China
| |
Collapse
|
8
|
Changes in antioxidant capacity, isoflavone profile, phenolic and vitamin contents in soymilk during extended fermentation. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2014.03.029] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Handa CL, Couto UR, Vicensoti AH, Georgetti SR, Ida EI. Optimisation of soy flour fermentation parameters to produce β-glucosidase for bioconversion into aglycones. Food Chem 2013; 152:56-65. [PMID: 24444906 DOI: 10.1016/j.foodchem.2013.11.101] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 10/16/2013] [Accepted: 11/19/2013] [Indexed: 12/14/2022]
Abstract
The solid state fermentation (SSF) parameters of defatted soybean flour (DSF) with Aspergillus oryzae IOC 3999/1998 or Monascus purpureus NRRL 1992 was evaluated using a rotational central composite experimental design to optimise the production of β-glucosidase and convert glycosidic isoflavones in aglycones. Variables investigated were initial pH of DSF, volume of water added to 10 g of DSF and incubation temperature. β-Glucosidase activity was measured using the synthetic substrate, p-nitrophenyl-β-D-glucoside. The content of isoflavones was determinate by ultra performance liquid chromatography. The highest production of β-glucosidase for both strains occurred when adding 10 mL of water to the DSF, incubating at 30 °C and using 6.0 as the initial DSF pH. A. oryzae IOC 3999/1998 expressed β-glucosidase activity at 10.7 times higher than M. purpureus NRRL 1992. The DSF fermentation was more efficient in converting isoflavones with M. purpureus NRRL 1992.
Collapse
Affiliation(s)
- C L Handa
- Departamento de Ciência e Tecnologia de Alimentos, Universidade Estadual de Londrina, 86057-970 Londrina, Paraná, Brazil
| | - U R Couto
- Departamento de Ciência e Tecnologia de Alimentos, Universidade Estadual de Londrina, 86057-970 Londrina, Paraná, Brazil
| | - A H Vicensoti
- Departamento de Ciência e Tecnologia de Alimentos, Universidade Estadual de Londrina, 86057-970 Londrina, Paraná, Brazil
| | - S R Georgetti
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, 86057-970 Londrina, Paraná, Brazil
| | - E I Ida
- Departamento de Ciência e Tecnologia de Alimentos, Universidade Estadual de Londrina, 86057-970 Londrina, Paraná, Brazil.
| |
Collapse
|
10
|
Krisch J, Bencsik O, Papp T, Vágvölgyi C, Takó M. Characterization of a β-glucosidase with transgalactosylation capacity from the zygomycete Rhizomucor miehei. BIORESOURCE TECHNOLOGY 2012; 114:555-60. [PMID: 22444635 DOI: 10.1016/j.biortech.2012.02.117] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 02/10/2012] [Accepted: 02/24/2012] [Indexed: 05/23/2023]
Abstract
An extracellular β-glucosidase from the zygomycete Rhizomucor miehei NRRL 5282 cultivated in a wheat bran-based solid state fermentation system was characterized. The purified enzyme exhibited an optimum temperature of 68-70 °C and pH of 5.0. It efficiently hydrolyzed oligosaccharides having β-(1→4) glycosidic linkages and exhibited some β- and α-galactosidase activity. The V(max) for p-nitrophenyl-β-d-glucopyranoside and cellobiose was 468.2 and 115.5 U/mg, respectively, while the K(m) was 0.12 mM for both substrates. The enzyme had transglucosylation and transgalactosylation activities resulting in the formation of glycosides from cellobiose, lactose and ethanol. The enzyme increased the amounts of free phenolic antioxidants in sour cherry pomace indicating that its hydrolyzing activity could potentially be applicable to improve the bioavailability of these compounds.
Collapse
Affiliation(s)
- Judit Krisch
- Institute of Food Engineering, Faculty of Engineering, University of Szeged, H-6725 Szeged, Mars tér 7, Hungary
| | | | | | | | | |
Collapse
|
11
|
YOSHIARA L, MADEIRA T, RIBEIRO M, MANDARINO J, CARRÃO-PANIZZI M, IDA E. β-GLUCOSIDASE ACTIVITY OF SOYBEAN (GLYCINE MAX) EMBRYONIC AXIS GERMINATED IN THE PRESENCE OR ABSENCE OF LIGHT. J Food Biochem 2011. [DOI: 10.1111/j.1745-4514.2011.00585.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Ding WK, Shah NP. Enhancing the biotransformation of isoflavones in soymilk supplemented with lactose using probiotic bacteria during extended fermentation. J Food Sci 2010; 75:M140-9. [PMID: 20492303 DOI: 10.1111/j.1750-3841.2010.01526.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Soymilk (SM) lacks lactose; hence supplementation of SM with lactose is likely to enhance the growth of probiotic bacteria and biotransformation of isoflavone glycosides to isoflavone aglycones. In this study, 11 strains of probiotic bacteria including Lactobacillus rhamnosus, L. salivarius, L. plantarum, L. acidophilus, L. paracasei, HOWARU L. rhamnosus, L. delbrueckii subsp. bulgaricus, Bifidobacterium lactis type Bi-07, B. longum, HOWARU B. bifidum, and B lactis type Bi-04 were inoculated individually or as mixed cultures into SM and soymilk supplemented with lactose (SML). A total of 2% of lactose was added to 1 L of SM with the aim of improving the growth of probiotic organisms and promoting the biotransformation of isoflavone isomers to bioactive isoflavone aglycomes. Samples of SM were incubated at 37 degrees C and 10 mL aliquots of SM were taken at 0, 24, 48, and 72 h to monitor the growth of probiotic bacteria and changes in isoflavone contents using high-performance liquid chromatography (HPLC). Results indicated that SML fermented with probiotics had higher viable counts by >2.4 log CFU/mL than that in SM at the end of the 72 h fermentation period. Mixed cultures grew at different rates and in general Lactobacilius spp. had >1.02 log CFU/mL more cells than Bifidobacterium spp. at the end of the fermentation period. The total aglycone content in SM at 72 h of fermentation was 0.924 mg/100 mL, whereas that in SML was 1.623 mg/100 mL. Addition of lactose not only improved the growth of probiotic bacteria in SM but also enhanced the biotransformation of isoflavone glucosides to the more bioactive isoflavone aglycones. Mixed cultures did not improve the biotransformation of bioactive isoflavones when compared to single cultures.
Collapse
Affiliation(s)
- W K Ding
- School of Biomedical and Health Sciences, Faculty of Health, Engineering and Science, Victoria Univ., Werribee Campus, P.O. Box 14428, Melbourne, Victoria 8001, Australia
| | | |
Collapse
|
13
|
Pham TT, Shah NP. Performance of Starter in Yogurt Supplemented with Soy Protein Isolate and Biotransformation of Isoflavones during Storage Period. J Food Sci 2009; 74:M190-5. [DOI: 10.1111/j.1750-3841.2009.01141.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|