1
|
Moshari-Nasirkandi R, Alirezalu A, Chamanabad HRM, Amato J, Alipour H, Asghari A, Moshari-Nasirkandi A. Screening of native wild Salvia nemorosa populations for chemical compositions, antioxidant activity and UHPLC-HRMS profiling. Sci Rep 2024; 14:32064. [PMID: 39738427 DOI: 10.1038/s41598-024-83756-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025] Open
Abstract
In this study, screening of the collected 70 Salvia nemorosa L. populations from 54 habitats from West Azerbaijan province, Iran was evaluated by analyzing the content of phytochemical compounds, antioxidant activity, and UHPLC-HRMS profiling in different populations. The aerial parts of the plants were analyzed based on total phenolic (TPC) and flavonoid (TFC), total tannin (TTC), ascorbic acid (AAC), chlorophylls (Cla, and Clb), total carotenoid (TCC), β-carotene, antioxidant activity (by DPPH and FRAP assays), and 40 polyphenolic compounds by UHPLC-HRMS (phenolic acids, flavonoids and fatty acyl glicosides). Significant variations in phytochemical compositions and antioxidant activity were observed among S. nemorosa samples from different habitats. Rosmarinic acid, sagerinic acid, and caffeoylquinic acids (notable polyphenolic compounds with significant pharmacological properties, particularly in the context of their antioxidant, anti-inflammatory, and enzyme inhibitory activities) were identified as the major compounds in S. nemorosa populations. According to hierarchical cluster analysis (HCA) three groups of species were identified based on phytochemical compounds and antioxidant activity. Data analysis indicated that the quality and quantity of the chemical compounds, as well as their antioxidant functions, varied depending on habitat diversity. Overall, the results showed that each population exhibited a unique class of polyphenols, highlighting diverse potential applications across various industries. These findings suggest that the S. nemorosa populations studied here have significant potential for the development of innovative nutraceuticals, addressing the current scarcity of S. nemorosa-derived products in the market.
Collapse
Affiliation(s)
- Raheleh Moshari-Nasirkandi
- Department of Plant production and genetics, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Abolfazl Alirezalu
- Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | | | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Naples, Italy.
| | - Hadi Alipour
- Department of Plant production and genetics, Urmia University, Urmia, Iran
| | - Ali Asghari
- Department of Plant production and genetics Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
| | | |
Collapse
|
2
|
Petrović L, Filipović B, Skorić M, Šiler B, Banjanac T, Matekalo D, Nestorović Živković J, Dmitrović S, Aničić N, Milutinović M, Božunović J, Gašić U, Mišić D. Molecular background of the diverse metabolic profiles in leaves and inflorescences of naked catmint ( Nepeta nuda L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1452804. [PMID: 39670275 PMCID: PMC11634604 DOI: 10.3389/fpls.2024.1452804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024]
Abstract
Nepeta nuda L. shares a typical secondary chemistry with other Nepeta species (fam. Lamiaceae), characterized by the tendency to intensively produce monoterpenoid iridoids, whereas the phenylpropanoid chemistry is steered towards the production of a caffeic acid ester, rosmarinic acid. Combining complementary state-of-the-art analytical techniques, N. nuda metabolome was here comprehensively characterized in the quest for the organ-specific composition of phenolics and terpenoids that possess well-defined functions in plant-biotic interactions as well as therapeutic potential. N. nuda inflorescences showed generally higher constitutive levels of specialized metabolites, as compared to leaves, and the composition of major iridoids and phenolics in reproductive organs was found to be more conserved than in leaves across 13 populations from the Central Balkans. The results suggest that N. nuda plants most likely invest more in constitutive than inducible biosynthesis of functional metabolites in flowers, since they are of essential importance for both pollination and defense against herbivores and pathogens. Conversely, specialized metabolism of leaves is found to be more susceptible to reprograming in response to differential growth conditions. The defense strategy of leaves, primarily functioning in CO2 fixation during photosynthesis, more likely relies on the induction of metabolite levels following plant-environment interplay. Organ-specific biosynthesis of iridoids in N. nuda is found to be tightly regulated at the transcriptional level, and high constitutive levels of these compounds in inflorescences most likely result from the up-regulated expression of several key genes (NnG8H, NnNEPS1, NnNEPS2, and NnNEPS3) determining the metabolic flux through the pathway. The organ-specific content of rosmarinic acid and co-expression patterns of the corresponding biosynthetic genes were much less correlated, which suggests independent organ-specific transcriptional regulation of the iridoid and phenolic pathways. Knowledge gathered within the present study can assist growers to select productive genotypes and manipulate phenology of N. nuda towards maximizing yields and facilitating its integration into pest management systems and other applications related to human health.
Collapse
Affiliation(s)
| | - Biljana Filipović
- Department of Plant Physiology, Institute for Biological Research “Siniša
Stanković” - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marijana Skorić
- Department of Plant Physiology, Institute for Biological Research “Siniša
Stanković” - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | | | | | | | | - Uroš Gašić
- Department of Plant Physiology, Institute for Biological Research “Siniša
Stanković” - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Danijela Mišić
- Department of Plant Physiology, Institute for Biological Research “Siniša
Stanković” - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Villegas C, Cortez N, Ogundele AV, Burgos V, Pardi PC, Cabrera-Pardo JR, Paz C. Therapeutic Applications of Rosmarinic Acid in Cancer-Chemotherapy-Associated Resistance and Toxicity. Biomolecules 2024; 14:867. [PMID: 39062581 PMCID: PMC11274592 DOI: 10.3390/biom14070867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Chemotherapeutic drugs and radiotherapy are fundamental treatments to combat cancer, but, often, the doses in these treatments are restricted by their non-selective toxicities, which affect healthy tissues surrounding tumors. On the other hand, drug resistance is recognized as the main cause of chemotherapeutic treatment failure. Rosmarinic acid (RA) is a polyphenol of the phenylpropanoid family that is widely distributed in plants and vegetables, including medicinal aromatic herbs, consumption of which has demonstrated beneficial activities as antioxidants and anti-inflammatories and reduced the risks of cancers. Recently, several studies have shown that RA is able to reverse cancer resistance to first-line chemotherapeutics, as well as play a protective role against toxicity induced by chemotherapy and radiotherapy, mainly due to its scavenger capacity. This review compiles information from 56 articles from Google Scholar, PubMed, and ClinicalTrials.gov aimed at addressing the role of RA as a complementary therapy in cancer treatment.
Collapse
Affiliation(s)
- Cecilia Villegas
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (C.V.); (N.C.)
| | - Nicole Cortez
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (C.V.); (N.C.)
| | - Ayorinde Victor Ogundele
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (C.V.); (N.C.)
- Department of Chemistry and Industrial Chemistry, Kwara State University, Malete 1530, Nigeria
| | - Viviana Burgos
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Rudecindo Ortega, Temuco 4780000, Chile;
| | | | - Jaime R. Cabrera-Pardo
- Laboratorio de Química Aplicada y Sustentable, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000000, Chile;
| | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (C.V.); (N.C.)
| |
Collapse
|
4
|
Ali T, Li D, Ponnamperumage TNF, Peterson AK, Pandey J, Fatima K, Brzezinski J, Jakusz JAR, Gao H, Koelsch GE, Murugan DS, Peng X. Generation of Hydrogen Peroxide in Cancer Cells: Advancing Therapeutic Approaches for Cancer Treatment. Cancers (Basel) 2024; 16:2171. [PMID: 38927877 PMCID: PMC11201821 DOI: 10.3390/cancers16122171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Cancer cells show altered antioxidant defense systems, dysregulated redox signaling, and increased generation of reactive oxygen species (ROS). Targeting cancer cells through ROS-mediated mechanisms has emerged as a significant therapeutic strategy due to its implications in cancer progression, survival, and resistance. Extensive research has focused on selective generation of H2O2 in cancer cells for selective cancer cell killing by employing various strategies such as metal-based prodrugs, photodynamic therapy, enzyme-based systems, nano-particle mediated approaches, chemical modulators, and combination therapies. Many of these H2O2-amplifying approaches have demonstrated promising anticancer effects and selectivity in preclinical investigations. They selectively induce cytotoxicity in cancer cells while sparing normal cells, sensitize resistant cells, and modulate the tumor microenvironment. However, challenges remain in achieving selectivity, addressing tumor heterogeneity, ensuring efficient delivery, and managing safety and toxicity. To address those issues, H2O2-generating agents have been combined with other treatments leading to optimized combination therapies. This review focuses on various chemical agents/approaches that kill cancer cells via H2O2-mediated mechanisms. Different categories of compounds that selectively generate H2O2 in cancer cells are summarized, their underlying mechanisms and function are elucidated, preclinical and clinical studies as well as recent advancements are discussed, and their prospects as targeted therapeutic agents and their therapeutic utility in combination with other treatments are explored. By understanding the potential of these compounds, researchers can pave the way for the development of effective and personalized cancer treatments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xiaohua Peng
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, WI 53211, USA; (T.A.); (D.L.); (T.N.F.P.); (A.K.P.); (J.P.); (K.F.); (J.B.); (J.A.R.J.); (H.G.); (G.E.K.); (D.S.M.)
| |
Collapse
|
5
|
Vo QV, Hoa NT, Flavel M, Thong NM, Boulebd H, Nam PC, Quang DT, Mechler A. A Comprehensive Study of the Radical Scavenging Activity of Rosmarinic Acid. J Org Chem 2023; 88:17237-17248. [PMID: 38011833 DOI: 10.1021/acs.joc.3c02093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Rosmarinic acid (RA) is reported in separate studies to be either an inducer or reliever of oxidative stress, and this contradiction has not been resolved. In this study, we present a comprehensive examination of the radical scavenging activity of RA using density functional theory calculations in comparison with experimental data. In model physiological media, RA exhibited strong HO• radical scavenging activity with overall rate constant values of 2.89 × 1010 and 3.86 × 109 M-1 s-1. RA is anticipated to exhibit excellent scavenging properties for HOO• in an aqueous environment (koverall = 3.18 × 108 M-1 s-1, ≈2446 times of Trolox) following the hydrogen transfer and single electron transfer pathways of the dianion state. The neutral form of the activity is equally noteworthy in a lipid environment (koverall = 3.16 × 104 M-1 s-1) by the formal hydrogen transfer mechanism of the O6(7,15,16)-H bonds. Chelation with RA may prevent Cu(II) from reduction by the ascorbic acid anion (AA-), hence blocking the OIL-1 pathway, suggesting that RA in an aqueous environment also serves as an OIL-1 antioxidant. The computational findings exhibit strong concurrence with the experimental observations, indicating that RA possesses a significant efficacy as a radical scavenger in physiological environments.
Collapse
Affiliation(s)
- Quan V Vo
- The University of Danang - University of Technology and Education, Danang550000, Vietnam
| | - Nguyen Thi Hoa
- The University of Danang - University of Technology and Education, Danang550000, Vietnam
| | - Matthew Flavel
- TPM Bioactives Division, The Product Makers Pty. Ltd., Melbourne 3173, Australia
- School of Life Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Nguyen Minh Thong
- The University of Danang-University of Science and Education, Danang 550000, Vietnam
| | - Houssem Boulebd
- Laboratory of Synthesis of Molecules with Biological Interest, University of Frères Mentouri Constantine 1, Constantine 25017, Algeria
| | - Pham Cam Nam
- Department of Chemical Engineering, The University of Danang - University of Science and Technology, Danang 550000, Vietnam
| | - Duong Tuan Quang
- University of Education, Hue University, Hue City 530000, Vietnam
| | - Adam Mechler
- Department of Chemistry and Physics, La Trobe University, Bundoora, Victoria 3086, Australia
| |
Collapse
|
6
|
Martin AP, Martínez MF, Chiesa MA, Garcia L, Gerhardt N, Uviedo F, Torres PS, Marano MR. Priming crop plants with rosemary (Salvia rosmarinus Spenn, syn Rosmarinus officinalis L.) extract triggers protective defense response against pathogens. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107644. [PMID: 36996636 DOI: 10.1016/j.plaphy.2023.107644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Plant bioactive compounds provide novel straightforward approaches to control plant diseases. Rosemary (Salvia rosmarinus)-derived extracts carry many prominent pharmacological activities, including antimicrobial and antioxidant, mainly due to its phenolic compounds, rosmarinic acid (RA), carnosic acid and carnosol. However, the effects of these extracts on plant diseases are still unknown, which constrains its potential application as bioprotectant in the agricultural production. In this study we demonstrate the antiviral effect of the aqueous rosemary extract (ARE) against tobacco necrosis virus strain A (TNVA) in ARE-treated tobacco (Nicotiana tabacum) plants. Our results show that ARE-treatment enhances plant defense response, contributing to reduce virus replication and systemic movement in tobacco plants. RA, the main phenolic compound detected in this extract, is one of the main inducers of TNVA control. The ARE-induced protection in TNVA-infected plants was characterized by the expression of H2O2 scavengers and defense-related genes, involving salicylic acid- and jasmonic acid-regulated pathways. Furthermore, treatment with ARE in lemon (Citrus limon) and soybean (Glycine max) leaves protects the plants against Xanthomonas citri subsp. citri and Diaporthe phaseolorum var. meridionalis, respectively. Additionally, ARE treatment also promotes growth and development, suggesting a biostimulant activity in soybean. These results open the way for the potential use of ARE as a bioprotective agent in disease management.
Collapse
Affiliation(s)
- Ana Paula Martin
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/N, S2002 FHN, Rosario, Argentina; Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 590, S2002LRK, Rosario, Argentina
| | - María Florencia Martínez
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/N, S2002 FHN, Rosario, Argentina
| | - María Amalia Chiesa
- Laboratorio de Eco-Fisiología Vegetal (LEFIVE), Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR)-UNR/CONICET, Parque Villarino S/N, 2125, Zavalla, Santa Fe, Argentina
| | - Lucila Garcia
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/N, S2002 FHN, Rosario, Argentina; Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 590, S2002LRK, Rosario, Argentina
| | - Nadia Gerhardt
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/N, S2002 FHN, Rosario, Argentina; Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 590, S2002LRK, Rosario, Argentina
| | - Facundo Uviedo
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/N, S2002 FHN, Rosario, Argentina
| | - Pablo S Torres
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/N, S2002 FHN, Rosario, Argentina
| | - María Rosa Marano
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/N, S2002 FHN, Rosario, Argentina; Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 590, S2002LRK, Rosario, Argentina.
| |
Collapse
|
7
|
SHESHALA R, WAI NZ, SAID ID, ASHRAF K, LIM SM, RAMASAMY K, ZEESHAN F. Poloxamer and Chitosan-Based In Situ Gels Loaded with Orthosiphon stamineus Benth. Extracts Containing Rosmarinic Acid for the Treatment of Ocular Infections. Turk J Pharm Sci 2022; 19:671-680. [PMID: 36544377 PMCID: PMC9780577 DOI: 10.4274/tjps.galenos.2021.40121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objectives Orthosiphon stamineus Benth. (OS) is a commonly used medicinal plant for curbing bacterial infections globally. This work aimed to fabricate poloxamer and chitosan-based in situ gels loaded with standardized aqueous-ethanolic OS leaf extracts and investigate their antimicrobial efficacy as a potential remedy against ocular infections. Materials and Methods In situ gels containing 0.5% w/v OS extract prepared using cold dispersion method were subjected to physicochemical characterization, including in vitro-release studies. Antimicrobial efficacy was tested against Staphylococcus aureus, Micrococcus luteus, Escherichia coli, and Pseudomonas aeruginosa using agar diffusion method. Results Thin layer chromatography and high performance liquid chromatography chromatograms confirmed the presence of rosmarinic acid (RA) and sinensitin in OS extracts with same retention factor (0.26 and 0.49) and retention times (12.2 and 20.7 min) against reference standards. A homogenous brown coloured in situ gel exhibited low viscosity as a solution and increased viscosity in gel form at ocular temperature. The optimized formulations, P7 (21% P407/4% P188), P8 (21% P407/5% P188) and F5 (1.5% chitosan and 45% β-glycerophosphate) exhibited ideal ocular pH (7.27-7.46), phase transition at ocular temperature (33-37°C) and prolonged RA release up to 12 h. Formulation F5 showed an inhibition zone of 4.3 mm against M. luteus. Conclusion Among all, formulation F5 alone exhibited modest antimicrobial activity against M. luteus. OS extracts at 5% and 10% were most active against tested bacteria however, loading them into in situ gels resulted in sedimentation. Hence, isolation of RA from OS extract is suggested before loading into formulations for a better antimicrobial activity.
Collapse
Affiliation(s)
- Ravi SHESHALA
- Universiti Teknologi MARA, Faculty of Pharmacy, Department of Pharmaceutics, Selangor, Malaysia
| | - Ng Zing WAI
- International Medical University, School of Pharmacy, Department of Pharmaceutical Technology, Kuala Lumpur, Malaysia
| | - Iqbal Danial SAID
- International Medical University, School of Pharmacy, Department of Pharmaceutical Technology, Kuala Lumpur, Malaysia
| | - Kamran ASHRAF
- Universiti Teknologi MARA, Faculty of Pharmacy, Department of Pharmacology and Pharmaceutical Chemistry, Selangor, Malaysia
| | - Siong Meng LIM
- Universiti Teknologi MARA, Faculty of Pharmacy, Department of Pharmacology and Pharmaceutical Chemistry, Selangor, Malaysia
| | - Kalavathy RAMASAMY
- Universiti Teknologi MARA, Faculty of Pharmacy, Department of Pharmaceutical Life Sciences, Selangor, Malaysia
| | - Farrukh ZEESHAN
- International Medical University, School of Pharmacy, Department of Pharmaceutical Technology, Kuala Lumpur, Malaysia,* Address for Correspondence: Phone: +0060178455295 E-mail:
| |
Collapse
|
8
|
Liu Y, Li C, Huang X, Zhang X, Deng P, Jiang G, Dai Q. Dietary rosemary extract modulated gut microbiota and influenced the growth, meat quality, serum biochemistry, antioxidant, and immune capacities of broilers. Front Microbiol 2022; 13:1024682. [PMID: 36338103 PMCID: PMC9626529 DOI: 10.3389/fmicb.2022.1024682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/28/2022] [Indexed: 11/29/2022] Open
Abstract
After the legislative ban on the utilization of antibiotics in animal feed, phytochemical substances gained increasing attention as alternatives to antibiotics because of their bioactivities and safety for animals. The present study aimed to investigate the influence of dietary rosemary extract (RE) on growth performance, meat quality, serum biochemistry, antioxidant and immune capacities, and gut microbiota composition of broilers. By exploring connections among RE, physiological characteristics of broilers, and key microbiota, we sought to provide evidence for the utilization of RE in poultry feed. A total of 280 1-d-old female AA broilers were randomly separated into five groups, and were fed a basal diet supplemented with 0, 250, 500, 750, and 1,000 mg/kg of RE, respectively. Results showed that with regard to growth performance, both 500 and 750 mg/kg RE reduced the broiler feed-to-gain ratio from 1 to 21 d (P = 0.018). Regarding meat quality, all compositions of dietary RE reduced cooking loss of breast muscle (P < 0.01), and 500 and 1,000 mg/kg RE reduced the cooking loss of thigh muscle (P = 0.045). Regarding serum biochemical indexes, 500 mg/kg RE reduced ALB, TCHO, HDL-C, and LDL-C, and 750 mg/kg RE reduced GLU, TP, ALB, UA, TG, TCHO, HDL-C, and LDL-C (P < 0.01). Regarding antioxidant and immune capacities, 250, 500, 750, and 1,000 mg/kg RE increased T-AOC, GSH-Px, SOD, CAT, IL-2, IgA, IgG, and IgM levels (P < 0.01), and decreased serum MDA level (P < 0.01). RE at 750 mg/kg showed similar effects on growth performance, meat quality, and antioxidative and immune capacities, but a better influence on serum biochemical indexes of broilers compared with 500 mg/kg. Further analysis was conducted to investigate the effect of 750 mg/kg dietary RE on the gut microbial composition of broilers, and the results showed that 750 mg/kg RE reduced the relative abundance of g_Lachnoclostridium, g_Escherichia_Shigella, and g_Marvinbryantia (P <0.05, LDA score >2), which were negatively correlated to antioxidative and immune-associated parameters (P < 0.05). In conclusion, 750 mg/kg dietary RE was shown to have certain beneficial effects on growth performance and meat quality, and hypolipidemic and hypoglycemic effects on broilers. Furthermore, dietary RE improved antioxidant and immune capacities, which was partially attributed to the reduced abundance of certain pathogenic bacteria in broilers.
Collapse
|
9
|
Samanta S, Sarkar T, Chakraborty R, Rebezov M, Shariati MA, Thiruvengadam M, Rengasamy KR. Dark chocolate: An overview of its biological activity, processing, and fortification approaches. Curr Res Food Sci 2022; 5:1916-1943. [PMID: 36300165 PMCID: PMC9589144 DOI: 10.1016/j.crfs.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/29/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Dark chocolate gets popularity for several decades due to its enormous health benefits. It contains several health-promoting factors (bioactive components - polyphenols, flavonoids, procyanidins, theobromines, etc, and vitamins and minerals) that positively modulate the immune system of human beings. It confers safeguards against cardiovascular diseases, certain types of cancers, and other brain-related disorders like Alzheimer's disease, Parkinson's disease, etc. Dark chocolate is considered a functional food due to its anti-diabetic, anti-inflammatory, and anti-microbial properties. It also has a well-established role in weight management and the alteration of a lipid profile to a healthy direction. But during the processing of dark chocolate, several nutrients are lost (polyphenol, flavonoids, flavan 3 ol, ascorbic acid, and thiamine). So, fortification would be an effective method of enhancing the overall nutrient content and also making the dark chocolate self-sufficient. Thus, the focus of this review study is to gather all the experimental studies done on dark chocolate fortification. Several ingredients were used for the fortification, such as fruits (mulberry, chokeberries, and elderberries), spices (cinnamon), phytosterols, peanut oil, probiotics (mainly Lactobacillus, bacillus spices), prebiotics (inulin, xanthan gum, and maltodextrin), flavonoids, flavan-3-ols, etc. Those fortifications were done to raise the total antioxidant content as well as essential fatty acid content simultaneously reducing total calorie content. Sometimes, the fortification was done to improve physical properties like viscosity, rheological propertiesand also improve overall consumer acceptance by modifying its bitter taste.
Collapse
Affiliation(s)
- Sharmistha Samanta
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, 700032, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, 732102, India
| | - Runu Chakraborty
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, 700032, India
| | - Maksim Rebezov
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, Moscow, 109316, Russian Federation
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 73 Zemlyanoy Val, Moscow, 109004, Russian Federation
- Department of Scientific Research, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, 127550, Russian Federation
| | - Mohammad Ali Shariati
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 73 Zemlyanoy Val, Moscow, 109004, Russian Federation
- Department of Scientific Research, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, 127550, Russian Federation
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Kannan R.R. Rengasamy
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600077, India
| |
Collapse
|
10
|
Effect of antioxidants on lipid oxidation in herring (Clupea harengus) co-product silage during its production, heat-treatment and storage. Sci Rep 2022; 12:3362. [PMID: 35233011 PMCID: PMC8888572 DOI: 10.1038/s41598-022-07409-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 12/21/2021] [Indexed: 12/04/2022] Open
Abstract
Provided high product quality, ensilaging can be used to valorize fish filleting co-products into a silage suitable for food applications. However, a documented challenge for products from hemoglobin-rich fish raw materials is the high susceptibility to lipid oxidation, calling for stabilization by antioxidants. In a comparison among different rosemary-containing antioxidants and isoascorbic acid, we here found that the commercial mixture Duralox MANC-213 (MANC) provided the best protection against peroxide value and 2-thiobarbituric acid reactive substances (TBARS) development during ensilaging of herring filleting co-products (0–7 days, 22 °C), and also during subsequent heat-treatment (30 min, 85 °C). Increasing MANC concentration from 0.25 and 0.75 to 1.25% lowered TBARS values from 43.53 and 25.12 to 18.04 µmole TBARS/Kg silage, respectively, after 7 days of ensilaging. During storage at 4 °C/22 °C in presence of MANC, 1.25% provided the highest protection with 87–90% and 66–73% lower TBARS, at 4 °C and 22 °C, respectively, at 6 months compared to the controls. At this time point, heat-treated silages had lower protein degree of hydrolysis and free amino acids values than the non-heat-treated one. Regardless of antioxidant addition, total volatile basic nitrogen (TVB-N) formation still increased during the storage, but, overall, TVB-N values in silages were below the acceptable limit of 30 mg TVB-N/100 g fish for human consumption. Together with lipid oxidation data, this suggest that herring silage produced in presence of antioxidants can be used both for high quality feed and food applications.
Collapse
|
11
|
Truong DH, Ngo TC, Nhung NTA, Quang DT, Nguyen TLA, Khiri D, Taamalli S, Louis F, El Bakali A, Dao DQ. New insights into the competition between antioxidant activities and pro-oxidant risks of rosmarinic acid. RSC Adv 2022; 12:1499-1514. [PMID: 35425185 PMCID: PMC8978883 DOI: 10.1039/d1ra07599c] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/11/2021] [Indexed: 12/18/2022] Open
Abstract
Direct and indirect antioxidant activities of rosmarinic acid (RA) based on HOO˙/CH3OO˙ radical scavenging and Fe(iii)/Fe(ii) ion chelation were theoretically studied using density functional theory at the M05-2X/6-311++G(2df,2p) level of theory. First, four antioxidant mechanisms including hydrogen atom transfer (HAT), radical adduct formation (RAF), proton loss (PL) and single electron transfer (SET) were investigated in water and pentyl ethanoate (PEA) phases. Regarding the free radical scavenging mechanism, HAT plays a decisive role with overall rate coefficients of 1.84 × 103 M-1 s-1 (HOO˙) and 4.49 × 103 M-1 s-1 (CH3OO˙) in water. In contrast to PL, RAF and especially SET processes, the HAT reaction in PEA is slightly more favorable than that in water. Second, the [Fe(iii)(H2O)6]3+ and [Fe(ii)(H2O)6]2+ ion chelating processes in an aqueous phase are both favorable and spontaneous especially at the O5, site-1, and site-2 positions with large negative Δr G 0 values and great formation constant K f. Finally, the pro-oxidant risk of RA- was also considered via the Fe(iii)-to-Fe(ii) complex reduction process, which may initiate Fenton-like reactions forming reactive HO˙ radicals. As a result, RA- does not enhance the reduction process when ascorbate anions are present as reducing agents, whereas the pro-oxidant risk becomes remarkable when superoxide anions are found. The results encourage further attempts to verify the speculation using more powerful research implementations of the antioxidant activities of rosmarinic acid in relationship with its possible pro-oxidant risks.
Collapse
Affiliation(s)
- Dinh Hieu Truong
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| | - Thi Chinh Ngo
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| | - Nguyen Thi Ai Nhung
- Department of Chemistry, University of Sciences, Hue University Hue 530000 Vietnam
| | - Duong Tuan Quang
- Department of Chemistry, University of Sciences, Hue University Hue 530000 Vietnam
| | - Thi Le Anh Nguyen
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| | - Dorra Khiri
- Department of Chemistry, University of Education, Hue University Hue 530000 Vietnam
| | - Sonia Taamalli
- Department of Chemistry, University of Education, Hue University Hue 530000 Vietnam
| | - Florent Louis
- Department of Chemistry, University of Education, Hue University Hue 530000 Vietnam
| | | | - Duy Quang Dao
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| |
Collapse
|
12
|
Vladimir-Knežević S, Perković M, Zagajski Kučan K, Mervić M, Rogošić M. Green extraction of flavonoids and phenolic acids from elderberry (Sambucus nigra L.) and rosemary (Rosmarinus officinalis L.) using deep eutectic solvents. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-01862-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Kosakowska O, Węglarz Z, Pióro-Jabrucka E, Przybył JL, Kraśniewska K, Gniewosz M, Bączek K. Antioxidant and Antibacterial Activity of Essential Oils and Hydroethanolic Extracts of Greek Oregano ( O. vulgare L. subsp. hirtum (Link) Ietswaart) and Common Oregano ( O. vulgare L. subsp. vulgare). Molecules 2021; 26:988. [PMID: 33668450 PMCID: PMC7918425 DOI: 10.3390/molecules26040988] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 11/16/2022] Open
Abstract
Greek oregano and common oregano were compared in respect of the antioxidant and antibacterial activity of the corresponding essential oils and hydroethanolic extracts in relation with their chemical profile. The chemical composition of essential oils was determined by GC-MS and GC-FID, while extracts (phenolic acids and flavonoids fractions) were analyzed by HPLC-DAD. Based on given volatiles, the investigated subspecies represented two chemotypes: a carvacrol/γ-terpinene/p-cymene type in the case of Greek oregano and a sabinyl/cymyl type rich in terpinen-4-ol in common oregano. Within non-volatile phenolic compounds, rosmarinic acid appeared to dominate in both subspecies. Lithospermic acid B, chlorogenic acid and isovitexin were present only in Greek oregano extracts. However, the total content of flavonoids was higher in common oregano extracts. The essential oil and extract of Greek oregano revealed visibly stronger antibacterial activity (expressed as MIC and MBC) than common oregano, whereas the antioxidant potential (determined by DPPH, ABTS and FRAP) of these extracts was almost equal for both subspecies. In the case of Origanum plants, the potential application of essential oils and extracts as antiseptic and antioxidant agents in the food industry should be preceded by subspecies identification followed by recognition of their chemotype concerning both terpene and phenolics composition.
Collapse
Affiliation(s)
- Olga Kosakowska
- Department of Vegetable and Medicinal Plants, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland; (Z.W.); (E.P.-J.); (J.L.P.); (K.B.)
| | - Zenon Węglarz
- Department of Vegetable and Medicinal Plants, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland; (Z.W.); (E.P.-J.); (J.L.P.); (K.B.)
| | - Ewelina Pióro-Jabrucka
- Department of Vegetable and Medicinal Plants, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland; (Z.W.); (E.P.-J.); (J.L.P.); (K.B.)
| | - Jarosław L. Przybył
- Department of Vegetable and Medicinal Plants, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland; (Z.W.); (E.P.-J.); (J.L.P.); (K.B.)
| | - Karolina Kraśniewska
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland; (K.K.); (M.G.)
| | - Małgorzata Gniewosz
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland; (K.K.); (M.G.)
| | - Katarzyna Bączek
- Department of Vegetable and Medicinal Plants, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland; (Z.W.); (E.P.-J.); (J.L.P.); (K.B.)
| |
Collapse
|
14
|
Chen X, Liu B, Tong R, Ding S, Wu J, Lei Q, Fang W. Improved Stability and Targeted Cytotoxicity of Epigallocatechin-3-Gallate Palmitate for Anticancer Therapy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:969-977. [PMID: 33393784 DOI: 10.1021/acs.langmuir.0c03449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although with high antioxidant activity, epigallocatechin-3-gallate (EGCG) was restricted by its poor chemical stability in practical applications. One of EGCG derivatives, EGCG palmitate, was synthesized with EGCG and palmitoyl chloride to overcome instability of EGCG. However, uncertainties still exist in chemical stability and cytotoxicity of EGCG palmitate, which are essential for further exploration in anticancer therapy. Our work aims to analyze the resistance of EGCG palmitate to oxidation and summarize its targeted inhibition efficiency on cancerous cells and normal cells. High-performance liquid chromatography analysis confirmed that EGCG palmitate remained stable in air and Dulbecco's modified eagle medium (DMEM) for a longer time than EGCG. Antioxidative and pro-oxidative effects of EGCG palmitate on treated cells are proposed through reactive oxygen species (ROS) detection, respectively. It reveals that pro-oxidants by H2O2 production can exert antiproliferative and proapoptotic effects on cancerous cells and stimulate autophagy, while an antioxidant relieves oxidative stress caused by superoxide as compared to normal cells. Consequently, targeted cytotoxicity is adopted by EGCG palmitate-treated cancerous cells. Results above manifest that EGCG palmitate possesses potential to serve as a promising prodrug in anticancer treatment.
Collapse
Affiliation(s)
- Xuerui Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Bingbing Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Rongliang Tong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Shiping Ding
- The National Education Base for Basic Medical Sciences, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Qunfang Lei
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Wenjun Fang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
15
|
Auh JH, Madhavan J. Protective effect of a mixture of marigold and rosemary extracts on UV-induced photoaging in mice. Biomed Pharmacother 2020; 135:111178. [PMID: 33388598 DOI: 10.1016/j.biopha.2020.111178] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/16/2020] [Accepted: 12/26/2020] [Indexed: 12/20/2022] Open
Abstract
UV irradiation exposure may induce photoaging of the skin tissue. Various plant extracts have been recognized as effective protectants against UV-induced damage. Here, a mixture of marigold and rosemary extracts was evaluated for its anti-photoaging effects as a potential nutraceutical product for skin health. Hexane extract of marigold and ethanolic extract of rosemary were prepared, and the formulated mixture was investigated. A UV-induced photoaged mouse model was prepared, and the protective effects of the extract mixture were compared with those of hyaluronic acid (positive control). Expression of various photoaging-related biomarkers such as matrix metalloproteinases (MMPs), interleukins, tumor necrosis factor-alpha, procollagen type I, 8-hydroxy-deoxyguanosine, superoxide dismutase, glutathione peroxidase, and catalase were determined. UV irradiation significantly enhanced the expression of these biomarkers through an inflammatory response, however, the mixture of marigold and rosemary extracts exerted inhibitory effects and protected from UV-induced damage. Suppression of inflammatory response were the mechanisms underlying this protective function of the mixture of marigold and rosemary extracts. Histological evaluation also supported these protective effects against photoaging.
Collapse
Affiliation(s)
- Joong-Hyuck Auh
- Department of Food Science and Technology, Chung-Ang University, Ansung, 17546, South Korea.
| | | |
Collapse
|
16
|
He Y, Li D, Zhang W, Tian X, Pang W, Du R, Yang G, Yu T. Boar sperm quality and oxidative status as affected by rosmarinic acid at 17 °C. Trop Anim Health Prod 2020; 52:2169-2177. [PMID: 32124183 DOI: 10.1007/s11250-020-02246-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 02/18/2020] [Indexed: 12/11/2022]
Abstract
Peroxidation damage induces sublethal injury to boar sperm during preservation. Rosmarinic acid (RA) has already been verified to efficiently protect cells from oxidant-induced injury and to produce significant effect on cryopreservation of semen. Through our experiments, we aim at investigating whether RA has a positive effect on the preservation of pig semen at room temperature. The semen collected from sexually mature Large White boars were preserved at 17 °C in Beltsville thawing solution (BTS) supplied. The boar sperm were exposed to 0, 25, 50, 75, 100, 125 and 150 μM RA in vitro and the sperm functions were examined. The sperm motility, the acrosome and plasma membrane integrity, the catalase activity (CAT), the total antioxidative capacity (T-AOC) activity and the malondialdehyde content (MDA) were examined at 0, 1, 3 and 5 days. The BTS diluent containing RA improved the sperm quality during the process of liquid preservation compared with the control treatment. After 5 days of liquid preservation, the addition of RA at 100 μM produced an optimal effect on the survival time as well as on the maintenance of motility, acrosome and plasma membrane integrity; T-AOC activity; CAT activity; and the MDA content. Besides, our results in the reproductive experiments showed that the addition of RA at 100 μM to the BTS diluent increased the pregnancy rate. These results suggest that the proper concentration of RA in boar semen extenders possibly improves the artificial insemination efficiency by reducing the sperm damage and the subsequent dysfunction during liquid preservation in swine production systems.
Collapse
Affiliation(s)
- Yulin He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dong Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenyu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xuekai Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Weijun Pang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Renrang Du
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Taiyong Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
17
|
Ozgun GS, Ozgun E. The cytotoxic concentration of rosmarinic acid increases MG132-induced cytotoxicity, proteasome inhibition, autophagy, cellular stresses, and apoptosis in HepG2 cells. Hum Exp Toxicol 2020; 39:514-523. [PMID: 31876192 DOI: 10.1177/0960327119896614] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Rosmarinic acid (RA) is a natural polyphenolic compound derived from many common herbal plants. Although it is known that RA has many important biological activities, its effect on proteasome inhibitor-induced changes in cancer treatment or its effects on any experimental proteasome inhibition model is unknown. The aim of the study was to investigate the effect of RA on MG132-induced cytotoxicity, proteasome inhibition, autophagy, cellular stresses, and apoptosis in HepG2 cells. HepG2 cells were treated with 10, 100, and 1000 µM RA in the presence of MG132 for 24 h; 10 and 100 µM RA did not affect but 1000 µM RA decreased cell viability in HepG2 cells. MG132 caused a significant decrease in cell viability and phosphorylation of mammalian target of rapamycin and a significant increase in levels of polyubiquitinated protein, microtubule-associated proteins 1A/1B light chain 3B-II (LC3B-II), heat shock protein 70 (HSP70), binding immunoglobulin protein (BiP), activating transcription factor 4 (ATF4), protein carbonyl, and cleaved poly(adenosine diphosphate-ribose) polymerase 1 (PARP1); 10 and 100 µM RA did not significantly change these effects of MG132 in HepG2 cells; 1000 µM RA caused a significant decrease in cell viability and a significant increase in polyubiquitinated protein, LC3B-II, HSP70, BiP, ATF4, protein carbonyl, and cleaved PARP1 levels in MG132-treated cells. Our study showed that only 1000 µM RA increased MG132-induced cytotoxicity, proteasome inhibition, autophagy, cellular stresses, and apoptosis in HepG2 cells. According to our results, cytotoxic concentration of RA can potentiate the effects of MG132 in hepatocellular carcinoma treatment.
Collapse
Affiliation(s)
- G S Ozgun
- Department of Medical Biochemistry, Trakya University School of Medicine, Edirne, Turkey
| | - E Ozgun
- Department of Medical Biochemistry, Trakya University School of Medicine, Edirne, Turkey
| |
Collapse
|
18
|
A novel gold nanocluster-based fluorometric biosensor for measuring prooxidant activity with a large Stokes shift. Talanta 2019; 208:120425. [PMID: 31816696 DOI: 10.1016/j.talanta.2019.120425] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 12/31/2022]
Abstract
A chicken egg white protein-protected gold nanocluster (CEW-AuNC) based fluorogenic biosensor, where protein was used as both reducing and protecting agent, was developed to determine the Cu(II)-induced prooxidant activity of natural antioxidants abundant in food and biological samples. Gold nanoclusters, prepared using egg white proteins, exhibited strong fluorescence. The prooxidant activity of the tested antioxidants was indirectly measured by their reducing action on Cu(II) to Cu(I), and the reduced cuprous ion was bound to the thiol groups in the CEW-AuNC structure, causing a decrease in fluorescence intensity. Epicatechin, catechin, epigallocatechin gallate, morin, rutin, quercetin, gallic, chlorogenic, and rosmarinic acids, glutathione, cysteine, N-acetyl cysteine, bilirubin, resveratrol, and α-tocopherol were studied as natural antioxidants. A fluorometric method showing a large Stokes shift with excitation/emission maxima at 360∕640 nm was developed to sensitively measure the decrease in the fluorescence of CEW-AuNC associated with the binding of copper(I) to the protein structure. Total prooxidant activities of the binary, ternary, and quaternary synthetic mixtures and of some food and synthetic serum samples were determined. The biosensor response was statistically compared to that of its spectrophotometric counterpart. This method can be used for the control of the oxidative stability of foods with a prolonged shelf life.
Collapse
|
19
|
Zhang J, Wen Q, Qian K, Feng Y, Luo Y, Tan T. Metabolic profile of rosmarinic acid from Java tea (Orthosiphon stamineus) by ultra-high-performance liquid chromatography coupled to quadrupole-time-of-flight tandem mass spectrometry with a three-step data mining strategy. Biomed Chromatogr 2019; 33:e4599. [PMID: 31108569 DOI: 10.1002/bmc.4599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 05/05/2019] [Accepted: 05/13/2019] [Indexed: 01/31/2023]
Abstract
Rosmarinic acid (RA) is a caffeic acid derivative and one of the most abundant and bioactive constituents in Java tea (Orthosiphon stamineus), which has significant biological activities. However, relatively few studies have been conducted to describe this compound's metabolites in vivo. Therefore, an ultra-high-performance liquid chromatography coupled to quadrupole-time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS/MS) analysis with a three-step data mining strategy was established for the metabolic profile of RA. Firstly, the exogenously sourced ions were filtered out by the MarkerView software and incorporated with Microsoft Office Excel software. Secondly, a novel modified mass detects filter strategy based on the predicted metabolites was developed for screening the target ions with narrow, well-defined mass detection ranges. Thirdly, the diagnostic product ions and neutral loss filtering strategy were applied for the rapid identification of the metabolites. Finally, a total of 16 metabolites were reasonably identified in urine, bile and feces, while metabolites were barely found in plasma. The metabolites of RA could also be distributed rapidly in liver and kidney. Glucuronidation, methylation and sulfation were the primary metabolic pathways of RA. The present findings might provide the theoretical basis for evaluating the biological activities of RA and its future application.
Collapse
Affiliation(s)
- Jing Zhang
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Jiangxi, Nanchang, China
| | - Quan Wen
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Jiangxi, Nanchang, China
| | - Kai Qian
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Jiangxi, Nanchang, China
| | - Yulin Feng
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Jiangxi, Nanchang, China
| | - Yun Luo
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Ting Tan
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Jiangxi, Nanchang, China
| |
Collapse
|
20
|
Yuan Y, Qi M, Liu H, Yan H. Study of acrylamide mitigation in model systems and potato crisps: effect of rosmarinic acid. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14180] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yuan Yuan
- College of Food Science and Engineering Jilin University Changchun 130062 China
| | - Mengyuan Qi
- College of Food Science and Engineering Jilin University Changchun 130062 China
| | - Huangyou Liu
- College of Food Science and Engineering Jilin University Changchun 130062 China
| | - Haiyang Yan
- College of Food Science and Engineering Jilin University Changchun 130062 China
| |
Collapse
|
21
|
Akyüz E, Şen FB, Bener M, Başkan KS, Tütem E, Apak R. Protein-Protected Gold Nanocluster-Based Biosensor for Determining the Prooxidant Activity of Natural Antioxidant Compounds. ACS OMEGA 2019; 4:2455-2462. [PMID: 31459484 PMCID: PMC6648775 DOI: 10.1021/acsomega.8b03286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/22/2019] [Indexed: 05/21/2023]
Abstract
In this work, chicken egg white protein (CEW)-protected gold nanoclusters (CEW-AuNCs) were prepared from CEW and HAuCl4 to measure the Cu(II)-induced prooxidant activity of antioxidant compounds such as epicatechin, epigallocatechin gallate, catechin, rosmarinic acid, resveratrol, ascorbic acid, and glutathione. These compounds reduced Cu(II) to Cu(I), and the latter was mainly bound to thiol groups in the CEW-AuNC structure. As the protein-bound Cu(I) may act as a catalytic center for generating reactive oxygen species, the Cu(II) reducing ability of antioxidants is an indirect measure of their prooxidant potency. The bound Cu(I) may be released with the cuprous-selective ligand neocuproine (Nc), forming the basis of a spectrophotometric method measuring absorbance at 450 nm wavelength of the Cu(I)-Nc chelate. The developed method involved a one-pot synthesis and determination without preseparation and was applied to binary synthetic mixtures of studied antioxidant compounds and to certain herbal plant (green tea, linden, echinacea, and artichoke leaf) extracts to determine the total prooxidant activities. The obtained results were statistically compared with those of the literature Cu(II)-Nc assay using a calcium proteinate-based solid biosensor. The developed biosensor was durable, reliable, easily applicable, and of low cost and wide linear range and could determine the prooxidant activities of natural antioxidant samples with high reproducibility.
Collapse
Affiliation(s)
- Esin Akyüz
- Department
of Chemistry, Faculty of Engineering, Istanbul
University-Cerrahpasa, Avcilar, 34320 Istanbul, Turkey
| | - Furkan Burak Şen
- Department
of Chemistry, Faculty of Engineering, Istanbul
University-Cerrahpasa, Avcilar, 34320 Istanbul, Turkey
| | - Mustafa Bener
- Department
of Chemistry, Faculty of Engineering, Istanbul
University-Cerrahpasa, Avcilar, 34320 Istanbul, Turkey
| | - Kevser Sözgen Başkan
- Department
of Chemistry, Faculty of Engineering, Istanbul
University-Cerrahpasa, Avcilar, 34320 Istanbul, Turkey
| | - Esma Tütem
- Department
of Chemistry, Faculty of Engineering, Istanbul
University-Cerrahpasa, Avcilar, 34320 Istanbul, Turkey
| | - Reşat Apak
- Department
of Chemistry, Faculty of Engineering, Istanbul
University-Cerrahpasa, Avcilar, 34320 Istanbul, Turkey
- Turkish
Academy of Sciences (TUBA), Piyade St. No: 27, Çankaya, Ankara 06690, Turkey
| |
Collapse
|
22
|
Fachel FNS, Schuh RS, Veras KS, Bassani VL, Koester LS, Henriques AT, Braganhol E, Teixeira HF. An overview of the neuroprotective potential of rosmarinic acid and its association with nanotechnology-based delivery systems: A novel approach to treating neurodegenerative disorders. Neurochem Int 2019; 122:47-58. [PMID: 30439384 DOI: 10.1016/j.neuint.2018.11.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/01/2018] [Accepted: 11/08/2018] [Indexed: 12/31/2022]
Abstract
Neurodegenerative disorders (ND) are characterized by slow and progressive neuronal dysfunction induced by the degeneration of neuronal cells in the central nervous system (CNS). Recently, the neuroprotective effects of natural compounds with anti-inflammatory and antioxidant activities has been clearly demonstrated. This appears to be an attractive therapeutic approach for ND, particularly regarding the use of polyphenols. In this review, we present an overview of the neuroprotective potential of rosmarinic acid (RA) and discuss the use of nanotechnology as a novel approach to treating ND. RA presents a variety of biological important activities, i.e. the modulation of pro-inflammatory cytokine expression, prevention of neurodegeneration and damage reduction. However, its poor bioavailability represents a limitation in terms of pharmacodynamics. In this sense, nanotechnology-based carriers could allow for the administration of higher but still safe amounts of RA, aiming for CNS delivery. Nasal administration could be a pleasant route for delivery to the CNS, as this represents a direct route to the CNS. With these advantages, RA-loaded nanotechnology-based therapy through the nasal route could be promising approach for the treatment of ND.
Collapse
Affiliation(s)
- Flávia Nathiely Silveira Fachel
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Roselena Silvestri Schuh
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Kleyton Santos Veras
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Valquíria Linck Bassani
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Letícia Scherer Koester
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Amelia Teresinha Henriques
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Elizandra Braganhol
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Helder Ferreira Teixeira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
23
|
Taram F, Ignowski E, Duval N, Linseman DA. Neuroprotection Comparison of Rosmarinic Acid and Carnosic Acid in Primary Cultures of Cerebellar Granule Neurons. Molecules 2018; 23:E2956. [PMID: 30428519 PMCID: PMC6278428 DOI: 10.3390/molecules23112956] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/01/2018] [Accepted: 11/07/2018] [Indexed: 12/16/2022] Open
Abstract
Neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease, and Parkinson's disease, are characterized by the progressive loss of neurons in specific regions of the brain and/or spinal cord. Neuronal cell loss typically occurs by either apoptotic or necrotic mechanisms. Oxidative stress and nitrosative stress, along with excitotoxicity and caspase activation, have all been implicated as major underlying causes of neuronal cell death. Diverse nutraceuticals (bioactive compounds found in common foods) have been shown to have neuroprotective effects in a variety of in vitro and in vivo disease models. In the current study, we compared the neuroprotective effects of two polyphenolic compounds, rosmarinic acid and carnosic acid, which are both found at substantial concentrations in the herb rosemary. The capacity of these compounds to rescue primary cultures of rat cerebellar granule neurons (CGNs) from a variety of stressors was investigated. Both polyphenols significantly reduced CGN death induced by the nitric oxide donor, sodium nitroprusside (nitrosative stress). Rosmarinic acid uniquely protected CGNs from glutamate-induced excitotoxicity, while only carnosic acid rescued CGNs from caspase-dependent apoptosis induced by removal of depolarizing extracellular potassium (5K apoptotic condition). Finally, we found that carnosic acid protects CGNs from 5K-induced apoptosis by activating a phosphatidylinositol 3-kinase (PI3K) pro-survival pathway. The shared and unique neuroprotective effects of these two compounds against diverse modes of neuronal cell death suggest that future preclinical studies should explore the potential complementary effects of these rosemary polyphenols on neurodegenerative disease progression.
Collapse
Affiliation(s)
- Faten Taram
- Department of Biological Sciences, University of Denver, 2199 S. University Blvd., Denver, CO 80208, USA.
| | - Elizabeth Ignowski
- Department of Biological Sciences, University of Denver, 2199 S. University Blvd., Denver, CO 80208, USA.
| | - Nathan Duval
- Knoebel Institute for Healthy Aging, University of Denver, 2155 E. Wesley Ave., Denver, CO 80208, USA.
| | - Daniel A Linseman
- Department of Biological Sciences, University of Denver, 2199 S. University Blvd., Denver, CO 80208, USA.
- Knoebel Institute for Healthy Aging, University of Denver, 2155 E. Wesley Ave., Denver, CO 80208, USA.
| |
Collapse
|
24
|
Bolton JL, Dunlap TL, Dietz BM. Formation and biological targets of botanical o-quinones. Food Chem Toxicol 2018; 120:700-707. [PMID: 30063944 PMCID: PMC6643002 DOI: 10.1016/j.fct.2018.07.050] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/23/2018] [Accepted: 07/26/2018] [Indexed: 01/12/2023]
Abstract
The formation of o-quinones from direct 2-electron oxidation of catechols and/or two successive one electron oxidations could explain the cytotoxic/genotoxic and/or chemopreventive effects of several phenolic botanical extracts. For example, poison ivy contains urushiol, an oily mixture, which is oxidized to various o-quinones likely resulting in skin toxicity through oxidative stress and alkylation mechanisms resulting in immune responses. Green tea contains catechins which are directly oxidized to o-quinones by various oxidative enzymes. Alternatively, phenolic botanicals could be o-hydroxylated by P450 to form catechols in vivo which are oxidized to o-quinones. Examples include, resveratrol which is oxidized to piceatannol and further oxidized to the o-quinone. Finally, botanical o-quinones can be formed by O-dealkylation of O-alkoxy groups or methylenedioxy rings resulting in catechols which are further oxidized to o-quinones. Examples include safrole, eugenol, podophyllotoxin and etoposide, as well as methysticin. Once formed these o-quinones have a variety of biological targets in vivo resulting in various biological effects ranging from chemoprevention - > no effect - > toxicity. This U-shaped biological effect curve has been described for a number of reactive intermediates including o-quinones. The current review summarizes the latest data on the formation and biological targets of botanical o-quinones.
Collapse
Affiliation(s)
- Judy L Bolton
- Department of Medicinal Chemistry and Pharmacognosy (M/C 781), College of Pharmacy, University of Illinois at Chicago, 833S. Wood Street, Chicago, IL, 60612-7231, United States.
| | - Tareisha L Dunlap
- Department of Medicinal Chemistry and Pharmacognosy (M/C 781), College of Pharmacy, University of Illinois at Chicago, 833S. Wood Street, Chicago, IL, 60612-7231, United States
| | - Birgit M Dietz
- Department of Medicinal Chemistry and Pharmacognosy (M/C 781), College of Pharmacy, University of Illinois at Chicago, 833S. Wood Street, Chicago, IL, 60612-7231, United States
| |
Collapse
|
25
|
Loh ZH, Oh HKF, Lim YY. Relationship between polyphenol oxidase activity and phenolics degradation on ambient air-drying of herbal plants. J FOOD PROCESS PRES 2018. [DOI: 10.1111/jfpp.13672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Zhi Hung Loh
- School of Science; Monash University Malaysia; Bandar Sunway, Selangor Malaysia
| | - Hikari Kan Fu Oh
- School of Science; Monash University Malaysia; Bandar Sunway, Selangor Malaysia
| | - Yau Yan Lim
- School of Science; Monash University Malaysia; Bandar Sunway, Selangor Malaysia
| |
Collapse
|
26
|
Ćebović T, Arsenijević J, Drobac M, Živković J, Šoštarić I, Maksimović Z. Potential use of deodorised water extracts: polyphenol-rich extract of Thymus pannonicus All. as a chemopreventive agent. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2018; 55:560-567. [PMID: 29391620 PMCID: PMC5785381 DOI: 10.1007/s13197-017-2965-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/15/2017] [Accepted: 11/06/2017] [Indexed: 10/18/2022]
Abstract
Deodorised water extracts of aromatic plants are obtained as by-products of essential oil isolation and usually discarded as waste. However, phytochemical composition of these extracts encourages their further utilization as food additives or functional food ingredients. In this study we investigated phytochemical composition, antioxidant and in vivo antiproliferative activity of deodorised water extract of Thymus pannonicus All. (DWE). HPLC analysis revealed rosmarinic acid (RA) (71.11 ± 1.54 mg/g) as the most abundant constituent of the extract, followed by salvianolic acid H (14.83 ± 0.79 mg/g, calculated as RA). DWE exhibited pronounced antioxidant activity in vitro, in FRAP and DPPH tests (FRAP value: 7.41 mmol Fe/g and SC50: 3.80 μg/g, respectively). Using the model of Ehrlich carcinoma cells in mice that were treated with DWE prior, at the time, and after tumour cells implantation, the tumour growth suppression and redox status of malignant cells (i.e., activities of antioxidant enzymes, level of glutathione and intensity of lipid peroxidation) were followed. DWE applied as pretreatment caused disturbance of antioxidant equilibrium as well as apoptosis/necrosis of up to 90% EAC cells. Results obtained in the present study revealed chemopreventive potential and possibility of T. pannonicus DWE usage. High content of RA and other phenolic compounds explains, at least in part, the observed effects.
Collapse
Affiliation(s)
- Tatjana Ćebović
- Clinical Centre of Vojvodina, Biochemistry Department, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, Novi Sad, 21000 Serbia
| | - Jelena Arsenijević
- Department of Pharmacognosy, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, Belgrade, 11221 Serbia
| | - Milica Drobac
- Department of Pharmacognosy, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, Belgrade, 11221 Serbia
| | - Jelena Živković
- Institute for Medicinal Plant Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, Belgrade, 11000 Serbia
| | - Ivan Šoštarić
- Department of Crop Science, University of Belgrade - Faculty of Agriculture, Nemanjina 6, Zemun, Belgrade 11080 Serbia
| | - Zoran Maksimović
- Department of Pharmacognosy, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, Belgrade, 11221 Serbia
| |
Collapse
|
27
|
Al Jitan S, Alkhoori SA, Yousef LF. Phenolic Acids From Plants: Extraction and Application to Human Health. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2018. [DOI: 10.1016/b978-0-444-64056-7.00013-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Ezzat SM, Salama MM, ElMeshad AN, Teaima MH, Rashad LA. HPLC-DAD-MS/MS profiling of standardized rosemary extract and enhancement of its anti-wrinkle activity by encapsulation in elastic nanovesicles. Arch Pharm Res 2016; 39:912-25. [PMID: 27107862 DOI: 10.1007/s12272-016-0744-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/17/2016] [Indexed: 10/21/2022]
Abstract
The anti-wrinkle activity of defatted rosemary extract (DER) was assessed, and its effect was optimized by encapsulation in transferosomes (TFs). DER was standardized to a rosmarinic acid content of 4.58 ± 0.023 mg% using reversed-phase high performance liquid chromatography (Rp-HPLC), and its components were identified by HPLC-diode array detection-tandem mass spectrometry. In vitro free radical scavenging assays showed DER had high free radical scavenging activity against 2,2-diphenyl-2-picryl hydrazyl, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), and superoxide radicals. DER also inhibited bleaching of β-carotene with high Fe(III) and Fe(II) chelating ability. In vivo anti-wrinkle activities of topically applied DER (20, 50, and 100 mg) and a TF formulation (TF4, 20 mg of DER) were evaluated in UVB-irradiated mice using a wrinkle scoring method, metalloproteinase (MMP) expression, and histopathology. Among the nanovesicles, TF4 was the most deformable, and had an acceptable size and encapsulation efficiency and enhanced permeation of DER through rat skin compared with unencapsulated DER. DER (50 and 100 mg) and TF4 significantly inhibited MMP-2 and MMP-9 expression and improved wrinkle scores. DER and TF4 moderately decreased epidermal thickness without pigmentation. DER is a potent natural antioxidant for combating skin aging. Moreover, encapsulation of DER in TFs will enhance its skin permeation and anti-wrinkle activity.
Collapse
Affiliation(s)
- Shahira M Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Ainy St., Cairo, 11562, Egypt.
| | - Maha M Salama
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Ainy St., Cairo, 11562, Egypt
| | - Aliaa N ElMeshad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mahmoud H Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Laila A Rashad
- Department of Medical Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
29
|
Vladimir-Knežević S, Blažeković B, Kindl M, Vladić J, Lower-Nedza AD, Brantner AH. Acetylcholinesterase inhibitory, antioxidant and phytochemical properties of selected medicinal plants of the Lamiaceae family. Molecules 2014; 19:767-82. [PMID: 24413832 PMCID: PMC6271370 DOI: 10.3390/molecules19010767] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/31/2013] [Accepted: 01/02/2014] [Indexed: 11/26/2022] Open
Abstract
The present study aimed to evaluate acetylcholinesterase (AChE) inhibitory and antioxidant activities of Lamiaceae medicinal plants growing wild in Croatia. Using Ellman's colorimetric assay all tested ethanolic extracts and their hydroxycinnamic acid constituents demonstrated in vitro AChE inhibitory properties in a dose dependent manner. The extracts of Mentha x piperita, M. longifolia, Salvia officinalis, Satureja montana, Teucrium arduini, T. chamaedrys, T. montanum, T. polium and Thymus vulgaris at 1 mg/mL showed strong inhibitory activity against AChE. The antioxidant potential of the investigated Lamiaceae species was assessed by DPPH• scavenging activity and total antioxidant capacity assays, in comparison with hydroxycinnamic acids and trolox. The extracts differed greatly in their total hydroxycinnamic derivatives content, determined spectrophotometrically. Rosmarinic acid was found to be the predominant constituent in most of the investigated medicinal plants (by RP-HPLC) and had a substantial influence on their AChE inhibitory and antioxidant properties, with the exception of Teucrium species. These findings indicate that Lamiaceae species are a rich source of various natural AChE inhibitors and antioxidants that could be useful in the prevention and treatment of Alzheimer's and other related diseases.
Collapse
Affiliation(s)
- Sanda Vladimir-Knežević
- Department of Pharmacognosy, Faculty of Pharmacy and Biochemistry, University of Zagreb, Marulićev trg 20, Zagreb 10000, Croatia.
| | - Biljana Blažeković
- Department of Pharmacognosy, Faculty of Pharmacy and Biochemistry, University of Zagreb, Marulićev trg 20, Zagreb 10000, Croatia.
| | - Marija Kindl
- Department of Pharmacognosy, Faculty of Pharmacy and Biochemistry, University of Zagreb, Marulićev trg 20, Zagreb 10000, Croatia.
| | - Jelena Vladić
- Department of Pharmacognosy, Faculty of Pharmacy and Biochemistry, University of Zagreb, Marulićev trg 20, Zagreb 10000, Croatia.
| | - Agnieszka D Lower-Nedza
- Department of Pharmacognosy, Faculty of Pharmacy and Biochemistry, University of Zagreb, Marulićev trg 20, Zagreb 10000, Croatia.
| | - Adelheid H Brantner
- Department of Pharmacognosy, Faculty of Pharmacy and Biochemistry, University of Zagreb, Marulićev trg 20, Zagreb 10000, Croatia.
| |
Collapse
|