1
|
Zhang Y, Xu J, Gong J, Li Y. Fabrication and Stability Improvement of Monoglyceride Oleogel/Polyglycerol Polyricinoleate-Stabilized W/O High Internal Phase Pickering Emulsions. Foods 2024; 13:1944. [PMID: 38928884 PMCID: PMC11203119 DOI: 10.3390/foods13121944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
To decrease the lipid content in water-in-oil (W/O) emulsions, high internal phase Pickering W/O emulsions (HIPPE) were fabricated using magnetic stirring using a combination of monoglyceride (MAG) oleogel and polyglycerol polyacrylate oleate (PGPR) as stabilizers. Effects of MAGs (glyceryl monostearate-GMS, glycerol monolaurate-GML and glycerol monocaprylate-GMC) and internal phase components on the formation and properties of HIPPEs were investigated. The results showed that milky-white stabilized W/O HIPPE with up to 85 wt% aqueous phase content was successfully prepared, and the droplet interfaces presented a network of MAG crystals, independent of the MAG type. All HIPPEs exhibited great stability under freeze-thaw cycles but were less plastic. Meanwhile, GML-oleogel-based HIPPEs had larger particle size and were less thermal stable than GMS and GMC-based HIPPEs. Compared to guar gum, the internal phase components of sodium chloride and sucrose were more effective in reducing the particle size of HIPPEs, improving their stability and plasticity, and stabilizing them during 100-day storage. HIPPEs presented great spreadability, ductility and plasticity after whipping treatment. This knowledge provides a new perspective on the use of oleogels as co-stabilizers for the formation of W/O HIPPEs, which can be used as a potential substitute for creams.
Collapse
Affiliation(s)
- Yingzhu Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (J.X.); (J.G.)
| | - Jinqi Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (J.X.); (J.G.)
| | - Jinhua Gong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (J.X.); (J.G.)
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (J.X.); (J.G.)
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
2
|
Iqbal N, Hazra DK, Purkait A, Agrawal A, Saini MK, Kumar J. Eco-Oriented Formulation and Stabilization of Oil-Colloidal Biodelivery Systems Based on GC-MS/MS-Profiled Phytochemicals from Wild Tomato for Long-Term Retention and Penetration on Applied Surfaces for Effective Crop Protection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3719-3731. [PMID: 36802590 DOI: 10.1021/acs.jafc.2c08612] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Vegetable oils as hydrophobic reserves in oil dispersions (OD) provide a practical approach to halt bioactive degradation for user and environment-efficient pest management. Using biodegradable soybean oil (57%), castor oil ethoxylate (5%), calcium dodecyl benzenesulfonates as nonionic and an-ionic surfactants, bentonite (2%), and fumed silica as rheology modifiers, we created an oil-colloidal biodelivery sytem (30%) of tomato extract with homogenization. The quality-influencing parameters, such as particle size (4.5 μm), dispersibility (97%), viscosity (61 cps), and thermal stability (2 years), have been optimized in accordance with specifications. Vegetable oil was chosen for its improved bioactive stability, high smoke point (257 °C), coformulant compatibility, and as a green build-in-adjuvant by improving spreadability (20-30%), retention and penetration (20-40%). In in vitro testing, it efficiently controlled aphids with 90.5% mortalities and 68.7-71.2% under field-conditions without producing phytotoxicity. Wild tomato-derived phytochemicals can be a safe and efficient alternative to chemical pesticides when combined wisely with vegetable oils.
Collapse
Affiliation(s)
- Nusrat Iqbal
- Institute of Pesticide Formulation Technology (IPFT), Sec-20, Udhyog Vihar, Gurugram 122016, India
| | - Dipak Kumar Hazra
- All India Network Project on Pesticide Residues, Department of Agricultural Chemicals, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal 741252, India
| | - Aloke Purkait
- Department of Soil Science and Agricultural Chemistry, Palli-Siksha Bhavana (Institute of Agriculture), Visva - Bharati, Sriniketan, Birbhum, West Bengal 731236, India
| | - Amrish Agrawal
- Institute of Pesticide Formulation Technology (IPFT), Sec-20, Udhyog Vihar, Gurugram 122016, India
| | - Mahesh Kumar Saini
- National Institute of Plant Health Management, Himayat Sagar Rd, Hyderabad, Telangana 500030, India
| | - Jitendra Kumar
- Institute of Pesticide Formulation Technology (IPFT), Sec-20, Udhyog Vihar, Gurugram 122016, India
| |
Collapse
|
3
|
Chloroplast/thylakoid-rich material: A possible alternative to the chemically synthesised flow enhancer polyglycerol polyricinoleate in oil-based systems. Food Res Int 2023; 165:112472. [PMID: 36869485 DOI: 10.1016/j.foodres.2023.112472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/12/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Chloroplasts are abundant organelles in a diverse range of plant materials; they are predominantly composed of multicomponent thylakoid membranes which are lipid and protein rich. Intact or unravelled thylakoid membranes should, in principle, have interfacial activity, but little has been published on their activity in oil-in-water systems, and nothing on their performance on an oil continuous system. In this work different physical methods were used to produce a range of chloroplast/thylakoid suspensions with varying degrees of membrane integrity. Transmission electron microscopy revealed that pressure homogenisation led to the greatest extent of membrane and organelle disruption compared to less energy intensive preparation methods The ability of the derived materials to modulate the flow behaviour of a chocolate model system (65% (w/w) sugar/ sunflower oil (natural amphiphiles removed) suspension) was investigated by acquiring rheological parameters. All chloroplast/thylakoid preparations reduced yield stress, apparent viscosity, tangent flow point and cross over point in a concentration-dependent fashion, although not as significantly as polyglycerol polyricinoleate applied at a commercially relevant concentration in the same chocolate model system. Confocal laser scanning microscopy confirmed presence of the alternative flow enhancer material at the sugar surfaces. This research reveals that low-energy processing methods that do not extensively disrupt thylakoid membranes are applicable to generating materials with marked capacity to affect the flow behaviour of a chocolate model system. In conclusion, chloroplast/thylakoid materials hold strong potential as natural alternatives to synthetic rheology modifiers for lipid-based systems such as PGPR.
Collapse
|
4
|
He M, Pu W, Yang X, Liu R. Predicting the emulsion phase inversion point during self-emulsification using an improved free energy model and determining the model applicability. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Palmquist MS, Gruschka MC, Dorsainvil JM, Delawder AO, Saak TM, Danielson MK, Barnes JC. Electrostatic loading and photoredox-based release of molecular cargo from oligoviologen-crosslinked microparticles. Polym Chem 2022; 13:2115-2122. [PMID: 36188127 PMCID: PMC9518833 DOI: 10.1039/d2py00249c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although on-demand cargo release has been demonstrated in a wide range of microparticle platforms, many existing methods lack specific loading interactions and/or undergo permanent damage to the microparticle to release...
Collapse
Affiliation(s)
- Mark S Palmquist
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
| | - Max C Gruschka
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
| | - Jovelt M Dorsainvil
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
| | - Abigail O Delawder
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
| | - Tiana M Saak
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
| | - Mary K Danielson
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
| | - Jonathan C Barnes
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
| |
Collapse
|
6
|
Díaz-Ruiz R, Laca A, Sánchez M, Fernández MR, Matos M, Gutiérrez G. Addition of Trans-Resveratrol-Loaded Highly Concentrated Double Emulsion to Yoghurts: Effect on Physicochemical Properties. Int J Mol Sci 2021; 23:ijms23010085. [PMID: 35008506 PMCID: PMC8744663 DOI: 10.3390/ijms23010085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 12/20/2022] Open
Abstract
Trans-resveratrol (RSV) needs to be encapsulated to maintain its beneficial properties on the human body. This is due to its extreme photosensitivity, short biological half-life, and easy oxidation. In this study, the use of double emulsions for RSV encapsulation and their further application on functional yoghurts was studied. Different types of yoghurts were prepared: with and without RSV and with two types of volumetric emulsion formulations (20/80 and 30/70). In order to study the influence of the addition of double emulsions to the physical properties of the prepared yoghurts, they were characterised fresh and after a month under storage at 4 °C, in terms of droplet size, morphology, stability, rheology, texturometry, colorimetry, and antioxidant capacity. Results obtained showed that the presence of emulsion in the yoghurts produced a generalised decrease in the predominant droplet size (from 48 µm to 15-25 µm) and an increase in the stability. Additionally, a predominantly elastic character was observed. The firmness values obtained were very similar for all the yoghurts analysed and did not suffer important modifications with time. A slight colour variation was observed with storage time in the control sample, whereas a more notable variation in the case of emulsion yoghurts was observed. An appreciable increase of the antioxidant capacity of the final functional yoghurt (100 g) was observed when it contained 5-8 mg of RSV. Encapsulated RSV added to yoghurts presented a larger protection against RSV oxidation compared with free RSV, presenting a larger antioxidant inhibition after one month of storage. Moreover, the antioxidant capacity of yoghurts with encapsulated RSV was not affected under storage, since slight reductions (3%) were registered after one month of storage at 4 °C.
Collapse
Affiliation(s)
- Rocío Díaz-Ruiz
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (R.D.-R.); (A.L.); (M.S.); (M.R.F.); (M.M.)
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain
| | - Amanda Laca
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (R.D.-R.); (A.L.); (M.S.); (M.R.F.); (M.M.)
| | - Marta Sánchez
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (R.D.-R.); (A.L.); (M.S.); (M.R.F.); (M.M.)
| | - Manuel Ramón Fernández
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (R.D.-R.); (A.L.); (M.S.); (M.R.F.); (M.M.)
| | - María Matos
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (R.D.-R.); (A.L.); (M.S.); (M.R.F.); (M.M.)
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain
| | - Gemma Gutiérrez
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (R.D.-R.); (A.L.); (M.S.); (M.R.F.); (M.M.)
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain
- Correspondence: ; Tel.: +34-985103509; Fax: +34-985103434
| |
Collapse
|
7
|
Gore AJ, Bhagwat SS, Mhaskar S, Saxena S. Determination of required HLB value and emulsifiers for the preparation of water in coconut oil emulsions for application in food process industries. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.2016438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Amol Jayavant Gore
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, India
| | - Sunil Subhash Bhagwat
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, India
| | - Sudhakar Mhaskar
- Research and Development Department, Marico Limited, Andheri, India
| | - Sachin Saxena
- Research and Development Department, Marico Limited, Andheri, India
| |
Collapse
|
8
|
Zenych A, Jacqmarcq C, Aid R, Fournier L, Forero Ramirez LM, Chaubet F, Bonnard T, Vivien D, Letourneur D, Chauvierre C. Fucoidan-functionalized polysaccharide submicroparticles loaded with alteplase for efficient targeted thrombolytic therapy. Biomaterials 2021; 277:121102. [PMID: 34482087 DOI: 10.1016/j.biomaterials.2021.121102] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/22/2021] [Accepted: 08/25/2021] [Indexed: 01/22/2023]
Abstract
Intravenous administration of fibrinolytic drugs is the standard treatment of acute thrombotic diseases. However, current fibrinolytics exhibit limited clinical efficacy because of their short plasma half-lives and might trigger hemorrhagic transformations. Therefore, it is mandatory to develop innovative nanomedicine-based solutions for more efficient and safer thrombolysis with biocompatible and biodegradable thrombus-targeted nanocarrier. Herein, fucoidan-functionalized hydrogel polysaccharide submicroparticles with high biocompatibility are elaborated by the inverse miniemulsion/crosslinking method. They are loaded with the gold standard fibrinolytic - alteplase - to direct site-specific fibrinolysis due to nanomolar interactions between fucoidan and P-selectin overexpressed on activated platelets and endothelial cells in the thrombus area. The thrombus targeting properties of these particles are validated in a microfluidic assay containing recombinant P-selectin and activated platelets under arterial and venous blood shear rates as well as in vivo. The experiments on the murine model of acute thromboembolic ischemic stroke support this product's therapeutic efficacy, revealing a faster recanalization rate in the middle cerebral artery than with free alteplase, which reduces post-ischemic cerebral infarct lesions and blood-brain barrier permeability. Altogether, this proof-of-concept study demonstrates the potential of a biomaterial-based targeted nanomedicine for the precise treatment of acute thrombotic events, such as ischemic stroke.
Collapse
Affiliation(s)
- Alina Zenych
- Université de Paris, Université Sorbonne Paris Nord, UMR S1148, INSERM, F-75018, Paris, France
| | - Charlène Jacqmarcq
- INSERM U1237 Physiopathology and Imaging of Neurological Disorders (PhIND), Institut Blood and Brain @ Caen Normandie (BB@C), GIP Cyceron, 14074, Caen, France
| | - Rachida Aid
- Université de Paris, Université Sorbonne Paris Nord, UMR S1148, INSERM, F-75018, Paris, France; Université de Paris, FRIM, UMS 034, INSERM, F-75018, Paris, France
| | - Louise Fournier
- Université de Paris, Université Sorbonne Paris Nord, UMR S1148, INSERM, F-75018, Paris, France
| | - Laura M Forero Ramirez
- Université de Paris, Université Sorbonne Paris Nord, UMR S1148, INSERM, F-75018, Paris, France
| | - Frédéric Chaubet
- Université de Paris, Université Sorbonne Paris Nord, UMR S1148, INSERM, F-75018, Paris, France
| | - Thomas Bonnard
- INSERM U1237 Physiopathology and Imaging of Neurological Disorders (PhIND), Institut Blood and Brain @ Caen Normandie (BB@C), GIP Cyceron, 14074, Caen, France
| | - Denis Vivien
- INSERM U1237 Physiopathology and Imaging of Neurological Disorders (PhIND), Institut Blood and Brain @ Caen Normandie (BB@C), GIP Cyceron, 14074, Caen, France; Department of Clinical Research, Caen Normandie University Hospital (CHU), 14074, Caen, France
| | - Didier Letourneur
- Université de Paris, Université Sorbonne Paris Nord, UMR S1148, INSERM, F-75018, Paris, France
| | - Cédric Chauvierre
- Université de Paris, Université Sorbonne Paris Nord, UMR S1148, INSERM, F-75018, Paris, France.
| |
Collapse
|
9
|
Isaac Contreras-Ramírez J, Alberto Gallegos-Infante J, Rosas-Flores W, Francisco González-Laredo R, Fernando Toro-Vázquez J, David Pérez-Martínez J. Relationship of rheological and thermal properties in organogel emulsions (W/O): Influence of temperature, time, and surfactant concentration on thermomechanical behavior. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Paximada P, Batchelor M, Lillevang S, Evageliou V, Howarth M, Dubey BN. Impact of lipophilic surfactant on the stabilization of water droplets in sunflower oil. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Paraskevi Paximada
- National Centre of Excellence for Food EngineeringSheffield Hallam University Sheffield UK
| | | | | | - Vasiliki Evageliou
- Department of Food Science and Human Nutrition Agricultural University of Athens Athens Greece
| | - Martin Howarth
- National Centre of Excellence for Food EngineeringSheffield Hallam University Sheffield UK
| | - Bipro N. Dubey
- National Centre of Excellence for Food EngineeringSheffield Hallam University Sheffield UK
| |
Collapse
|
11
|
Díaz-Ruiz R, Valdeón I, Álvarez JR, Matos M, Gutiérrez G. Simultaneous encapsulation of trans-resveratrol and vitamin D 3 in highly concentrated double emulsions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3654-3664. [PMID: 33280118 DOI: 10.1002/jsfa.10995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 11/19/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Encapsulation of biocompounds is essential to protect them from environmental factors that could enhance their oxidation or cause them to lose their beneficial properties due to extreme photosensitivity, among other factors. The main goal of this work was to study the feasibility of preparing concentrated double emulsions with a high loading capacity containing simultaneously trans-resveratrol (RSV) and vitamin D3 (VitD3 ). Such emulsions could be used for food fortification or pharmaceutical formulations or as vehicles for targeted controlled release. RESULTS In order to achieve large concentrations of the encapsulated compounds, all the double emulsions were formulated using a W1 /O in W2 ratio of 80/20, while the ratios tested for W1 in O where 20/80 and 30/70. All the emulsions were characterized by droplet size, morphology, colloidal stability and encapsulation efficiency (EE) over a period of 6 weeks. VitD3 and RSV concentration were determined by a technique based on reverse-phase high-performance liquid chromatography. The viability of preparing concentrated W1 /O/W2 emulsions containing both biocompounds has been demonstrated with satisfactory results. Initial RSV concentrations in the concentrated double emulsions formulated varied from 5.0 to 8.3 mg L-1 , while for VitD3 values of 28-32 mg L-1 were obtained. The presence of VitD3 retarded RSV release in the formulated emulsions. It was observed that after 1 week of storage RSV EE increased around 10-50% when VitD3 was simultaneously encapsulated. CONCLUSION Simultaneous encapsulation of RSV and VitD3 was possible in high internal phase emulsions. The emulsions presented high colloidal stability, being suitable for food fortification applications. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rocío Díaz-Ruiz
- Department of Chemical and Environmental Engineering, University of Oviedo, Oviedo, Spain
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, Spain
| | - Irene Valdeón
- Department of Chemical and Environmental Engineering, University of Oviedo, Oviedo, Spain
| | - José Ramón Álvarez
- Department of Chemical and Environmental Engineering, University of Oviedo, Oviedo, Spain
| | - María Matos
- Department of Chemical and Environmental Engineering, University of Oviedo, Oviedo, Spain
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, Spain
| | - Gemma Gutiérrez
- Department of Chemical and Environmental Engineering, University of Oviedo, Oviedo, Spain
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, Spain
| |
Collapse
|
12
|
Tailoring W/O emulsions for application as inner phase of W/O/W emulsions: Modulation of the aqueous phase composition. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
13
|
Water-in-oil emulsions stabilized by surfactants, biopolymers and/or particles: a review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.07.028] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Díaz-Ruiz R, Martínez-Rey L, Laca A, Álvarez JR, Gutiérrez G, Matos M. Enhancing trans-Resveratrol loading capacity by forcing W 1/O/W 2 emulsions up to its colloidal stability limit. Colloids Surf B Biointerfaces 2020; 193:111130. [PMID: 32450506 DOI: 10.1016/j.colsurfb.2020.111130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
Trans-Resveratrol (3, 5, 4'-trihydroxystilbene) is a naturally occurring polyphenol easily oxidizable and extremely photosensitive with a short biological half-life that must be encapsulated to maintain its beneficial properties on the human body. The aim of this work is to increase the amount of resveratrol encapsulated using concentrated double water-in-oil-in-water (W1/O/W2) emulsions, making these systems more interesting as ingredient for functional food products and/or pharmaceutical formulations. The concentration of the inner emulsion (W1/O) for several external (W1O/W2) ratios was optimized in terms of encapsulation efficiency (EE), colloidal stability and rheological behaviour. W1/O emulsions formulated with ratios of 30/70 and 40/60 were used to obtain double emulsions (with ratios of 20/80 up to 80/20 of W1O/W2). Trans-Resveratrol EE increased up to 90 % when the most concentrated double emulsions were prepared for both W1/O ratios tested. The maximum resveratrol concentrations on double emulsions were 10.8 mg/L and 14.4 mg/L when 30/70 and 40/60 of W1/O ratios were used, respectively. However, longer time stability was found for double high internal phase emulsions (W1O/W2) with a ratio of 30/70 of W1/O. The double emulsion formulated with a 80/20 W1O/W2 volumetric ratio together with 30/70 of W1/O seems suitable to be used as ingredient for pharmaceutical and food devices/products due to its high colloidal stability, clearly pseudoplastic and elastic behaviour, high EE and large trans-Resveratrol carrier capacity.
Collapse
Affiliation(s)
- Rocío Díaz-Ruiz
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain.
| | - Lemuel Martínez-Rey
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain.
| | - Amanda Laca
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain.
| | - José Ramón Álvarez
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain.
| | - Gemma Gutiérrez
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain.
| | - María Matos
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain.
| |
Collapse
|
15
|
|
16
|
Raviadaran R, Ng MH, Manickam S, Chandran D. Ultrasound-assisted water-in-palm oil nano-emulsion: Influence of polyglycerol polyricinoleate and NaCl on its stability. ULTRASONICS SONOCHEMISTRY 2019; 52:353-363. [PMID: 30555038 DOI: 10.1016/j.ultsonch.2018.12.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 06/09/2023]
Abstract
This study aimed to formulate a stable palm oil-based water-in-oil (W/O) nano-emulsion. Emphasis was placed on the effects of polyglycerol polyricinoleate (PGPR), medium chain triglyceride (MCT), lecithin and sodium chloride (NaCl) addition towards the stability of nano-emulsion. Among the performed analyses were mean droplet diameter (MDD), dispersity index (DI), critical micelle concentration (CMC), lipid peroxidation, viscosity, sedimentation index (SI) and surface morphology. The most stable optimized palm oil-based W/O nano-emulsion was produced using 61.25 wt% of palm oil, 26.25 wt% of MCT, 2.5 wt% of PGPR and 10 wt% of water (0.5 M of NaCl). The MDD and DI of the obtained W/O nano-emulsion were 143.1 ± 8.8 and 0.131 ± 0.094, respectively. After 2 weeks, no sedimentation was observed in W/O nano-emulsion with MDD and DI were 151.2 ± 6.5 nm and 0.156 ± 0.025 respectively. This study clearly found that polyricinoleate non-polar fatty acids of PGPR bound to non-polar fatty acids of palm oil through van der Waals intermolecular forces. While, polyglycerol polar head of PGPR interacts with water molecules through hydrogen bonding, as well as by the bound glyceride units of palm oil. The addition of NaCl further reduced MDD by 70 nm and improved the stability of nano-emulsion through electrostatic and steric repulsions attributed to the dissociation of Na+ and Cl- ions. This study aids to widen the knowledge and interest on the utilization of palm oil for the generation of W/O nano-emulsion, as well as to better understand the interaction between palm oil and PGPR/NaCl in producing nano-emulsion.
Collapse
Affiliation(s)
- Revathi Raviadaran
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia; Malaysian Palm Oil Board (MPOB), 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Mei Han Ng
- Malaysian Palm Oil Board (MPOB), 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Sivakumar Manickam
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| | - Davannendran Chandran
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Science and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| |
Collapse
|
17
|
Jo YJ, Karbstein HP, van der Schaaf US. Collagen peptide-loaded W1/O single emulsions and W1/O/W2 double emulsions: influence of collagen peptide and salt concentration, dispersed phase fraction and type of hydrophilic emulsifier on droplet stability and encapsulation efficiency. Food Funct 2019; 10:3312-3323. [DOI: 10.1039/c8fo02467g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Collagen peptide-loaded double emulsions are developed by using various formulation parameters to utilize as food-grade functional ingredients with excellent droplet stability and encapsulation efficiency of collagen peptide.
Collapse
Affiliation(s)
- Yeon-Ji Jo
- Department of Agricultural
- Food and Nutritional Science
- University of Alberta
- Alberta
- Canada
| | - Heike Petra Karbstein
- Institute of Process Engineering in Life Science
- Chair for Food Process Engineering
- Karlsruhe Institute of Technology
- Karlsruhe
- Germany
| | - Ulrike Sabine van der Schaaf
- Institute of Process Engineering in Life Science
- Chair for Food Process Engineering
- Karlsruhe Institute of Technology
- Karlsruhe
- Germany
| |
Collapse
|
18
|
Encapsulation of resveratrol using food-grade concentrated double emulsions: Emulsion characterization and rheological behaviour. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2018.01.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Mettu S, Wu C, Dagastine RR. Dynamic forces between emulsified water drops coated with Poly-Glycerol-Poly-Ricinoleate (PGPR) in canola oil. J Colloid Interface Sci 2018; 517:166-175. [PMID: 29421676 DOI: 10.1016/j.jcis.2018.01.104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/29/2018] [Accepted: 01/29/2018] [Indexed: 11/25/2022]
Abstract
The dynamic collision of emulsified water drops in the presence of non-ionic surfactants plays a crucial role in many practical applications. Interaction force between water drops coated with non-ionic food grade surfactants is expected to exhibit rich dynamic behavior that is not yet explored. The collision forces between immobilized water drops in canola oil in the presence of a well-known food grade surfactant polyglycerol polyricinoleate (PGPR) are measured at concentrations well below typically used to form stable emulsions. An extension or kink, attributed to a short-range attractive interaction due to PGPR bridging between the drops, was observed in the retract portion of the force curves at higher applied forces or slower collision velocities. The Stokes-Reynolds-Young-Laplace (SRYL) model was used to calculate theoretical force curves. For higher collisions velocities, the agreement between the calculated and experiment data was acceptable, but the SRYL model failed to describe the extension or kink feature observed at slower velocities below. Both the AFM data and the comparison to the model calculation indicated the presence of a short-range attractive force, not of a hydrodynamic origin, attributed to the bridging and extension of PGPR molecules on the surface of water drops below saturation of the interface.
Collapse
Affiliation(s)
- Srinivas Mettu
- Particulate Fluids Processing Center (PFPC), The University of Melbourne, Parkville, VIC 3010, Australia; Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Chu Wu
- Particulate Fluids Processing Center (PFPC), The University of Melbourne, Parkville, VIC 3010, Australia; Department of Mathematics and Statistics, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Raymond R Dagastine
- Particulate Fluids Processing Center (PFPC), The University of Melbourne, Parkville, VIC 3010, Australia; Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
20
|
Nikolovski BG, Ilić JD, Sovilj MN. HOW TO FORMULATE A STABLE AND MONODISPERSE WATER-IN-OIL NANOEMULSION CONTAINING PUMPKIN SEED OIL: THE USE OF MULTIOBJECTIVE OPTIMIZATION. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2016. [DOI: 10.1590/0104-6632.20160334s20140140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Ilić JD, Nikolovski BG, Lončarević IS, Petrović JS, Bajac BM, Vučinić-Vasić M. Release Properties and Stability of Double W1/O/W2Emulsions Containing Pumpkin Seed Oil. J FOOD PROCESS ENG 2016. [DOI: 10.1111/jfpe.12349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jelena D. Ilić
- Faculty of Technology , University of Novi Sad, Novi Sad, R. Serbia
| | | | | | | | | | | |
Collapse
|