1
|
Sapino S, Peira E, Chirio D, Chindamo G, Accomasso G, Vercelli C, Riganti C, Salaroglio IC, Gambino G, Re G, Amadori M, Gallarate M. Human and canine osteosarcoma cell lines: How do they react upon incubation with calcium phosphate-coated lipid nanoparticles carrying doxorubicin and curcumin? Int J Pharm 2025; 668:124970. [PMID: 39566701 DOI: 10.1016/j.ijpharm.2024.124970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Osteosarcoma (OSA) is a bone cancer that affects both humans and animals, with dogs being particularly vulnerable. Standard therapy is often limited by multidrug resistance (MDR), primarily due to the overexpression of P-glycoprotein (P-gp), which expels drugs from the cells, reducing their efficacy. To overcome this challenge, drug delivery systems (DDS) and P-gp modulators have been explored. However, developing DDS that selectively target cancer cells remains difficult, with many current options lacking efficiency. Our research group has recently developed an innovative type of nanoparticle with a lipid core and a calcium phosphate shell (CaP-NPs), which enhances the uptake of doxorubicin (DOXO) in OSA cells. In this study, we loaded a lipophilic ester of doxorubicin (C12DOXO) and curcumin (CURC), a natural P-gp modulator, into CaP-NPs and co-incubated them into human and canine OSA cell lines, including DOXO-resistant cells. The results demonstrated a significant reduction in viability in human OSA cells. Additionally, the combination treatment led to a further increase in C12DOXO retention when cells were also treated with the P-gp inhibitor verapamil, indicating enhanced efficacy against MDR mechanisms. Notably, canine OSA cells exhibited a distinct response pattern, suggesting the presence of species-specific differences that warrant further investigation.
Collapse
Affiliation(s)
- Simona Sapino
- Department of Drug Science and Technology, Turin University, Via P. Giuria 9, 10125 Torino, Italy.
| | - Elena Peira
- Department of Drug Science and Technology, Turin University, Via P. Giuria 9, 10125 Torino, Italy.
| | - Daniela Chirio
- Department of Drug Science and Technology, Turin University, Via P. Giuria 9, 10125 Torino, Italy.
| | - Giulia Chindamo
- Department of Drug Science and Technology, Turin University, Via P. Giuria 9, 10125 Torino, Italy.
| | - Giulia Accomasso
- Department of Drug Science and Technology, Turin University, Via P. Giuria 9, 10125 Torino, Italy.
| | - Cristina Vercelli
- Department of Veterinary Sciences, Turin University, Largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy.
| | - Chiara Riganti
- Department of Oncology, Turin University, Piazza Nizza 44, 10126, Torino, Italy.
| | | | - Graziana Gambino
- Department of Veterinary Sciences, Turin University, Largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy.
| | - Giovanni Re
- Department of Veterinary Sciences, Turin University, Largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy.
| | - Michela Amadori
- Department of Veterinary Sciences, Turin University, Largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy.
| | - Marina Gallarate
- Department of Drug Science and Technology, Turin University, Via P. Giuria 9, 10125 Torino, Italy.
| |
Collapse
|
2
|
Dinić J, Podolski-Renić A, Novaković M, Li L, Opsenica I, Pešić M. Plant-Based Products Originating from Serbia That Affect P-glycoprotein Activity. Molecules 2024; 29:4308. [PMID: 39339303 PMCID: PMC11433820 DOI: 10.3390/molecules29184308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Our review paper evaluates the impact of plant-based products, primarily derived from plants from Serbia, on P-glycoprotein (P-gp) activity and their potential in modulating drug resistance in cancer therapy. We focus on the role and regulation of P-gp in cellular physiology and its significance in addressing multidrug resistance in cancer therapy. Additionally, we discuss the modulation of P-gp activity by 55 natural product drugs, including derivatives for some of them, based on our team's research findings since 2011. Specifically, we prospect into sesquiterpenoids from the genera Artemisia, Curcuma, Ferula, Inula, Petasites, and Celastrus; diterpenoids from the genera Salvia and Euphorbia; chalcones from the genera Piper, Glycyrrhiza, Cullen, Artemisia, and Humulus; riccardins from the genera Lunularia, Monoclea, Dumortiera, Plagiochila, and Primula; and diarylheptanoids from the genera Alnus and Curcuma. Through comprehensive analysis, we aim to highlight the potential of natural products mainly identified in plants from Serbia in influencing P-gp activity and overcoming drug resistance in cancer therapy, while also providing insights into future perspectives in this field.
Collapse
Affiliation(s)
- Jelena Dinić
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia; (J.D.); (A.P.-R.)
| | - Ana Podolski-Renić
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia; (J.D.); (A.P.-R.)
| | - Miroslav Novaković
- Institute of Chemistry, Technology and Metallurgy—National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia;
| | - Liang Li
- Key Laboratory of Bioactive Substance and Function of Natural Medicines, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China;
| | - Igor Opsenica
- Faculty of Chemistry, University of Belgrade, Studentski trg 12–16, 11158 Belgrade, Serbia;
| | - Milica Pešić
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia; (J.D.); (A.P.-R.)
| |
Collapse
|
3
|
Maghool F, Emami MH, Alipour R, Mohammadzadeh S, Sereshki N, Dehkordi SAE, Fahim A, Tayarani-Najaran Z, Sheikh A, Kesharwani P, Sahebkar A. Rescue effect of curcumin against copper toxicity. J Trace Elem Med Biol 2023; 78:127153. [PMID: 36989586 DOI: 10.1016/j.jtemb.2023.127153] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 02/15/2023] [Accepted: 03/12/2023] [Indexed: 03/16/2023]
Abstract
Turmeric has long been used not only as an indispensable part of Asian cuisine but as a medicinal herb for dressing wounds, bites, burns, treating eye infections and acne. Curcuminoids are the active substances and their synthetic derivatives (i.e. diacetylcurcumin (DAC) and metal-curcumin complexes) possess an incredibly wide range of medicinal properties that encompass chelation capacity for multiple heavy metals, antioxidant activity, anti-inflammatory properties, cytotoxicity against cancerous cells, antiviral and antibacterial effects, antihypertensive and insulin sensitizing role, and regulatory role on apoptosis. The aforementioned properties have put curcumin on spotlight as a potential treatment for ailments such as, hepatic diseases, neurodegenerative diseases, metabolic syndrome, dyslipidemia, cardiovascular disease, auto-immune diseases, malignancies and conditions associated with metal overload. Copper is essential for major biological functions, however, an excess causes chronic ailments including neurodegenerative disorders. The fascinating approach of curcumin could alleviate such effect by forming a complex. Thus, this review aims to present available data on the effect of copper-curcumin interaction in various in vitro, ex-vivo in vivo, and clinical studies.
Collapse
Affiliation(s)
- Fatemeh Maghool
- Poursina Hakim Digestive Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hassan Emami
- Poursina Hakim Digestive Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Razieh Alipour
- Immunology Department, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Samane Mohammadzadeh
- Poursina Hakim Digestive Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasrin Sereshki
- Poursina Hakim Digestive Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Alireza Fahim
- Poursina Hakim Digestive Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Tayarani-Najaran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai 602105, India; University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Gong J, Shi T, Liu J, Pei Z, Liu J, Ren X, Li F, Qiu F. Dual-drug codelivery nanosystems: An emerging approach for overcoming cancer multidrug resistance. Biomed Pharmacother 2023; 161:114505. [PMID: 36921532 DOI: 10.1016/j.biopha.2023.114505] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Multidrug resistance (MDR) promotes tumor recurrence and metastasis and heavily reduces anticancer efficiency, which has become a primary reason for the failure of clinical chemotherapy. The mechanisms of MDR are so complex that conventional chemotherapy usually fails to achieve an ideal therapeutic effect and even accelerates the occurrence of MDR. In contrast, the combination of chemotherapy with dual-drug has significant advantages in tumor therapy. A novel dual-drug codelivery nanosystem, which combines dual-drug administration with nanotechnology, can overcome the application limitation of free drugs. Both the characteristics of nanoparticles and the synergistic effect of dual drugs contribute to circumventing various drug-resistant mechanisms in tumor cells. Therefore, developing dual-drug codelivery nanosystems with different multidrug-resistant mechanisms has an important reference value for reversing MDR and enhancing the clinical antitumor effect. In this review, the advantages, principles, and common codelivery nanocarriers in the application of dual-drug codelivery systems are summarized. The molecular mechanisms of MDR and the dual-drug codelivery nanosystems designed based on different mechanisms are mainly introduced. Meanwhile, the development prospects and challenges of codelivery nanosystems are also discussed, which provide guidelines to exploit optimized combined chemotherapy strategies in the future.
Collapse
Affiliation(s)
- Jianing Gong
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Taoran Shi
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jinfeng Liu
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zerong Pei
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingbo Liu
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fengyun Li
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
5
|
Wang S, Gao X, Li J, Wei S, Shao Y, Yin Y, Zhang D, Tang M. The anticancer effects of curcumin and clinical research progress on its effects on esophageal cancer. Front Pharmacol 2022; 13:1058070. [DOI: 10.3389/fphar.2022.1058070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
Esophageal cancer (EC) is a common tumor of the gastrointestinal system and a major threat to human health. The etiology and incidence of EC vary depending on the type of pathology. Owing to the unique physiological structure of the esophagus and the poor biological behavior of EC, the treatment modalities available are limited, and the prognosis of patients is relatively poor. Curcumin is a type of natural phytochemical belonging to the class of phenolic compounds. It exerts favorable anticancer effects on various cancers. A growing body of evidence indicates that curcumin suppresses tumor development and progression by inhibiting tumor cell proliferation, invasion, and migration, thus inducing apoptosis, regulating microRNA expression, reversing multidrug resistance, and inducing sensitivity to the therapeutic effect of chemoradiotherapy. Multiple cellular molecules, growth factors, and genes encoding proteins participating in different signaling pathways interact with each other to contribute to the complex and orderly anticancer effect. The efficacy and safety of curcumin have been established in preclinical studies for EC and clinical trials for other cancers. However, the low bioavailability of curcumin limits its clinical application. Therefore, the modification of curcumin analogs, the combination of curcumin with other drugs or therapies, and the use of novel nanocarriers have been widely investigated to improve the clinical effects of curcumin in EC.
Collapse
|
6
|
Curcumin-Encapsulated Nanomicelles Improve Cellular Uptake and Cytotoxicity in Cisplatin-Resistant Human Oral Cancer Cells. J Funct Biomater 2022; 13:jfb13040158. [PMID: 36278627 PMCID: PMC9589971 DOI: 10.3390/jfb13040158] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/17/2022] [Accepted: 09/18/2022] [Indexed: 12/24/2022] Open
Abstract
Oral cancer has a high mortality rate, which is mostly determined by the stage of the disease at the time of admission. Around half of all patients with oral cancer report with advanced illness. Hitherto, chemotherapy is preferred to treat oral cancer, but the emergence of resistance to anti-cancer drugs is likely to occur after a sequence of treatments. Curcumin is renowned for its anticancer potential but its marred water solubility and poor bioavailability limit its use in treating multidrug-resistant cancers. As part of this investigation, we prepared and characterized Curcumin nanomicelles (CUR-NMs) using DSPE-PEG-2000 and evaluated the anticancer properties of cisplatin-resistant cancer cell lines. The prepared CUR-NMs were sphere-shaped and unilamellar in structure, with a size of 32.60 ± 4.2 nm. CUR-NMs exhibited high entrapment efficiency (82.2%), entrapment content (147.96 µg/mL), and a mean zeta potential of −17.5ζ which is considered moderately stable. The cellular uptake and cytotoxicity studies revealed that CUR-NMs had significantly higher cytotoxicity and cellular uptake in cisplatin drug-resistant oral cancer cell lines and parental oral cancer cells compared to plain curcumin (CUR). The DAPI and FACS analysis corroborated a high percentage of apoptotic cells with CUR-NMs (31.14%) compared to neat CUR (19.72%) treatment. Conclusively, CUR-NMs can potentially be used as an alternative carrier system to improve the therapeutic effects of curcumin in the treatment of cisplatin-resistant human oral cancer.
Collapse
|
7
|
Talib WH, Daoud S, Mahmod AI, Hamed RA, Awajan D, Abuarab SF, Odeh LH, Khater S, Al Kury LT. Plants as a Source of Anticancer Agents: From Bench to Bedside. Molecules 2022; 27:molecules27154818. [PMID: 35956766 PMCID: PMC9369847 DOI: 10.3390/molecules27154818] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer is the second leading cause of death after cardiovascular diseases. Conventional anticancer therapies are associated with lack of selectivity and serious side effects. Cancer hallmarks are biological capabilities acquired by cancer cells during neoplastic transformation. Targeting multiple cancer hallmarks is a promising strategy to treat cancer. The diversity in chemical structure and the relatively low toxicity make plant-derived natural products a promising source for the development of new and more effective anticancer therapies that have the capacity to target multiple hallmarks in cancer. In this review, we discussed the anticancer activities of ten natural products extracted from plants. The majority of these products inhibit cancer by targeting multiple cancer hallmarks, and many of these chemicals have reached clinical applications. Studies discussed in this review provide a solid ground for researchers and physicians to design more effective combination anticancer therapies using plant-derived natural products.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
- Correspondence:
| | - Safa Daoud
- Department Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan;
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Reem Ali Hamed
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Dima Awajan
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Sara Feras Abuarab
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Lena Hisham Odeh
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Samar Khater
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Lina T. Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates;
| |
Collapse
|
8
|
Vatankhah MA, Panahizadeh R, Nejati-Koshki K, Arabzadeh M, Arabzadeh AA, Najafzadeh N. Curcumin Upregulates miR-148a to Increase the Chemosensitivity of CD44-Positive Prostate Cancer Stem Cells to Paclitaxel Through Targeting the MSK1/IRS1 axis. Drug Res (Stuttg) 2022; 72:457-465. [PMID: 35868335 DOI: 10.1055/a-1867-4805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND In men, prostate cancer (PC) is the second most common cause of cancer-related death. However, paclitaxel resistance is a major challenge in advanced PC. Curcumin, a natural antioxidant, has been demonstrated to have cytotoxic effects on cancer stem cells (CSCs). The goal of this study is to explore if curcumin can help lower chemoresistance to paclitaxel through the regulation of miR-148a-mediated apoptosis in prostate CSCs. METHODS The 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay and 4',6-diamidino-2-phenylindole (DAPi) labeling were used to determine cell survival. Immunohistochemistry was used to detect the expression of P-glycoprotein protein (P-gp) and CD44 proteins. Finally, real-time PCR was used to evaluate the regulatory effects of curcumin and paclitaxel on miR-148a and its target genes. RESULTS Curcumin and paclitaxel co-treatment significantly reduced the IC50 value in CD44+cells compared to paclitaxel alone. Additionally, combining these drugs considerably increased apoptosis in CD44+cells. We also discovered that when curcumin and paclitaxel were combined, the expression of CD44 and P-gp was significantly reduced compared to paclitaxel alone. Curcumin and paclitaxel co-treatment also increased miR-148a levels and regulated the levels of its target genes MSK1 and IRS1. CONCLUSION Curcumin may restore paclitaxel sensitivity by raising miR-148a expression and inhibiting its target genes.
Collapse
Affiliation(s)
- Mohammad Amin Vatankhah
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Reza Panahizadeh
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Kazem Nejati-Koshki
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mahsa Arabzadeh
- Department of Surgery, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Amir Ahmad Arabzadeh
- Department of Surgery, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nowruz Najafzadeh
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
9
|
Siswanto FM, Tamura A, Sakuma R, Imaoka S. Yeast β-glucan Increases Etoposide Sensitivity in Lung Cancer Cell Line A549 by Suppressing Nuclear Factor Erythroid 2-Related Factor 2 via the Noncanonical Nuclear Factor Kappa B Pathway. Mol Pharmacol 2022; 101:257-273. [PMID: 35193967 DOI: 10.1124/molpharm.121.000475] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/05/2022] [Indexed: 11/22/2022] Open
Abstract
Etoposide is regarded as one of the main standard cytotoxic drugs for lung cancer. However, mutations in Kelch-like ECH-associated protein 1 (Keap1), the main regulator of nuclear factor erythroid 2-related factor 2 (Nrf2), are often detected in lung cancer and lead to chemoresistance. Since the aberrant activation of Nrf2 enhances drug resistance, the suppression of the Nrf2 pathway is a promising therapeutic strategy for lung cancer. We herein used the human lung adenocarcinoma cell line A549 because it harbors a Keap1 loss-of-function mutation. A treatment with β-glucan, a major component of the fungal cell wall, reduced Nrf2 protein levels; downregulated the expression of cytochrome P450 3A5, UDP glucuronosyltransferase 1A1, and multidrug resistance protein 1; and increased etoposide sensitivity in A549 cells. Furthermore, the ephrin type-A receptor 2 (EphA2) receptor was important for the recognition and biologic activity of β-glucan in A549 cells. EphA2 signaling includes nuclear factor kappa B (NF-κB), signal transducer and activator of transcription 3 (STAT3), and p38 mitogen-activated protein kinase (MAPK). However, treatment of cells with stattic (STAT3 inhibitor) or SB203580 (p38 MAPK inhibitor) did not diminish the effects of β-glucan. In contrast, knockdown of v-rel reticuloendotheliosis viral oncogene homolog B (RelB) abolished the effects of β-glucan, suggesting the involvement of the noncanonical NF-κB pathway. The β-glucan effects were also attenuated by the knockdown of WD40 Repeat protein 23 (WDR23). The β-glucan treatment and RelB overexpression induced the expression of Cullin-4A (CUL4A), which increased WDR23 ligase activity and promoted the subsequent depletion of Nrf2. These results revealed a novel property of β-glucan as a resistance-modifying agent in addition to its widely reported immunomodulatory effects for lung cancer therapy via the EphA2-RelB-CUL4A-Nrf2 axis. SIGNIFICANCE STATEMENT: Chemotherapeutic resistance remains a major obstacle in cancer therapy despite extensive efforts to elucidate the underlying molecular mechanisms and overcome multidrug resistance. The present study revealed a novel resistance-modifying property of β-glucan, thereby expanding our knowledge on the beneficial roles of β-glucan and providing an alternative strategy to prevent drug resistance by cancer. The present results provide evidence for the involvement of a novel mode of NF-κB and Nrf2 crosstalk in the drug resistance phenotype.
Collapse
Affiliation(s)
- Ferbian Milas Siswanto
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Akiyoshi Tamura
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Rika Sakuma
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Susumu Imaoka
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| |
Collapse
|
10
|
Manogaran P, Somasundaram B, Viswanadha VP. Reversal of cisplatin resistance by neferine/isoliensinine and their combinatorial regimens with cisplatin-induced apoptosis in cisplatin-resistant colon cancer stem cells (CSCs). J Biochem Mol Toxicol 2021; 36:e22967. [PMID: 34921482 DOI: 10.1002/jbt.22967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 08/24/2021] [Accepted: 10/18/2021] [Indexed: 12/28/2022]
Abstract
Cisplatin chemotherapy to the colorectal cancer cells (CRCs) is accompanied by dose-limiting adverse effects along with the acquisition of drug resistance implicating low therapeutic outcomes. The present study is aimed to evaluate the chemosensitizing efficacy of neferine/isoliensinine or combinatorial regimen of neferine/isoliensinine with cisplatin against CSCs (cisplatin resistant colon stem cells). CSCs were developed using pulse exposure of cisplatin to parental HCT-15 cells. Neferine/isoliensinine or combinatorial regimens of Neferine/isoliensinine and cisplatin exhibited a stronger cytotoxic activity against CSCs compared to control. IC50 doses were found to be 6.5 μM for neferine, 12.5 μM for isoliensinine, and 120 μM for cisplatin respectively. Furthermore, the combinatorial regimen of a low dose of cisplatin (40 μM) with 4 μM neferine/8 μM isoliensinine induced cell death in a synergistic manner as described by isobologram. Neferine/isoliensinine could confer extensive intracellular reactive oxygen species generation in CSCs. Neferine/isoliensinine or combinatorial regimens dissipated mitochondrial membrane potential and enhanced intracellular [Ca2+ ]i, which were measured by spectroflurimetry. Furthermore, these combinatorial regimens induced a significant increase in the sub G0 phase of cell cycle arrest and PI uptake and alleviated the expression of ERCC1 in CSCs. Combinatorial regimens or neferine/isoliensinine treatments downregulated the cell survival protein expression (PI3K/pAkt/mTOR) and activated mitochondria-mediated apoptosis by upregulating Bax, cytochrome c, caspase-3, and PARP cleavage expression while downregulating the BCl-2 expression in CSCs. Our study confirms the chemosensitizing efficacy of neferine/isoliensinine or combinatorial regimens of neferine/isoliensinine with a low dose of cisplatin against CSCs.
Collapse
Affiliation(s)
- Prasath Manogaran
- Translational Research Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Bharath Somasundaram
- Translational Research Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Vijaya Padma Viswanadha
- Translational Research Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
11
|
Xu H, Li Y, Paxton JW, Wu Z. Co-Delivery Using pH-Sensitive Liposomes to Pancreatic Cancer Cells: the Effects of Curcumin on Cellular Concentration and Pharmacokinetics of Gemcitabine. Pharm Res 2021; 38:1209-1219. [PMID: 34189639 DOI: 10.1007/s11095-021-03072-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/13/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE PEGylated pH-sensitive liposomes (PSL) dual-loaded with gemcitabine and curcumin were investigated for the potential application in gemcitabine-resistant pancreatic ductal adenocarcinoma (PDAC) treatment. Curcumin was employed as an inhibitor of the efflux transporter, multidrug resistance protein 5 (MRP5) in PDAC cells. METHODS Liposomes were prepared with gemcitabine in the core and curcumin in the bilayers. The effects of curcumin on pH-sensitivity and 'endosome escape' of PSL with different PEGylation were investigated using a calcein self-quench assay. The effects of curcumin on intracellular gemcitabine concentrations, and cytotoxicity to a MIA PaCa-2 PDAC cell line was evaluated. The pharmacokinetics were investigated in rats following intravenous injection. RESULTS The addition of curcumin to the PSL bilayers (0.2-1 mol%)slightly decreased the pH-sensitivity of PSL, but to a less extent than PEGylation (0-5 mol%). Co-treatment with curcumin increased gemcitabine cellular accumulation in a concentration-dependent manner, and resulted in synergistic cytotoxicity towards MIA PaCa-2cells.Both these effects were augmented by the use of PSL, particularly when the two drugs were co-loaded in PSL. In rats, the dual-drug loaded PSL produced significantly reduced (p < 0.05) plasma clearance (CL) and volume of distribution (Vd) for both drugs, alongside 3 to 4-fold increases in the area-under-the-concentration-time curves compared to the free drugs. Additionally, curcumin slightly increase the plasma concentrations of gemcitabine possibly also via the MRP5 inhibition effect. CONCLUSION Co-delivery of curcumin with gemcitabine using PSL not only increased the intracellular gemcitabine concentration thus cytotoxicity to MIA PaCa-2 cells but also significantly improved the pharmacokinetic profiles for both drugs. Graphical Abstract.
Collapse
Affiliation(s)
- Hongtao Xu
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Yan Li
- Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.,Auckland University of Technology, Auckland, New Zealand
| | - James W Paxton
- Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Zimei Wu
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
12
|
Gong F, Ma JC, Jia J, Li FZ, Wu JL, Wang S, Teng X, Cui ZK. Synergistic effect of the anti-PD-1 antibody with blood stable and reduction sensitive curcumin micelles on colon cancer. Drug Deliv 2021; 28:930-942. [PMID: 33975498 PMCID: PMC8118404 DOI: 10.1080/10717544.2021.1921077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) is a potent anticancer drug with versatile biological activities, while the clinical translation of curcumin is severely limited due to its hydrophobicity, rapid elimination, and metabolism in the blood circulation. Herein, we aim to unravel the potential of curcumin as a synergistic agent with immunotherapy in the treatment of cancers. In an effort to minimize premature release and improve the systemic bioavailability, a superior blood stable and reduction sensitive curcumin micellar formulation, of which the release can be triggered by cancer cells, is rationally designed. We have synthesized a telodendrimer (mPEG-PLA-(LA)4) capable of forming reversible disulfide crosslinked micelles (DCMs). The curcumin loaded DCMs (Cur/DCMs) are spherical with a uniform size of 24.6 nm. The in vitro release profile demonstrates that curcumin releases significantly slower from DCMs than that from non-crosslinked micelles (NCMs), while the release can be accelerated with the increasing concentration of reducing agent glutathione (GSH). Intravenous administration of Cur/DCMs stably retains curcumin in the bloodstream and efficiently improves the systemic bioavailability. Furthermore, Cur/DCMs exhibit synergistic anticancer efficacy when combined with the anti-PD-1 antibody in an MC-38 colon cancer xenograft model. Our results potentiate the integration of blood stable curcumin nanoformulation and immunotherapy for cancer treatment.
Collapse
Affiliation(s)
- Feirong Gong
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Jian-Chao Ma
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Jianguo Jia
- Department of Cardiology, Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fa-Zhan Li
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jiao-Lan Wu
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shanfeng Wang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Xin Teng
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhong-Kai Cui
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Zheng X, Yang X, Lin J, Song F, Shao Y. Low curcumin concentration enhances the anticancer effect of 5-fluorouracil against colorectal cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153547. [PMID: 33812170 DOI: 10.1016/j.phymed.2021.153547] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Colon cancer treatments include surgery, radiotherapy, and chemotherapy. Chemotherapy using 5-fluorouracil (5-FU) has been widely applied to treat colorectal cancer (CRC). However, it is important to explore the use of chemotherapy drugs in combination with other agents to decrease severe adverse effects. PURPOSE This study aimed to investigate the effects of curcumin in combination with 5-FU on the proliferation, migration, and apoptosis of CRC SW620 cell line both in vitro and in vivo. METHODS Flow cytometry was used to study the effect of curcumin on chemotherapy-induced apoptosis in CRC cells. The mechanism of curcumin's enhanced antitumor effect in vivo was investigated using gene knockdown, TUNEL, western blot, qRT-PCR and immunohistochemistry. RESULTS The results showed a synergistic effect of the two compounds on CRC cells. Considerable reduction in the proliferation and migration of SW620 cells was observed in the combination treatment group. Significantly increased apoptosis rate extended the survival of immunodeficient mice in the combination group as compared to that of the 5-FU group (p < 0.05). The results showed that curcumin significantly inhibited pERK signaling and downregulated L1 expression in SW620 cells. CONCLUSIONS We conclude that curcumin promotes chemosensitivity of CRC cells to 5-FU by downregulating L1 expression. Our findings provide experimental evidence for the synergism between curcumin and 5-FU, which can be utilized in clinical applications for reducing the toxicity and adverse effects of 5-FU.
Collapse
Affiliation(s)
- Xiaochun Zheng
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xiuli Yang
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Jingyang Lin
- Department of Cardiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Feifeng Song
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Yanfei Shao
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
14
|
Potential Role of Curcumin and Its Nanoformulations to Treat Various Types of Cancers. Biomolecules 2021; 11:biom11030392. [PMID: 33800000 PMCID: PMC8001478 DOI: 10.3390/biom11030392] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer is a major burden of disease globally. Each year, tens of millions of people are diagnosed with cancer worldwide, and more than half of the patients eventually die from it. Significant advances have been noticed in cancer treatment, but the mortality and incidence rates of cancers are still high. Thus, there is a growing research interest in developing more effective and less toxic cancer treatment approaches. Curcumin (CUR), the major active component of turmeric (Curcuma longa L.), has gained great research interest as an antioxidant, anticancer, and anti-inflammatory agent. This natural compound shows its anticancer effect through several pathways including interfering with multiple cellular mechanisms and inhibiting/inducing the generation of multiple cytokines, enzymes, or growth factors including IκB kinase β (IκKβ), tumor necrosis factor-alpha (TNF-α), signal transducer, and activator of transcription 3 (STAT3), cyclooxygenase II (COX-2), protein kinase D1 (PKD1), nuclear factor-kappa B (NF-κB), epidermal growth factor, and mitogen-activated protein kinase (MAPK). Interestingly, the anticancer activity of CUR has been limited primarily due to its poor water solubility, which can lead to low chemical stability, low oral bioavailability, and low cellular uptake. Delivering drugs at a controlled rate, slow delivery, and targeted delivery are other very attractive methods and have been pursued vigorously. Multiple CUR nanoformulations have also been developed so far to ameliorate solubility and bioavailability of CUR and to provide protection to CUR against hydrolysis inactivation. In this review, we have summarized the anticancer activity of CUR against several cancers, for example, gastrointestinal, head and neck, brain, pancreatic, colorectal, breast, and prostate cancers. In addition, we have also focused on the findings obtained from multiple experimental and clinical studies regarding the anticancer effect of CUR in animal models, human subjects, and cancer cell lines.
Collapse
|
15
|
Garcia-Oliveira P, Otero P, Pereira AG, Chamorro F, Carpena M, Echave J, Fraga-Corral M, Simal-Gandara J, Prieto MA. Status and Challenges of Plant-Anticancer Compounds in Cancer Treatment. Pharmaceuticals (Basel) 2021; 14:ph14020157. [PMID: 33673021 PMCID: PMC7918405 DOI: 10.3390/ph14020157] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 12/12/2022] Open
Abstract
Nowadays, cancer is one of the deadliest diseases in the world, which has been estimated to cause 9.9 million deaths in 2020. Conventional treatments for cancer commonly involve mono-chemotherapy or a combination of radiotherapy and mono-chemotherapy. However, the negative side effects of these approaches have been extensively reported and have prompted the search of new therapeutic drugs. In this context, scientific community started to look for innovative sources of anticancer compounds in natural sources, including traditional plants. Currently, numerous studies have evaluated the anticancer properties of natural compounds derived from plants, both in vitro and in vivo. In pre-clinical stages, some promising compounds could be mentioned, such as the sulforaphane or different phenolic compounds. On the other hand, some phytochemicals obtained positive results in clinical stages and were further approved for cancer treatment, such as vinca alkaloids or the paclitaxel. Nevertheless, these compounds are not exempt of limitations, such as low solubility, restricted effect on their own, negative side-effects, etc. This review aims to compile the information about the current phytochemicals used for cancer treatment and also promising candidates, main action mechanisms and also reported limitations. In this sense, some strategies to face the limitations have been considered, such as nano-based formulations to improve solubility or chemical modification to reduce toxicity. In conclusion, although more research is still necessary to develop more efficient and safe phytochemical drugs, more of these compounds might be used in future cancer therapies.
Collapse
Affiliation(s)
- Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolonia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Paz Otero
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
| | - Antia Gonzalez Pereira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolonia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Franklin Chamorro
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
| | - Maria Carpena
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
| | - Javier Echave
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
| | - Maria Fraga-Corral
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolonia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
- Correspondence: (J.S.-G.); (M.A.P.)
| | - Miguel Angel Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
- Correspondence: (J.S.-G.); (M.A.P.)
| |
Collapse
|
16
|
Ambreen G, Duse L, Tariq I, Ali U, Ali S, Pinnapireddy SR, Bette M, Bakowsky U, Mandic R. Sensitivity of Papilloma Virus-Associated Cell Lines to Photodynamic Therapy with Curcumin-Loaded Liposomes. Cancers (Basel) 2020; 12:cancers12113278. [PMID: 33167593 PMCID: PMC7694491 DOI: 10.3390/cancers12113278] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Globally, the burden of papilloma virus-associated cancers is high. About 5% of all cancers worldwide are caused by the human papillomavirus (HPV). Photodynamic therapy (PDT) is considered as a useful therapeutic option to treat cancers, particularly those near the tissue surface, since it is typically well tolerated and less invasive with a lower risk of severe complications as compared to conventional treatment strategies. PDT requires the combination of a photosensitizer, light of a specific wavelength, and tissue oxygen. In the present study, we examined the effectiveness of PDT together with a curcumin (liposome)-based photosensitizer in three papilloma virus-associated cell lines. PDT with curcumin liposomes could inhibit proliferation, cell migration, and colony formation of the tested tumor cells. The results suggest that curcumin-encapsulated liposomes in conjunction with PDT could be a useful tool for the treatment of papilloma virus-associated tumors. Abstract Photodynamic therapy (PDT) is a minimally invasive therapeutic approach used in the treatment of various medical conditions and cancerous diseases, involving light, a photosensitizing substance, and oxygen. Curcumin, a naturally occurring compound, carries antitumor activities and potentially could be exploited as a photosensitizer in PDT. Only little is known about liposomal-encapsulated curcumin that could help in increasing the efficacy, stability, and bioavailability of this compound. This study investigates the in vitro effects of curcumin-loaded liposomes in combination with PDT. Three papilloma virus-associated cell lines were treated with curcumin-loaded liposomes corresponding to a curcumin concentration of 0–100 µmol/L for 4 h followed by illumination at 457 nm (blue) for 45, 136, and 227 s at a fluence of 220.2 W/m2 (100 mA) corresponding to 1, 3 and 5 J·cm−2. After 24 h, the biological outcome of the treatment was assessed with the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), SYTO9/PI (propidium iodide), Annexin V-FITC (fluorescein isothiocyanate)/PI, clonogenic survival, and scratch (wound closure) assays. Photoactivation of curcumin-loaded liposomes led to a significant reduction in colony formation and migratory abilities, as well as to an increase in tumor cell death. The results point to the combination of curcumin-loaded liposomes with PDT as a potentially useful tool for the treatment of papillomavirus-associated malignancies.
Collapse
Affiliation(s)
- Ghazala Ambreen
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, 35037 Marburg, Germany; (G.A.); (L.D.); (I.T.); (U.A.); (S.A.); (S.R.P.)
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-Universität Marburg, 35033 Marburg, Germany
| | - Lili Duse
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, 35037 Marburg, Germany; (G.A.); (L.D.); (I.T.); (U.A.); (S.A.); (S.R.P.)
| | - Imran Tariq
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, 35037 Marburg, Germany; (G.A.); (L.D.); (I.T.); (U.A.); (S.A.); (S.R.P.)
- Punjab University College of Pharmacy, University of the Punjab, Allama Iqbal Campus, 54000 Lahore, Pakistan
| | - Uzma Ali
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, 35037 Marburg, Germany; (G.A.); (L.D.); (I.T.); (U.A.); (S.A.); (S.R.P.)
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-Universität Marburg, 35033 Marburg, Germany
| | - Sajid Ali
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, 35037 Marburg, Germany; (G.A.); (L.D.); (I.T.); (U.A.); (S.A.); (S.R.P.)
- Faculty of Pharmacy, The University of Lahore, 54000 Lahore, Pakistan
| | - Shashank R. Pinnapireddy
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, 35037 Marburg, Germany; (G.A.); (L.D.); (I.T.); (U.A.); (S.A.); (S.R.P.)
- CSL Behring GmbH, 35041 Marburg, Germany
| | - Michael Bette
- Institute of Anatomy and Cell Biology, Philipps-Universität Marburg, 35037 Marburg, Germany;
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, 35037 Marburg, Germany; (G.A.); (L.D.); (I.T.); (U.A.); (S.A.); (S.R.P.)
- Correspondence: (U.B.); (R.M.); Tel.: +4964212825884 (U.B.); +4964215861400 (R.M.)
| | - Robert Mandic
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-Universität Marburg, 35033 Marburg, Germany
- Correspondence: (U.B.); (R.M.); Tel.: +4964212825884 (U.B.); +4964215861400 (R.M.)
| |
Collapse
|
17
|
Curcumin induces chemosensitization to doxorubicin in Duke's type B coloadenocarcinoma cell line. Mol Biol Rep 2020; 47:7883-7892. [PMID: 33025506 DOI: 10.1007/s11033-020-05866-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022]
Abstract
Cancer cells require higher levels of ATP for their sustained growth, proliferation, and chemoresistance. Mitochondrial matrix protein, C1qbp is upregulated in colon cancer cell lines. It protects the mitochondria from oxidative stress, by inhibiting the Membrane Permeability Transition (MPT) pore and providing uninterrupted synthesis of ATP. This intracellular interaction of C1qbp could be involved in chemoresistance development. Natural chemosensitizing agent, curcumin has been used in the treatment of multiple cancers. In this current study, we elucidate the role of C1qbp during curcumin induced chemosensitization to doxorubicin resistant colon cancer cells. The possible interaction between C1qbp and curcumin was determined using bioinformatics tools-AutoDock, SYBYL, and PyMol. Intracellular doxorubicin accumulation by fluorimetry and dead cell count was carried out to determine development of chemoresistance. Effect of curcumin treatment and cytotoxicity was measured by MTT and lactate dehydrogenase release. Morphological analysis by phase contrast microscopy and colony forming ability by colonogenic assay were also performed. In addition, Cox-2 could mediate P-glycoprotein upregulation via phosphorylation of c-Jun. Thus, the gene level expression of P-glycoprotein and Cox-2 was also investigated using PCR. Through molecular docking we identified possible interaction between curcumin and C1qbp. We observed development of chemoresistance upon 6th day treatment. Concentration dependent alleviation of chemoresistance development by curcumin was confirmed and was found to reduce gene level expression of P-glycoprotein and Cox-2. Hence, curcumin could interact directly with C1qbp protein and this interaction could contribute to the chemosensiting effect to doxorubicin in colon cancer cells.
Collapse
|
18
|
Najafi M, Mortezaee K, Rahimifard M, Farhood B, Haghi-Aminjan H. The role of curcumin/curcuminoids during gastric cancer chemotherapy: A systematic review of non-clinical study. Life Sci 2020; 257:118051. [DOI: 10.1016/j.lfs.2020.118051] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023]
|
19
|
Bahrami A, A Ferns G. Effect of Curcumin and Its Derivates on Gastric Cancer: Molecular Mechanisms. Nutr Cancer 2020; 73:1553-1569. [PMID: 32814463 DOI: 10.1080/01635581.2020.1808232] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Gastric carcinoma is one of the most prevalent malignancies and is associated with a high mortality. Chemotherapy is the principal therapeutic option in the treatment of gastric cancer, but its success rate is restricted by severe side effects and the prevalence of chemo-resistance. Curcumin is a polyphenolic compound derived from turmeric that has potent antioxidant, anti-inflammatory and anti-tumor effects. There is accumulating evidence that curcumin may prevent gastric cancer through regulation of oncogenic pathways. Furthermore some curcumin analogues and novel formulation of curcumin appear to have anti-tumor activity. The aim of this review was to give an overview of the therapeutic potential of curcumin and its derivatives against gastric cancer in preclinical and clinical studies.
Collapse
Affiliation(s)
- Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, Sussex, UK
| |
Collapse
|
20
|
Tinoush B, Shirdel I, Wink M. Phytochemicals: Potential Lead Molecules for MDR Reversal. Front Pharmacol 2020; 11:832. [PMID: 32636741 PMCID: PMC7317022 DOI: 10.3389/fphar.2020.00832] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/20/2020] [Indexed: 12/14/2022] Open
Abstract
Multidrug resistance (MDR) is one of the main impediments in the treatment of cancers. MDR cancer cells are resistant to multiple anticancer drugs. One of the major mechanisms of MDR is the efflux of anticancer drugs by ABC transporters. Increased activity and overexpression of these transporters are important causes of drug efflux and, therefore, resistance to cancer chemotherapy. Overcoming MDR is a fundamental prerequisite for developing an efficient treatment of cancer. To date, various types of ABC transporter inhibitors have been employed but no effective anticancer drug is available at present, which can completely overcome MDR. Phytochemicals can reverse MDR in cancer cells via affecting the expression or activity of ABC transporters, and also through exerting synergistic interactions with anticancer drugs by addressing additional molecular targets. We have listed numerous phytochemicals which can affect the expression and activity of ABC transporters in MDR cancer cell lines. Phytochemicals in the groups of flavonoids, alkaloids, terpenes, carotenoids, stilbenoids, lignans, polyketides, and curcuminoids have been examined for MDR-reversing activity. The use of MDR-reversing phytochemicals with low toxicity to human in combination with effective anticancer agents may result in successful treatment of chemotherapy-resistant cancer. In this review, we summarize and discuss published evidence for natural products with MDR modulation abilities.
Collapse
Affiliation(s)
- Boshra Tinoush
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Iman Shirdel
- Marine Sciences Faculty, Tarbiat Modares University, Noor, Iran
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
21
|
Khatoon E, Banik K, Harsha C, Sailo BL, Thakur KK, Khwairakpam AD, Vikkurthi R, Devi TB, Gupta SC, Kunnumakkara AB. Phytochemicals in cancer cell chemosensitization: Current knowledge and future perspectives. Semin Cancer Biol 2020; 80:306-339. [DOI: 10.1016/j.semcancer.2020.06.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
|
22
|
Xu T, Guo P, He Y, Pi C, Wang Y, Feng X, Hou Y, Jiang Q, Zhao L, Wei Y. Application of curcumin and its derivatives in tumor multidrug resistance. Phytother Res 2020; 34:2438-2458. [PMID: 32255545 DOI: 10.1002/ptr.6694] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/27/2020] [Accepted: 03/22/2020] [Indexed: 12/16/2022]
Abstract
Malignant tumor endangers seriously the health of all mankind. Multidrug resistance (MDR) is one of the main causes of clinical tumor chemotherapy failure. Curcumin (CUR) has not only antitumor activity but also reversing tumor MDR effect. CUR reverses tumor MDR via regulating related signal pathways or corresponding expressed proteins or gene. When combined with chemotherapeutic agents, CUR can be a chemotherapeutic sensitive agent to enhance chemotherapy efficacy and weaken tumor MDR. On the other hand, to improve the MDR reversal effect of CUR, its derivatives have been extensively studied. Therefore, this article mainly focuses on reviewing the application of CUR and its derivatives in MDR and its mechanism of reversing MDR.
Collapse
Affiliation(s)
- Ting Xu
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Pu Guo
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yingmeng He
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Chao Pi
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yuanyuan Wang
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Xianhu Feng
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yi Hou
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Qingsheng Jiang
- School of International Education, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Ling Zhao
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yumeng Wei
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| |
Collapse
|
23
|
Stanković T, Dinić J, Podolski-Renić A, Musso L, Burić SS, Dallavalle S, Pešić M. Dual Inhibitors as a New Challenge for Cancer Multidrug Resistance Treatment. Curr Med Chem 2019; 26:6074-6106. [PMID: 29874992 DOI: 10.2174/0929867325666180607094856] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/28/2018] [Accepted: 05/28/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Dual-targeting in cancer treatment by a single drug is an unconventional approach in relation to drug combinations. The rationale for the development of dualtargeting agents is to overcome incomplete efficacy and drug resistance frequently present when applying individual targeting agents. Consequently, -a more favorable outcome of cancer treatment is expected with dual-targeting strategies. METHODS We reviewed the literature, concentrating on the association between clinically relevant and/or novel dual inhibitors with the potential to modulate multidrug resistant phenotype of cancer cells, particularly the activity of P-glycoprotein. A balanced analysis of content was performed to emphasize the most important findings and optimize the structure of this review. RESULTS Two-hundred and forty-five papers were included in the review. The introductory part was interpreted by 9 papers. Tyrosine kinase inhibitors' role in the inhibition of Pglycoprotein and chemosensitization was illustrated by 87 papers. The contribution of naturalbased compounds in overcoming multidrug resistance was reviewed using 92 papers, while specific dual inhibitors acting against microtubule assembling and/or topoisomerases were described with 55 papers. Eleven papers gave an insight into a novel and less explored approach with hybrid drugs. Their influence on P-glycoprotein and multidrug resistance was also evaluated. CONCLUSION These findings bring into focus rational anticancer strategies with dual-targeting agents. Most evaluated synthetic and natural drugs showed a great potential in chemosensitization. Further steps in this direction are needed for the optimization of anticancer treatment.
Collapse
Affiliation(s)
- Tijana Stanković
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Jelena Dinić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Loana Musso
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Universita degli Studi di Milano, Milano, Italy
| | - Sonja Stojković Burić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Sabrina Dallavalle
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Universita degli Studi di Milano, Milano, Italy
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| |
Collapse
|
24
|
Cho CJ, Yang CW, Wu CL, Ho JY, Yu CP, Wu ST, Yu DS. The modulation study of multiple drug resistance in bladder cancer by curcumin and resveratrol. Oncol Lett 2019; 18:6869-6876. [PMID: 31807190 DOI: 10.3892/ol.2019.11023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 07/10/2019] [Indexed: 01/16/2023] Open
Abstract
Gemcitabine (GCB), which functions via the inhibition of DNA synthesis, is commonly used in the treatment of bladder cancer; however, its response rate is not satisfactory due to the development of drug resistance. The potential for phytochemicals to reverse drug resistance in bladder cancer tumor cells was evaluated. A human bladder cancer cell line, T24, was cultured, and GCB-resistant cells (T24-GCB) were also established. The acquired resistance of T24-GCB to GCB was measured using an MTT assay. The gene expression of ATP-binding cassette (ABC) transporter protein family members was analyzed using reverse transcription-quantitative PCR analysis, and western blotting was performed to verify ABC family protein, cytoplasmic thymidine kinase (TK) and poly (ADP-ribose) polymerase (PARP) expression on whole cell lysates. Subsequently, resveratrol and curcumin were used to evaluate their modulation potential in decreasing the drug resistance of T24-GCB cells to GCB using MTT and migration assays. T24-GCB cells have increased drug resistance ability, with an 18.75-fold higher ID50 value compared with native T24 cells (105 vs. 5.6 nM). T24-GCB cells also exhibit increased cross resistance to mitomycin C and paclitaxel. The mRNA expression of ABCC2 in T24-GCB cells increased compared with that in native T24 cells. Via western blot analysis, it was determined that the expression of ABCC2 protein was also increased in T24-GCB cells. Conversely, the expression of ABCB1, ABCG2, deoxycytidine kinase (DCK), TK1 and TK2 decreased. Following curcumin and resveratrol treatment alone or combined with GCB, additive cytotoxic enhancement was observed, and the migratory abilities of T24-GCB cells were significantly decreased. Western blot analysis revealed that ABCC2 protein expression increased, and DCK, TK1 and TK2 expression decreased following co-treatment of T24-GCB cells with GCB + curcumin or resveratrol compared with GCB alone. Of note, there was a marked increase in cleaved-PARP expression in T24-GCB cells treated with a combination of GCB + curcumin or resveratrol. Both curcumin and resveratrol could reverse the drug resistance of T24-GCB cells in an additive pattern though PARP enhancement without changes in ABCC2 and DCK, TK1 and TK2 expression.
Collapse
Affiliation(s)
- Chun-Jung Cho
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei 114, Taiwan, R.O.C.,Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan, R.O.C
| | - Ching-Wei Yang
- Department of Urology, Cheng-Hsin General Hospital, Taipei 112, Taiwan, R.O.C
| | - Chia-Lun Wu
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan, R.O.C
| | - Jar-Yi Ho
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei 114, Taiwan, R.O.C.,Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan, R.O.C
| | - Cheng-Ping Yu
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei 114, Taiwan, R.O.C
| | - Sheng-Tang Wu
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan, R.O.C
| | - Dah-Shyong Yu
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan, R.O.C
| |
Collapse
|
25
|
Kocer Z, Aru B, Sezer UA, Demirel GY, Beker U, Sezer S. Process optimisation, biocompatibility and anti-cancer efficacy of curcumin loaded gelatine microparticles cross-linked with dialdeyhde carboxymethyl cellulose. J Microencapsul 2019; 36:485-499. [DOI: 10.1080/02652048.2019.1646337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Zeynep Kocer
- Department of Chemical Engineering, Yildiz Technical University, Istanbul, Turkey
- Institute of Chemical Technology, TUBITAK Marmara Research Center, Kocaeli, Turkey
| | - Basak Aru
- Department of Immunology, Faculty of medicine, Yeditepe University, Istanbul, Turkey
| | - Umran Aydemir Sezer
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Medicine, Medical Device and Dermocosmetic Research and Application Laboratory-IDAL, Isparta, Turkey
- YETEM, Innovative Technologies Research and Application Center, Suleyman Demirel University, Isparta, Turkey
| | | | - Ulker Beker
- Department of Chemical Engineering, Yildiz Technical University, Istanbul, Turkey
- Institute of Chemical Technology, TUBITAK Marmara Research Center, Kocaeli, Turkey
| | - Serdar Sezer
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Medicine, Medical Device and Dermocosmetic Research and Application Laboratory-IDAL, Isparta, Turkey
- YETEM, Innovative Technologies Research and Application Center, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
26
|
Jakubek M, Kejík Z, Kaplánek R, Hromádka R, Šandriková V, Sýkora D, Antonyová V, Urban M, Dytrych P, Mikula I, Martásek P, Král V. Strategy for improved therapeutic efficiency of curcumin in the treatment of gastric cancer. Biomed Pharmacother 2019; 118:109278. [PMID: 31387004 DOI: 10.1016/j.biopha.2019.109278] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 02/08/2023] Open
Abstract
Gastric cancer is a common oncological disease. Although enormous efforts have been expended, possible therapeutic modalities are still limited. For this reason, new therapeutic approaches and agents are highly requested and intensively developed. One strategy is the application of natural agents, such as curcumin, with proven anticancer effects and low toxicity for patients. Therefore, this review discusses the potential application of curcumin in the therapy of gastric cancer and its potential incorporation in therapeutic regimens. Because one of the largest impediments for widespread curcumin application is its limited bioavailability (caused mainly by its very low water solubility), studied strategies (drug delivery systems and curcumin derivatization) aimed to solve this obstacle are discussed in more detail.
Collapse
Affiliation(s)
- Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 121 00 Prague 2, Czech Republic; Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 121 00 Prague 2, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Róbert Hromádka
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Research and Development Center C2P s.r.o., Jungmannova 101, 503 51 Chlumec nad Cidlinou, Czech Republic
| | - Viera Šandriková
- Research and Development Center C2P s.r.o., Jungmannova 101, 503 51 Chlumec nad Cidlinou, Czech Republic
| | - David Sýkora
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Veronika Antonyová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 121 00 Prague 2, Czech Republic
| | - Marian Urban
- Food Research Institute Prague, Radiová 1285/7, 1285/7, Prague 10, Czech Republic
| | - Petr Dytrych
- 1st Department of Surgery - Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08 Prague 2, Czech Republic
| | - Ivan Mikula
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Pavel Martásek
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 121 00 Prague 2, Czech Republic
| | - Vladimír Král
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 121 00 Prague 2, Czech Republic; Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| |
Collapse
|
27
|
Hassanalilou T, Ghavamzadeh S, Khalili L. Curcumin and Gastric Cancer: a Review on Mechanisms of Action. J Gastrointest Cancer 2019; 50:185-192. [DOI: 10.1007/s12029-018-00186-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
28
|
Costea T, Hudiță A, Ciolac OA, Gălățeanu B, Ginghină O, Costache M, Ganea C, Mocanu MM. Chemoprevention of Colorectal Cancer by Dietary Compounds. Int J Mol Sci 2018; 19:E3787. [PMID: 30487390 PMCID: PMC6321468 DOI: 10.3390/ijms19123787] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/18/2018] [Accepted: 11/23/2018] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is one of the leading causes of death, and the third most diagnosed type of cancer, worldwide. It is most common amongst men and women over 50 years old. Risk factors include smoking, alcohol, diet, physical inactivity, genetics, alterations in gut microbiota, and associated pathologies (diabetes, obesity, chronic inflammatory bowel diseases). This review will discuss, in detail, the chemopreventive properties of some dietary compounds (phenolic compounds, carotenoids, iridoids, nitrogen compounds, organosulfur compounds, phytosterols, essential oil compounds, polyunsaturated fatty acids and dietary fiber) against colorectal cancer. We present recent data, focusing on in vitro, laboratory animals and clinical trials with the previously mentioned compounds. The chemopreventive properties of the dietary compounds involve multiple molecular and biochemical mechanisms of action, such as inhibition of cell growth, inhibition of tumor initiation, inhibition of adhesion, migration and angiogenesis, apoptosis, interaction with gut microbiota, regulation of cellular signal transduction pathways and xenobiotic metabolizing enzymes, etc. Moreover, this review will also focus on the natural dietary compounds' bioavailability, their synergistic protective effect, as well as the association with conventional therapy. Dietary natural compounds play a major role in colorectal chemoprevention and continuous research in this field is needed.
Collapse
Affiliation(s)
- Teodora Costea
- Department of Pharmacognosy, Phytochemistry and Phytotherapy, "Carol Davila" University of Medicine and Pharmacy, 020956 Bucharest, Romania.
| | - Ariana Hudiță
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Oana-Alina Ciolac
- Department of Biophysics, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Bianca Gălățeanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Octav Ginghină
- Department of Surgery, "Sf. Ioan" Emergency Clinical Hospital, 042122 Bucharest, Romania.
- Department II, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, 030167 Bucharest, Romania.
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Constanța Ganea
- Department of Biophysics, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Maria-Magdalena Mocanu
- Department of Biophysics, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| |
Collapse
|
29
|
Yamawaki C, Oyama M, Yamaguchi Y, Ogita A, Tanaka T, Fujita KI. Curcumin potentiates the fungicidal effect of dodecanol by inhibiting drug efflux in wild-type budding yeast. Lett Appl Microbiol 2018; 68:17-23. [PMID: 30276838 DOI: 10.1111/lam.13083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/18/2018] [Accepted: 09/27/2018] [Indexed: 12/01/2022]
Abstract
Drug resistance commonly occurs when treating immunocompromised patients who have fungal infections. Curcumin, is a compound isolated from Curcuma longa, has been reported to inhibit drug efflux in several human cell lines and nonpathogenic budding yeast Saccharomyces cerevisiae cells that overexpresses the ATP-binding cassette (ABC) transporters S. cerevisiae Pdr5p and pathogenic Candida albicans Cdr1p and Cdr2p. The aim of this study was to examine the effects of curcumin on multidrug resistance in a wild-type strain of the budding yeast with an intrinsic expression system of multidrug efflux-related genes. The antifungal activity of dodecanol alone was temporary against S. cerevisiae; however, restoration of cell viability was completely inhibited when the cells were co-treated with dodecanol and curcumin. Furthermore, restriction of rhodamine 6G (R6G) efflux from the cells and intracellular accumulation of R6G were observed with curcumin treatment. Reverse transcription-polymerase chain reaction analysis revealed that curcumin reduced the dodecanol-induced overexpression of the ABC transporter-related genes PDR1, PDR3 and PDR5 to their control levels in untreated cells. Curcumin can directly restrict the glucose-induced drug efflux and inhibits the expression of the ABC transporter gene PDR5, and can thereby inhibit the efflux of dodecanol from S. cerevisiae cells. Curcumin is effective in potentiating the efficacy of antifungal drugs via its effects on ABC transporters. SIGNIFICANCE AND IMPACT OF THE STUDY: Drug resistance is common in immunocompromised patients with fungal infections. Curcumin, isolated from Curcuma longa, inhibits drug efflux in nonpathogenic budding yeast Saccharomyces cerevisiae cells overexpressing ABC transporters S. cerevisiae Pdr5p and pathogenic Candida albicans Cdr1p and Cdr2p. We examined the effects of curcumin on multidrug resistance in a wild-type strain of the budding yeast with an intrinsic expression system of multidrug efflux-related genes. Curcumin directly inhibited drug efflux and also suppressed the PDR5 expression, thereby enhancing the antifungal effects. Thus, curcumin potentially promotes the efficacy of antifungals via its effects on ABC transporters in wild-type fungal strains.
Collapse
Affiliation(s)
- C Yamawaki
- Graduate School of Science, Osaka City University, Osaka, Japan
| | - M Oyama
- Graduate School of Science, Osaka City University, Osaka, Japan
| | - Y Yamaguchi
- Graduate School of Science, Osaka City University, Osaka, Japan.,Advanced Research Institute for Natural Science and Technology, Osaka City University, Osaka, Japan
| | - A Ogita
- Graduate School of Science, Osaka City University, Osaka, Japan.,Research Center for Urban Health and Sports, Osaka City University, Osaka, Japan
| | - T Tanaka
- Graduate School of Science, Osaka City University, Osaka, Japan
| | - K-I Fujita
- Graduate School of Science, Osaka City University, Osaka, Japan
| |
Collapse
|
30
|
Wei Y, Yang P, Cao S, Zhao L. The combination of curcumin and 5-fluorouracil in cancer therapy. Arch Pharm Res 2017; 41:1-13. [PMID: 29230689 DOI: 10.1007/s12272-017-0979-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 10/26/2017] [Indexed: 12/29/2022]
Abstract
5-Fluorouracil (5-FU) alone or in combination with other therapeutic drugs has been widely used for clinical treatment of various cancers. However, 5-FU-based chemotherapy has limited anticancer efficacy in clinic due to multidrug resistance and dose-limiting cytotoxicity. Some molecules and genes in cancer cells, such as nuclear factor kappa B, insulin-like growth factor-1 receptor, epidermal growth factor receptor, cyclooxygenase-2, signal transducer and activator of transcription 3, phosphatase and tensin homolog deleted on chromosome ten and Bcl-2 etc. are related to the chemoresistance and sensitivity of cancer cells to 5-FU. The activation of these molecules and genes expressions in cancer cells will be increased or decreased with long-term exposure of 5-FU. Curcumin has been found to be able to negatively regulate these processes. In order to overcome the problems of 5-FU, curcumin has been used to combine with 5-FU in cancer therapy.
Collapse
Affiliation(s)
- Yumeng Wei
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, No.3-5, Zhongshan Road, Jiangyang District, Luzhou, Sichuan, 646000, China
| | - Panjing Yang
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646099, China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, 3-319 Zhongshan Road, Luzhou, Sichuan, 646000, China.
| | - Ling Zhao
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, No.3-5, Zhongshan Road, Jiangyang District, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
31
|
Saranya TS, Rajan VK, Biswas R, Jayakumar R, Sathianarayanan S. Synthesis, characterisation and biomedical applications of curcumin conjugated chitosan microspheres. Int J Biol Macromol 2017; 110:227-233. [PMID: 29229242 DOI: 10.1016/j.ijbiomac.2017.12.044] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/16/2017] [Accepted: 12/06/2017] [Indexed: 12/20/2022]
Abstract
Curcumin is a diaryl heptanoid of curcuminoids class obtained from Curcuma longa. It possesses various biological activities like anti-inflammatory, hypoglycemic, antioxidant, wound-healing, and antimicrobial activities. Chitosan is a biocompatible, biodegradable and non-toxic natural polymer which enhances the adhesive property of the skin. Chemical conjugation will leads to sustained release action and to enhance the bioavailability. This study aims to synthesis and characterize biocompatible curcumin conjugated chitosan microspheres for bio-medical applications. The Schiff base reaction was carried out for the preparation of curcumin conjugated chitosan by microwave method and it was characterised using FTIR and NMR. Curcumin conjugated chitosan microspheres (CCCMs) were prepared by wet milling solvent evaporation method. SEM analysis showed these CCCMs were 2-5μm spherical particles. The antibacterial activities of the prepared CCCMs were studied against Staphylococcus aureus and Escherichia coli, the zone of inhibition was 28mm and 23mm respectively. Antioxidant activity of the prepared CCCMs was also studied by DPPH and H2O2 method it showed IC50 esteem value of 216μg/ml and 228μg/ml, and anti-inflammatory activity results showed that CCCMs having IC50 value of 45μg/ml. The results conclude that the CCCMs having a good antibacterial, antioxidant and anti-inflammatory activities. This, the prepared CCCMs have potential application in preventing skin infections.
Collapse
Affiliation(s)
- T S Saranya
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - V K Rajan
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Raja Biswas
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - R Jayakumar
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041, India.
| | - S Sathianarayanan
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India.
| |
Collapse
|
32
|
Adiwidjaja J, McLachlan AJ, Boddy AV. Curcumin as a clinically-promising anti-cancer agent: pharmacokinetics and drug interactions. Expert Opin Drug Metab Toxicol 2017; 13:953-972. [PMID: 28776444 DOI: 10.1080/17425255.2017.1360279] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Curcumin has been extensively studied for its anti-cancer properties. While a diverse array of in vitro and preclinical research support the prospect of curcumin use as an anti-cancer therapeutic, most human studies have failed to meet the intended clinical expectation. Poor systemic availability of orally-administered curcumin may account for this disparity. Areas covered: This descriptive review aims to concisely summarise available clinical studies investigating curcumin pharmacokinetics when administered in different formulations. A critical analysis of pharmacokinetic- and pharmacodynamic-based interactions of curcumin with concomitantly administered drugs is also provided. Expert opinion: The encouraging clinical results of curcumin administration are currently limited to people with colorectal cancer, given that sufficient curcumin concentrations persist in colonic mucosa. Higher parent curcumin systemic exposure, which can be achieved by several newer formulations, has important implications for optimal treatment of cancers other than those in gastrointestinal tract. Curcumin-drug pharmacokinetic interactions are also almost exclusively in the enterocytes, owing to extensive first pass metabolism and poor curcumin bioavailability. Greater scope of these interactions, i.e. modulation of the systemic elimination of co-administered drugs, may be expected from more-bioavailable curcumin formulations. Further studies are still warranted, especially with newer formulations to support the inclusion of curcumin in cancer therapy regimens.
Collapse
Affiliation(s)
- Jeffry Adiwidjaja
- a Faculty of Pharmacy , The University of Sydney , Sydney , Australia
| | - Andrew J McLachlan
- a Faculty of Pharmacy , The University of Sydney , Sydney , Australia.,b Centre for Education and Research on Ageing , Concord Repatriation General Hospital , Concord , Australia
| | - Alan V Boddy
- a Faculty of Pharmacy , The University of Sydney , Sydney , Australia
| |
Collapse
|
33
|
Raveendran R, Mullen KM, Wellard RM, Sharma CP, Hoogenboom R, Dargaville TR. Poly(2-oxazoline) block copolymer nanoparticles for curcumin loading and delivery to cancer cells. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.02.043] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Understanding the Effectiveness of Natural Compound Mixtures in Cancer through Their Molecular Mode of Action. Int J Mol Sci 2017; 18:ijms18030656. [PMID: 28304343 PMCID: PMC5372668 DOI: 10.3390/ijms18030656] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/13/2017] [Accepted: 03/15/2017] [Indexed: 12/19/2022] Open
Abstract
Many approaches to cancer management are often ineffective due to adverse reactions, drug resistance, or inadequate target specificity of single anti-cancer agents. In contrast, a combinatorial approach with the application of two or more anti-cancer agents at their respective effective dosages can achieve a synergistic effect that boosts cytotoxicity to cancer cells. In cancer, aberrant apoptotic pathways allow cells that should be killed to survive with genetic abnormalities, leading to cancer progression. Mutations in apoptotic mechanism arising during the treatment of cancer through cancer progression can consequently lead to chemoresistance. Natural compound mixtures that are believed to have multiple specific targets with minimal acceptable side-effects are now of interest to many researchers due to their cytotoxic and chemosensitizing activities. Synergistic interactions within a drug mixture enhance the search for potential molecular targets in cancer cells. Nonetheless, biased/flawed scientific evidence from natural products can suggest false positive therapeutic benefits during drug screening. In this review, we have taken these factors into consideration when discussing the evidence for these compounds and their synergistic therapeutic benefits in cancer. While there is limited evidence for clinical efficacy for these mixtures, in vitro data suggest that these preparations merit further investigation, both in vitro and in vivo.
Collapse
|
35
|
Gong F, Chen D, Teng X, Ge J, Ning X, Shen YL, Li J, Wang S. Curcumin-Loaded Blood-Stable Polymeric Micelles for Enhancing Therapeutic Effect on Erythroleukemia. Mol Pharm 2017; 14:2585-2594. [PMID: 28199114 DOI: 10.1021/acs.molpharmaceut.6b01171] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Curcumin has high potential in suppressing many types of cancer and overcoming multidrug resistance in a multifaceted manner by targeting diverse molecular targets. However, the rather low systemic bioavailability resulted from its poor solubility in water and fast metabolism/excretion in vivo has hampered its applications in cancer therapy. To increase the aqueous solubility of curcumin while retaining the stability in blood circulation, here we report curcumin-loaded copolymer micelles with excellent in vitro and in vivo stability and antitumor efficacy. The two copolymers used for comparison were methoxy-poly(ethylene glycol)-block-poly(ε-caprolactone) (mPEG-PCL) and N-(tert-butoxycarbonyl)-l-phenylalanine end-capped mPEG-PCL (mPEG-PCL-Phe(Boc)). In vitro cytotoxicity evaluation against human pancreatic SW1990 cell line showed that the delivery of curcumin in mPEG-PCL-Phe(Boc) micelles to cancer cells was efficient and dosage-dependent. The pharmacokinetics in ICR mice indicated that intravenous (i.v.) administration of curcumin/mPEG-PCL-Phe(Boc) micelles could retain curcumin in plasma much better than curcumin/mPEG-PCL micelles. Biodistribution results in Sprague-Dawley rats also showed higher uptake and slower elimination of curcumin into liver, lung, kidney, and brain, and lower uptake into heart and spleen of mPEG-PCL-Phe(Boc) micelles, as compared with mPEG-PCL micelles. Further in vivo efficacy evaluation in multidrug-resistant human erythroleukemia K562/ADR xenograft model revealed that i.v. administration of curcumin-loaded mPEG-PCL-Phe(Boc) micelles significantly delayed tumor growth, which was attributed to the improved stability of curcumin in the bloodstream and increased systemic bioavailability. The mPEG-PCL-Phe(Boc) micellar system is promising in overcoming the key challenge of curcumin's to promote its applications in cancer therapy.
Collapse
Affiliation(s)
- Feirong Gong
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology , Shanghai 200237, China
| | - Dan Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, School of Biotechnology, East China University of Science and Technology , Shanghai 200237, China
| | - Xin Teng
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology , Shanghai 200237, China
| | - Junhua Ge
- Department of Cardiology, The Affiliated Hospital of Qingdao University , Qingdao 266003, China
| | - Xianfeng Ning
- Department of Cardiology, The Affiliated Hospital of Qingdao University , Qingdao 266003, China
| | - Ya-Ling Shen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, School of Biotechnology, East China University of Science and Technology , Shanghai 200237, China
| | - Jian Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University , Qingdao 266003, China
| | - Shanfeng Wang
- Department of Materials Science and Engineering, The University of Tennessee , Knoxville, Tennessee 37996, United States
| |
Collapse
|
36
|
Ebrahimifar M, Hasanzadegan Roudsari M, Kazemi SM, Ebrahimi Shahmabadi H, Kanaani L, Alavi SA, Izadi Vasfi M. Enhancing Effects of Curcumin on Cytotoxicity of Paclitaxel, Methotrexate and Vincristine in Gastric Cancer Cells. Asian Pac J Cancer Prev 2017; 18:65-68. [PMID: 28240011 PMCID: PMC5563121 DOI: 10.22034/apjcp.2017.18.1.65] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Curcumin (Diferuloylmethane), a polyphenolic compound with antioxidant, anti-inflammatory and anticancer properties, has been found to increase chemotherapeutic agents-induced cytotoxicity in some resistant cancer cell lines. This investigation aimed to study the effects of curcumin on efficacy of some common anticancer agents in gastric cancer cells. AGS cells were cultured in RPMI-1640 medium under standard culture conditions (5% CO2 and 95% humidified air at 37°C). Curcumin was used at concentrations of 5, 15, 30 and 50 µM. Cells were treated with a combination of curcumin and paclitaxel (300 nm) or methotrexate (100 µm) or vincristine (5 nm). Cell viability, the percentage of live cells in the whole population, was evaluated by MTT assay after 48 hours. The results showed that cell viability was significantly decreased after incubation of AGS cells with curcumin. Combination with curcumin (15-50 µm) significantly increased cytotoxicity of all three agents (P<0.001). Regarding high anticancer potential and enhancement of chemotherapeutic agent-induced cytotoxicity, the combined use of curcumin with standard chemotherapy of gastric cancer is suggested as a strategy for better management of this fatal cancer.
Collapse
Affiliation(s)
- Meysam Ebrahimifar
- Department of Toxicology, 5Department of Chemical Engineering, Faculty of Pharmacy, Islamic Azad University, Shahreza Branch, Shahreza. Isfahan.
| | | | | | | | | | | | | |
Collapse
|
37
|
Yuan F, Bai G, Miao Y, Chen Y, Li X, Chen J. Annosquacin B induces mitochondrial apoptosis in multidrug resistant human breast cancer cell line MCF-7/ADR through selectively modulating MAPKs pathways. PHARMACEUTICAL BIOLOGY 2016; 54:3040-3045. [PMID: 27450387 DOI: 10.1080/13880209.2016.1200634] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 10/21/2015] [Accepted: 06/08/2016] [Indexed: 06/06/2023]
Abstract
CONTEXT Multidrug resistance (MDR) is a major obstacle to efficient therapy of cancers. It is a prime concern for researchers to find compounds with anti-proliferative activity on MDR cell lines. In recent years, annonaceous acetogenins (ACGs) were reported to have anti-proliferative activity. However, the underlying mechanisms are still unknown. OBJECTIVE This study determines the mechanisms of anti-proliferative activity induced by Annosquacin B (AB) against MCF-7/ADR cells. MATERIAL AND METHODS The cytotoxicity of AB at varying concentrations (0.64, 1.6, 4, 10, 25, 62.5, 156.25 μM) on MCF-7/ADR cells was assessed using the MTT assay. Annexin V-FITC/propidium iodide staining and Acrinidine orange and ethidium bromide (AO/EB) staining were employed to investigate whether AB (14, 7, 3.5 μM) could induce apoptosis in MCF-7/ADR cells. Levels of caspase-3 and caspase-9, Bax, Bcl-2 and MAPKs kinases were evaluated by western blot assay following treatment with various concentrations of AB (3.5, 7, 14 μM) at different time points (0, 0.5, 1, 2, 4, 8, 12 h). RESULTS AND CONCLUSION MTT assay showed that AB significantly decreased cell viability on MCF-7/ADR (IC50 of 14.69 μM). AB-induced apoptosis in MCF-7/ADR cells through mitochondrial apoptosis pathways. It induced typical apoptosis by morphologic changes; elevate levels of caspase-3, caspase-9 as well as the ratio of Bax/Bcl-2. In addition, AB increased the expression of p-p38 MAPK and decreased the expression of p-JNK, while whether ERK1/2 had an effect on the MCF-7/ADR apoptosis remains to be determined.
Collapse
Affiliation(s)
- Fei Yuan
- a College of Pharmacy, Nanjing University of Chinese Medicine , Nanjing , China
- b Nanjing University of Chinese Medicine Hanlin College , Taizhou , China
| | - Ganggang Bai
- a College of Pharmacy, Nanjing University of Chinese Medicine , Nanjing , China
- c Taizhou Institute for Food and Drug Control , Taizhou , China
| | - Yunjie Miao
- a College of Pharmacy, Nanjing University of Chinese Medicine , Nanjing , China
| | - Yong Chen
- a College of Pharmacy, Nanjing University of Chinese Medicine , Nanjing , China
| | - Xiang Li
- a College of Pharmacy, Nanjing University of Chinese Medicine , Nanjing , China
- d Jiangsu Key Laboratory for Chinese Material Medica Processing , Nanjing , China
| | - Jianwei Chen
- a College of Pharmacy, Nanjing University of Chinese Medicine , Nanjing , China
- e Jiangsu Key Laboratory for TCM Formulae Research , Nanjing , China
| |
Collapse
|
38
|
Lopes-Rodrigues V, Sousa E, Vasconcelos MH. Curcumin as a Modulator of P-Glycoprotein in Cancer: Challenges and Perspectives. Pharmaceuticals (Basel) 2016; 9:E71. [PMID: 27834897 PMCID: PMC5198046 DOI: 10.3390/ph9040071] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/02/2016] [Accepted: 11/02/2016] [Indexed: 12/16/2022] Open
Abstract
Multidrug resistance (MDR) presents a serious challenge to the efficiency of cancer treatment, and may be associated with the overexpression of drug efflux pumps. P-glycoprotein (P-gp) is a drug efflux pump often found overexpressed in cases of acquired MDR. Nevertheless, there are no P-gp inhibitors being used in the current clinical practice, due to toxicity problems, drug interactions, or pharmacokinetic issues. Therefore, it is important to identify novel inhibitors of P-gp activity or expression. Curcumin is a secondary metabolite isolated from the turmeric of Curcuma longa L. which has been associated with several biological activities, particularly P-gp modulatory activity (by inhibiting both P-gp function and expression). However, curcumin shows extensive metabolism and instability, which has justified the recent and intensive search for analogs of curcumin that maintain the P-gp modulatory activity but have enhanced stability. This review summarizes and compares the effects of curcumin and several curcumin analogs on P-glycoprotein function and expression, emphasizing the potential of these molecules for the possible development of safe and effective inhibitors of P-gp to overcome MDR in human cancer.
Collapse
Affiliation(s)
- Vanessa Lopes-Rodrigues
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.
- Cancer Drug Resistance Group, IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, IPATIMUP, 4200-465 Porto, Portugal.
- ICBAS-UP-Institute of Biomedical Sciences Abel Salazar, University of Porto, ICBAS-UP, 4099-003 Porto, Portugal.
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4050-123 Porto, Portugal.
| | - M Helena Vasconcelos
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.
- Cancer Drug Resistance Group, IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, IPATIMUP, 4200-465 Porto, Portugal.
- Laboratory of Microbiology, Department of Biological Sciences, FFUP-Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
39
|
Dash TK, Konkimalla VB. Comparative Study of Different Nano-Formulations of Curcumin for Reversal of Doxorubicin Resistance in K562R Cells. Pharm Res 2016; 34:279-289. [PMID: 27815791 DOI: 10.1007/s11095-016-2060-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/25/2016] [Indexed: 12/11/2022]
Abstract
PURPOSE Curcumin is very well established as a chemo-therapeutic, chemo-preventive and chemo-sensitizing agent in diverse disease conditions. As the isolated pure form has poor solubility and pharmacokinetic problems, therefore it is encapsulated in to several nano-formulations to improve its bioavailability. Here in the current study, we aim to compare different nano-formulations of curcumin for their chemo-sensitizing activity in doxorubicin (DOX) resistant K562 cells. METHODS Four different curcumin formulations were prepared namely DMSO assisted curcumin nano-dispersion (CurD, 260 nm), liposomal curcumin (CurL, 165 nm), MPEG-PCL micellar curcumin (CurM, 18 nm) and cyclodextrin encapsulated curcumin (CurN, 37 nm). The formulations were subjected to particle characterizations (size, zeta potential, release studies), followed by biological assays such as cellular uptake, P-gp inhibitory activity and reversal of DOX resistance by co-treatment with DOX. RESULTS Curcumin uptake in K562N and K562R cells was mildly reduced when treated with CurL and CurM, while for CurD and CurN the uptake remained equivalent. However, CurL retained P-gp inhibitory activity of curcumin and with a considerable chemo-sensitizing effect but CurM showed no P-gp inhibitory activity. CurN retained above biological activities, but requires a secondary carrier under in vivo conditions. CONCLUSIONS From the results, CurM was found to be most suitable for solubilization of curcumin where as CurL can be considered as most suitable nano-formulation for reversal of DOX resistance.
Collapse
Affiliation(s)
- Tapan K Dash
- School of Biological Sciences, National Institute of Science Education and Research (NISER), HBNI, PO- Bhimpur-Padanpur, Via- Jatni, Khurda, 752050, India
| | - V Badireenath Konkimalla
- School of Biological Sciences, National Institute of Science Education and Research (NISER), HBNI, PO- Bhimpur-Padanpur, Via- Jatni, Khurda, 752050, India.
| |
Collapse
|
40
|
Wu X, Ma J, Ye Y, Lin G. Transporter modulation by Chinese herbal medicines and its mediated pharmacokinetic herb–drug interactions. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1026:236-253. [DOI: 10.1016/j.jchromb.2015.11.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/13/2015] [Accepted: 11/16/2015] [Indexed: 10/22/2022]
|
41
|
Blaylock RL. Methodological problems with population cancer studies: The forgotten confounding factors. Surg Neurol Int 2015; 6:93. [PMID: 26097772 PMCID: PMC4455124 DOI: 10.4103/2152-7806.157893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/11/2014] [Indexed: 12/14/2022] Open
Abstract
Among clinical physicians it is the population study that is considered to be the “gold standard” of medical evidence concerning acceptable treatments. As new information comes to light concerning the many variables and confounding factors that can affect such studies, many older studies lose much of their original impact. While newer population studies take into consideration a far greater number of confounding factors many are still omitted and a number of these omitted factors can have profound effects on interpretation and validity of the study. In this editorial, I will discuss some of the omitted confounding factors and demonstrate how they can alter the interpretation of these papers and their clinical application.
Collapse
|
42
|
Margină D, Ilie M, Grădinaru D, Androutsopoulos VP, Kouretas D, Tsatsakis AM. Natural products-friends or foes? Toxicol Lett 2015; 236:154-67. [PMID: 25980574 DOI: 10.1016/j.toxlet.2015.05.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/03/2015] [Accepted: 05/11/2015] [Indexed: 01/28/2023]
Abstract
A trend in the general population has been observed in recent years regarding the orientation toward preventive measures in health; in this context the increased interest from the users and researchers concerning the active effect of food supplements on the health state and on longevity, is noticeable. All over the world, the consumption of natural foods and of vegetal supplements has increased spectacularly over the last 5-10 years. The decreased prevalence of cardio-vascular diseases associated with Mediterranean diet, as well as the French paradox convinced researchers to scientifically document the beneficial outcomes pointed out by traditional use of plants, and to try to develop supplements that would have the same positive effects as these noticed for diet components. The intense research dedicated to this topic revealed the fact that food supplements are linked to some problematic aspects, such as toxicological side effects when associated with classical synthetic drugs. The food supplement-drug interactions are submitted to complex issues regarding pharmacokinetic interactions leading to changes in absorption, distribution, metabolism and excretion processes with direct impact on effect and toxicological potential. The present review based on recent literature aims at discussing the food-drug interactions with direct impact on efficacy and toxicity of drugs.
Collapse
Affiliation(s)
- Denisa Margină
- Carol Davila University of Medicine and Pharmacy, Faculty of Pharmacy, 6 Traian Vuia St., 020956 Bucharest, Romania
| | - Mihaela Ilie
- Carol Davila University of Medicine and Pharmacy, Faculty of Pharmacy, 6 Traian Vuia St., 020956 Bucharest, Romania.
| | - Daniela Grădinaru
- Carol Davila University of Medicine and Pharmacy, Faculty of Pharmacy, 6 Traian Vuia St., 020956 Bucharest, Romania
| | - Vasilis P Androutsopoulos
- University of Crete, Faculty of Medicine, Department of Forensic Sciences & Toxicology, Heraklion, Greece
| | - Demetrios Kouretas
- University of Thessaly, Department of Biochemistry and Biotechnology, Larisa, Greece
| | - Aristidis M Tsatsakis
- University of Crete, Faculty of Medicine, Department of Forensic Sciences & Toxicology, Heraklion, Greece
| |
Collapse
|
43
|
Tuorkey MJ. Curcumin a potent cancer preventive agent: Mechanisms of cancer cell killing. Interv Med Appl Sci 2014; 6:139-46. [PMID: 25598986 DOI: 10.1556/imas.6.2014.4.1] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 06/29/2014] [Accepted: 08/01/2014] [Indexed: 12/13/2022] Open
Abstract
There is no doubt that diet could effectively improve health and halt cancers. Dietary phytochemical compounds and their derivatives represent a cornucopia of effectively anticancer compounds. This review discusses existing data on the anticancer activities of curcumin, and then offers possible explanations for and mechanisms of its cancer-preventive action. This review also offers insights into the molecular mechanism and targets through which curcumin modulates cell cycle, apoptotic signals, anti-apoptotic proteins, miRNAs, Wnt/beta-catenin signaling, protein kinases, nuclear factor-κB, proteasome activation, epigenetic regulation including DNA methylation and histone modification. Finally, this review provides explanations for how curcumin reverses the multi-drug resistance (MDR) of cancer cells.
Collapse
|
44
|
Long noncoding RNA MRUL promotes ABCB1 expression in multidrug-resistant gastric cancer cell sublines. Mol Cell Biol 2014; 34:3182-93. [PMID: 24958102 DOI: 10.1128/mcb.01580-13] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multidrug resistance (MDR) is the most common cause of chemotherapy failure in gastric cancer (GC) treatment; however, the underlying molecular mechanisms remain elusive. Long noncoding RNAs (lncRNAs) can be involved in carcinogenesis, but the effects of lncRNAs on MDR are poorly understood. We show here that the lncRNA MRUL (MDR-related and upregulated lncRNA), located 400 kb downstream of ABCB1 (ATP-binding cassette, subfamily B, member 1), was significantly upregulated in two multidrug-resistant GC cell sublines, SGC7901/ADR and SGC7901/VCR. Furthermore, the relative expression levels of MRUL in GC tissues were negatively correlated with in vitro growth inhibition rates of GC specimens treated with chemotherapeutic drugs and indicated a poor prognosis for GC patients. MRUL knockdown in SGC7901/ADR and SGC7901/VCR cells led to increased rates of apoptosis, increased accumulation, and reduced doxorubicin (Adriamycin [ADR]) release in the presence of ADR or vincristine. Moreover, MRUL depletion reduced ABCB1 mRNA levels in a dose- and time-dependent manner. Heterologous luciferase reporter assays demonstrated that MRUL might positively affect ABCB1 expression in an orientation- and position-independent manner. Our findings indicate that MRUL promotes ABCB1 expression and is a potential target to reverse the MDR phenotype of GC MDR cell sublines.
Collapse
|
45
|
Shen M, Chan TH, Dou QP. Targeting tumor ubiquitin-proteasome pathway with polyphenols for chemosensitization. Anticancer Agents Med Chem 2014; 12:891-901. [PMID: 22292765 DOI: 10.2174/187152012802649978] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 12/21/2011] [Accepted: 12/21/2011] [Indexed: 11/22/2022]
Abstract
The development of tumor drug resistance is one of the biggest obstacles on the way to achieve a favorable outcome of chemotherapy. Among various strategies that have been explored to overcome drug resistance, the combination of current chemotherapy with plant polyphenols as a chemosensitizer has emerged as a promising one. Plant polyphenols are a group of phytochemicals characterized by the presence of more than one phenolic group. Mechanistic studies suggest that polyphenols have multiple intracellular targets, one of which is the proteasome complex. The proteasome is a proteolytic enzyme complex responsible for intracellular protein degradation and has been shown to play an important role in tumor growth and the development of drug resistance. Therefore, proteasome inhibition by plant polyphenols could be one of the mechanisms contributing to their chemosensitizing effect. Plant polyphenols that have been identified to possess proteasome-inhibitory activity include (-)-epigallocatechins-3-gallate (EGCG), genistein, luteolin, apigenin, chrysin, quercetin, curcumin and tannic acid. These polyphenols have exhibited an appreciable effect on overcoming resistance to various chemotherapeutic drugs as well as multidrug resistance in a broad spectrum of tumors ranging from carcinoma and sarcoma to hematological malignances. The in vitro and in vivo studies on polyphenols with proteasome-inhibitory activity have built a solid foundation to support the idea that they could serve as a chemosensitizer for the treatment of cancer. In-depth mechanistic studies and identification of optimal regimen are needed in order to eventually translate this laboratory concept into clinical trials to actually benefit current chemotherapy.
Collapse
Affiliation(s)
- Min Shen
- Karmanos Cancer Institute, Wayne State University, 540.1 HWCRC, 4100 John R Road, Detroit, MI 48201, USA
| | | | | |
Collapse
|
46
|
Joshi P, Singh S, Wani A, Sharma S, Jain SK, Singh B, Gupta BD, Satti NK, Koul S, Khan IA, Kumar A, Bharate SB, Vishwakarma RA. Osthol and curcumin as inhibitors of human Pgp and multidrug efflux pumps of Staphylococcus aureus: reversing the resistance against frontline antibacterial drugs. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00196f] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Curcumin and osthol are identified as NorA pump inhibitors.
Collapse
Affiliation(s)
- Prashant Joshi
- Medicinal Chemistry Division
- Indian Institute of Integrative Medicine (CSIR)
- , India
- Academy of Scientific & Innovative Research (AcSIR)
- Indian Institute of Integrative Medicine (CSIR)
| | - Samsher Singh
- Academy of Scientific & Innovative Research (AcSIR)
- Indian Institute of Integrative Medicine (CSIR)
- , India
- Clinical Microbiology Division
- Indian Institute of Integrative Medicine (CSIR)
| | - Abubakar Wani
- Cancer Pharmacology Division
- Indian Institute of Integrative Medicine (CSIR)
- , India
| | - Sadhana Sharma
- Academy of Scientific & Innovative Research (AcSIR)
- Indian Institute of Integrative Medicine (CSIR)
- , India
- Cancer Pharmacology Division
- Indian Institute of Integrative Medicine (CSIR)
| | - Shreyans K. Jain
- Academy of Scientific & Innovative Research (AcSIR)
- Indian Institute of Integrative Medicine (CSIR)
- , India
- Natural Products Chemistry Division
- Indian Institute of Integrative Medicine (CSIR)
| | - Baljinder Singh
- Academy of Scientific & Innovative Research (AcSIR)
- Indian Institute of Integrative Medicine (CSIR)
- , India
- Natural Products Chemistry Division
- Indian Institute of Integrative Medicine (CSIR)
| | - Bishan D. Gupta
- Natural Products Chemistry Division
- Indian Institute of Integrative Medicine (CSIR)
- , India
| | - Naresh K. Satti
- Natural Products Chemistry Division
- Indian Institute of Integrative Medicine (CSIR)
- , India
| | - Surrinder Koul
- Bioorganic Chemistry Division
- Indian Institute of Integrative Medicine (CSIR)
- , India
| | - Inshad A. Khan
- Academy of Scientific & Innovative Research (AcSIR)
- Indian Institute of Integrative Medicine (CSIR)
- , India
- Clinical Microbiology Division
- Indian Institute of Integrative Medicine (CSIR)
| | - Ajay Kumar
- Cancer Pharmacology Division
- Indian Institute of Integrative Medicine (CSIR)
- , India
| | - Sandip B. Bharate
- Medicinal Chemistry Division
- Indian Institute of Integrative Medicine (CSIR)
- , India
- Academy of Scientific & Innovative Research (AcSIR)
- Indian Institute of Integrative Medicine (CSIR)
| | - Ram A. Vishwakarma
- Medicinal Chemistry Division
- Indian Institute of Integrative Medicine (CSIR)
- , India
- Academy of Scientific & Innovative Research (AcSIR)
- Indian Institute of Integrative Medicine (CSIR)
| |
Collapse
|
47
|
Arya P, Pathak K. Assessing the viability of microsponges as gastro retentive drug delivery system of curcumin: optimization and pharmacokinetics. Int J Pharm 2013; 460:1-12. [PMID: 24184218 DOI: 10.1016/j.ijpharm.2013.10.045] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/22/2013] [Accepted: 10/25/2013] [Indexed: 01/12/2023]
Abstract
The work was aimed to validate the gastroretentive potential of microsponges via optimization of targeted floating curcumin microsponges for improved site specific absorption for gastric cancer Modified quasi emulsion solvent diffusion method was used to formulate microsponges using 3(2) full factorial design. The effect of different levels of ethyl cellulose and polyvinyl alcohol concentration, selected as independent variables was determined on the % entrapment efficiency, % buoyancy and % cumulative drug release. Modified rosette rise apparatus was used for in vitro release and the release data best fitted Higuchi's model and mechanism of drug release was diffusion (n). The optimized formulation (MS5) demonstrated favourable % entrapment efficiency (90.7 ± 1.7), % buoyancy (82.0 ± 2.0) and % cumulative drug release (85.2 ± 1.07) with maximum desirability factor of 0.816. SEM revealed spherical and porous microsponges. DSC confirmed molecular dispersion of the drug in the microsponges polymeric matrix. DRIFT revealed no chemical interaction between the drug and polymer used. The in vitro permeation of curcumin through gastric mucin gel layer affirmed the capability of microsponges to deliver drug across mucin r and reach the target site to treat gastric cancer. Anticancer oral dose of microsponges was calculated as 50mg by cytotoxicity assay in human cancer cell line KB. The pharmacokinetic evaluation of MS5 in rabbits revealed 10-fold increase in bioavailability as compared to native curcumin, demonstrated the superiority of microsponges over native curcumin as gastro retentive drug delivery system. This study presents a new approach based on floating ability of microsponges for treatment of gastric cancer.
Collapse
Affiliation(s)
- Priyanka Arya
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, NH#2, P.O. Chattikara, Mathura 281001, Uttar Pradesh, India
| | - Kamla Pathak
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, NH#2, P.O. Chattikara, Mathura 281001, Uttar Pradesh, India.
| |
Collapse
|
48
|
Sreenivasan S, Ravichandran S, Vetrivel U, Krishnakumar S. Modulation of multidrug resistance 1 expression and function in retinoblastoma cells by curcumin. J Pharmacol Pharmacother 2013; 4:103-9. [PMID: 23761708 PMCID: PMC3669568 DOI: 10.4103/0976-500x.110882] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Objective: To determine the possible interaction of curcumin with P-glycoprotein (P-gp) expression and function by in vitro and in silico studies. Materials and Methods: In this study, curcumin was compared for its potential to modulate the expression and function of P-gp in Y79 RB cells by western blot, RT-PCR (reverse transcription polymerase chain reaction) and functional assay. Further, in silico molecular modeling and docking simulations were performed to deduce the inhibitory binding mode of curcumin. Results: Western blot and RT-PCR analysis decreased the expression of P-gp in a dose-dependent manner. The effect of curcumin on P-gp function was demonstrated by Rhodamine 123 (Rh123) accumulation and efflux study. Curcumin increased the accumulation of Rh123 and decreased its efflux in retinoblastoma (RB) cells. In addition, curcumin inhibited verapamil stimulated ATPase activity and photoaffinity labeling study showed no effect on the binding of 8-azido-ATP-biotin, indicating its interaction at the substrate binding site. Moreover, molecular docking studies concurrently infer the binding of curcumin into the substrate binding site of P-gp with a binding energy of -7.66 kcal/mol. Conclusion: These findings indicate that curcumin suppresses the MDR1 expression and function, and therefore may be useful as modulators of multidrug resistance in RB tumor.
Collapse
Affiliation(s)
- Seethalakshmi Sreenivasan
- L and T Department of Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, Nugambakkam, Chennai, India
| | | | | | | |
Collapse
|
49
|
Lu WD, Qin Y, Yang C, Li L, Fu ZX. Effect of curcumin on human colon cancer multidrug resistance in vitro and in vivo. Clinics (Sao Paulo) 2013; 68:694-701. [PMID: 23778405 PMCID: PMC3654338 DOI: 10.6061/clinics/2013(05)18] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 01/10/2013] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVE To determine whether curcumin reverses the multidrug resistance of human colon cancer cells in vitro and in vivo. METHODS In a vincristine-resistant cell line of human colon cancer, the cell viability of curcumin-treated cells was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Rhodamine123 efflux was evaluated to detect P-glycoprotein transporter activity, and expression of the multidrug resistance protein 1 and survivin genes was analyzed by reverse transcription polymerase chain reaction and western blotting. In addition, xenograft mouse tumors were grown and treated with curcumin. The morphology of the xenografts was investigated by hematoxylin-eosin staining. The in vivo expression of the multidrug resistance gene and P-glycoprotein and survivin genes and proteins was observed using reverse transcription-polymerase chain reaction and western blotting, respectively. RESULTS Curcumin was not obviously toxic to the vincristine-resistant human colon cancer cells at concentrations less than 25 μM, but the growth of cells was significantly inhibited. At concentrations greater than 25 μM, curcumin was toxic in a concentration-dependent manner. The sensitivity of cells to vincristine, cisplatin, fluorouracil, and hydroxycamptothecin was enhanced, intracellular Rhodamine123 accumulation was increased (p<0.05), and the expression of the multidrug resistance gene and P-glycoprotein were significantly suppressed (p<0.05). The combination of curcumin and vincristine significantly inhibited xenograft growth. The expression of the multidrug resistance protein 1 and survivin genes was significantly reduced in xenografts of curcumin-treated mice and mice treated with both curcumin and vincristine relative to control mice. CONCLUSION Curcumin has strong reversal effects on the multidrug resistance of human colon carcinoma in vitro and in vivo.
Collapse
Affiliation(s)
- Wei-Dong Lu
- Chongqing Medical University, Department of Gastrointestinal Surgery, First Affiliated Hospital, Chongqing 400016, Chongqing, China
| | | | | | | | | |
Collapse
|
50
|
|