1
|
Huang JH, Chang HA, Fang WH, Ho PS, Liu YP, Wan FJ, Tzeng NS, Shyu JF, Chang CC. Serotonin receptor 1A promoter polymorphism, rs6295, modulates human anxiety levels via altering parasympathetic nervous activity. Acta Psychiatr Scand 2018; 137:263-272. [PMID: 29363117 DOI: 10.1111/acps.12853] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/02/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The G-allele of the -1019C/G (rs6295) promoter polymorphism of the serotonin receptor 1A (HTR1A) gene has been implicated in anxiety; however, the underlying neurophysiological processes are still not fully understood. Recent evidence indicates that low parasympathetic (vagal) tone is predictive of anxiety. We thus conducted a structural equation model (SEM) to examine whether the HTR1A rs6295 variant can affect anxiety by altering parasympathetic nervous activity. METHOD A sample of 1141 drug-free healthy Han Chinese was recruited for HTR1A genotyping. Autonomic nervous function was assessed by short-term spectral analysis of heart rate variability (HRV). Anxiety and stress levels were evaluated by the Beck Anxiety Inventory (BAI) and the Perceived Stress Scale (PSS) respectively. RESULTS The number of the HTR1A G allele was inversely correlated with high-frequency power (HF), a parasympathetic index of HRV. The HF index was negatively associated with BAI scores. Furthermore, the good-fitting SEM, adjusting for confounding variables (e.g., age and PSS levels), revealed a significant pathway linking rs6295 variant to BAI scores via HF index modulation. CONCLUSION These results are the first to show that HTR1A -1019C/G polymorphism influences anxiety levels by modulating parasympathetic tone, providing a neurophysiological insight into the role of HTR1A in human anxiety.
Collapse
Affiliation(s)
- J-H Huang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - H-A Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - W-H Fang
- Department of Family and Community Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - P-S Ho
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Y-P Liu
- Laboratory of Cognitive Neuroscience, Departments of Physiology and Psychiatry, National Defense Medical Center, Taipei, Taiwan
| | - F-J Wan
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - N-S Tzeng
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - J-F Shyu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - C-C Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
2
|
Blecharz-Klin K, Joniec-Maciejak I, Jawna K, Pyrzanowska J, Piechal A, Wawer A, Widy-Tyszkiewicz E. Developmental exposure to paracetamol causes biochemical alterations in medulla oblongata. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:369-374. [PMID: 26233562 DOI: 10.1016/j.etap.2015.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/02/2015] [Accepted: 07/03/2015] [Indexed: 06/04/2023]
Abstract
The effect and safety of prenatal and early life administration of paracetamol - routinely used over-the-counter antipyretic and analgesic medication on monoamines content and balance of amino acids in the medulla oblongata is still unknown. In this study we have determined the level of neurotransmitters in this structure in two-month old Wistar male rats exposed to paracetamol in the dose of 5 (P5, n=10) or 15mg/kg b.w. (P15, n=10) during prenatal period, lactation and till the end of the second month of life. Control group received drinking water (Con, n=10). Monoamines, their metabolites and amino acids concentration in medulla oblongata of rats were determined using high performance liquid chromatography (HPLC) in 60 postnatal day (PND60). This experiment shows that prenatal and early life paracetamol exposure modulates neurotransmission associated with serotonergic, noradrenergic and dopaminergic system in medulla oblongata. Reduction of alanine and taurine levels has also been established.
Collapse
Affiliation(s)
- Kamilla Blecharz-Klin
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Banacha 1B, 02-097 Warsaw, Poland
| | - Ilona Joniec-Maciejak
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Banacha 1B, 02-097 Warsaw, Poland
| | - Katarzyna Jawna
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Banacha 1B, 02-097 Warsaw, Poland
| | - Justyna Pyrzanowska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Banacha 1B, 02-097 Warsaw, Poland
| | - Agnieszka Piechal
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Banacha 1B, 02-097 Warsaw, Poland
| | - Adriana Wawer
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Banacha 1B, 02-097 Warsaw, Poland
| | - Ewa Widy-Tyszkiewicz
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Banacha 1B, 02-097 Warsaw, Poland.
| |
Collapse
|
3
|
Ostrowski TD, Ostrowski D, Hasser EM, Kline DD. Depressed GABA and glutamate synaptic signaling by 5-HT1A receptors in the nucleus tractus solitarii and their role in cardiorespiratory function. J Neurophysiol 2014; 111:2493-504. [PMID: 24671532 PMCID: PMC4044435 DOI: 10.1152/jn.00764.2013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 03/19/2014] [Indexed: 11/22/2022] Open
Abstract
Serotonin (5-HT), and its 5-HT1A receptor (5-HT1AR) subtype, is a powerful modulator of the cardiorespiratory system and its sensory reflexes. The nucleus tractus solitarii (nTS) serves as the first central station for visceral afferent integration and is critical for cardiorespiratory reflex responses. However, the physiological and synaptic role of 5-HT1ARs in the nTS is relatively unknown. In the present study, we examined the distribution and modulation of 5-HT1ARs on cardiorespiratory and synaptic parameters in the nTS. 5-HT1ARs were widely distributed to cell bodies within the nTS but not synaptic terminals. In anesthetized rats, activation of 5-HT1ARs by microinjection of the 5-HT1AR agonist 8-OH-DPAT into the caudal nTS decreased minute phrenic neural activity via a reduction in phrenic amplitude. In brain stem slices, 8-OH-DPAT decreased the amplitude of glutamatergic tractus solitarii-evoked excitatory postsynaptic currents, and reduced overall spontaneous excitatory nTS network activity. These effects persisted in the presence of GABAA receptor blockade and were antagonized by coapplication of 5-HT1AR blocker WAY-100135. 5-HT1AR blockade alone had no effect on tractus solitarii-evoked excitatory postsynaptic currents, but increased excitatory network activity. On the other hand, GABAergic nTS-evoked inhibitory postsynaptic currents did not change by activation of the 5-HT1ARs, but spontaneous inhibitory nTS network activity decreased. Blocking 5-HT1ARs tended to increase nTS-evoked inhibitory postsynaptic currents and inhibitory network activity. Taken together, 5-HT1ARs in the caudal nTS decrease breathing, likely via attenuation of afferent transmission, as well as overall nTS network activity.
Collapse
Affiliation(s)
- Tim D Ostrowski
- Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Daniela Ostrowski
- Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Eileen M Hasser
- Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - David D Kline
- Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
4
|
Abdala AP, Bissonnette JM, Newman-Tancredi A. Pinpointing brainstem mechanisms responsible for autonomic dysfunction in Rett syndrome: therapeutic perspectives for 5-HT1A agonists. Front Physiol 2014; 5:205. [PMID: 24910619 PMCID: PMC4038922 DOI: 10.3389/fphys.2014.00205] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/12/2014] [Indexed: 12/26/2022] Open
Abstract
Rett syndrome is a neurological disorder caused by loss of function of methyl-CpG-binding protein 2 (MeCP2). Reduced function of this ubiquitous transcriptional regulator has a devastating effect on the central nervous system. One of the most severe and life-threatening presentations of this syndrome is brainstem dysfunction, which results in autonomic disturbances such as breathing deficits, typified by episodes of breathing cessation intercalated with episodes of hyperventilation or irregular breathing. Defects in numerous neurotransmitter systems have been observed in Rett syndrome both in animal models and patients. Here we dedicate special attention to serotonin due to its role in promoting regular breathing, increasing vagal tone, regulating mood, alleviating Parkinsonian-like symptoms and potential for therapeutic translation. A promising new symptomatic strategy currently focuses on regulation of serotonergic function using highly selective serotonin type 1A (5-HT1A) “biased agonists.” We address this newly emerging therapy for respiratory brainstem dysfunction and challenges for translation with a holistic perspective of Rett syndrome, considering potential mood and motor effects.
Collapse
Affiliation(s)
- Ana P Abdala
- School of Physiology and Pharmacology, University of Bristol Bristol, UK
| | - John M Bissonnette
- Department of Obstetrics and Gynecology, Oregon Health and Science University Portland, OR, USA
| | | |
Collapse
|
5
|
Dyavanapalli J, Byrne P, Mendelowitz D. Activation of D2-like dopamine receptors inhibits GABA and glycinergic neurotransmission to pre-motor cardiac vagal neurons in the nucleus ambiguus. Neuroscience 2013; 247:213-26. [PMID: 23727508 DOI: 10.1016/j.neuroscience.2013.05.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 05/17/2013] [Accepted: 05/21/2013] [Indexed: 12/16/2022]
Abstract
The parasympathetic control of heart rate arises from premotor cardiac vagal neurons (CVNs) located in the nucleus ambiguus (NA). Previous microinjection studies in NA show that dopamine evokes a decrease in heart rate, but the underlying mechanisms responsible for these responses were not identified. This study tested whether dopamine modulates inhibitory GABAergic and glycinergic and/or excitatory glutamatergic neurotransmission to CVNs. Retrogradely labeled CVNs were identified in an in vitro rat brainstem slice preparation and synaptic events were recorded using whole cell voltage clamp techniques. Bath application of dopamine (100 μM) had no effect on excitatory synaptic events, but reversibly inhibited the frequency (but not amplitude) of GABAergic inhibitory postsynaptic currents (IPSCs) in CVNs. Similarly, dopamine (10 μM and 100 μM) inhibited glycinergic IPSC frequency by ~50% and 70% respectively. The reduction in inhibitory neurotransmission to CVNs by dopamine was prevented by the sodium channel blocker TTX (1μM) indicating that the dopamine mediated effects were action potential dependent. Dopamine evoked responses were mimicked by the D2-like receptor agonist, Quinpirole but not D1-like receptor agonist, SKF 38393. In addition, the dopamine mediated depression of inhibitory synaptic responses were prevented by the D2-like receptor antagonist sulpiride, but not by D1-like or adrenergic or serotonergic receptor antagonists, suggesting that these responses were D2-like receptor mediated and not D1-like or adrenergic or 5-HT receptor mediated. These data suggest that dopamine acts via dis-inhibition, and diminishes inhibitory GABAergic and glycinergic neurotransmission to CVNs, which would be predicted to increase parasympathetic activity to the heart and evoke a bradycardia.
Collapse
Affiliation(s)
- J Dyavanapalli
- Department of Pharmacology & Physiology, The George Washington University, 2300 Eye Street NW, Washington, DC 20037, USA.
| | | | | |
Collapse
|
6
|
Barrett KT, Kinney HC, Li A, Daubenspeck JA, Leiter JC, Nattie EE. Subtle alterations in breathing and heart rate control in the 5-HT1A receptor knockout mouse in early postnatal development. J Appl Physiol (1985) 2012; 113:1585-93. [PMID: 22936722 DOI: 10.1152/japplphysiol.00939.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We hypothesized that absence of the 5-HT(1A) receptor would negatively affect the development of cardiorespiratory control. In conscious wild type (WT) and 5-HT(1A) receptor knockout (KO) mice, we measured resting ventilation (Ve), oxygen consumption (Vo(2)), heart rate (HR), breathing and HR variability, and the hypercapnic ventilatory response (HCVR) at postnatal day 5 (P5), day 15 (P15), and day 25 (P25). In KO mice compared with WT, we found a 17% decrease in body weight at only P5 (P < 0.01) and no effect on Vo(2). Ve was significantly (P < 0.001) lower at P5 and P25, but there was no effect on the HCVR. Breathing variability (interbreath interval), measured by standard deviation, the root mean square of the standard deviation (RMSSD), and the product of the major (L) and minor axes (T) of the Poincaré first return plot, was 57% to 187% higher only at P5 (P < 0.001). HR was 6-10% slower at P5 (P < 0.001) but 7-9% faster at P25 (P < 0.001). This correlated with changes in the spectral analysis of HR variability; the low frequency to high frequency ratio was 47% lower at P5 but 68% greater at P25. The RMSSD and (L × T) of HR variability were ~2-fold greater at P5 only (P < 0.001; P < 0.05). We conclude that 5-HT(1A) KO mice have a critical period of potential vulnerability at P5 when pups hypoventilate and have a slower respiratory frequency and HR with enhanced variability of both, suggesting abnormal maturation of cardiorespiratory control.
Collapse
Affiliation(s)
- Karlene T Barrett
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | | | | | | | | | | |
Collapse
|
7
|
Chen Y, Wang L, Zhou X, Ge D, Yuan W, Wang J. Agonist of 5-HT1A/7 receptors but not that of 5-HT2 receptors disinhibits tracheobronchial-projecting airway vagal preganglionic neurons of rats. Neuroscience 2012; 207:78-87. [PMID: 22342968 DOI: 10.1016/j.neuroscience.2012.01.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/16/2012] [Accepted: 01/31/2012] [Indexed: 01/08/2023]
Abstract
The vagus nerves supply the major cholinergic tone to airway smooth muscles physiologically and play critical roles in the genesis of airway hyperreactivity under some pathological conditions. Postganglionic airway cholinergic tone relies largely on the ongoing activity of medullary airway vagal preganglionic neurons (AVPNs), of which the tracheobronchial-projecting ones are primarily located in the external formation of the nucleus ambiguus (eNA). AVPNs are regulated by 5-HT, and 5-HT(1A/7) and 5-HT(2) receptors have been indicated to be involved. But the mechanisms at synaptic level are unknown. In the present study, tracheobronchial-projecting AVPNs (T-AVPNs) were retrogradely labeled from the trachea wall; fluorescently labeled T-AVPNs in the eNA were recorded with whole-cell voltage patch clamp; and the effects of 5-HT(1A/7) receptor agonist (±)-8-Hydroxy-2-(dipropylamino) tetralin hydrobromide (8-OH-DPAT) (1 μmol L(-1)) and 5-HT(2) receptor agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) (10 μmol L(-1)) on the synaptic inputs were examined. 8-OH-DPAT significantly inhibited the GABAergic and glycinergic spontaneous inhibitory postsynaptic currents (sIPSCs) of T-AVPNs in both the frequency and amplitude but had no effect on the GABAergic and glycinergic miniature inhibitory postsynaptic currents (mIPSCs). The 8-OH-DPAT inhibition of the GABAergic and glycinergic sIPSCs was prevented by 5-HT(1A/7) receptor antagonist N-[2-[4-(2-Methoxyphenyl)-1-piperazinyl] ethyl]-N-2-pyridinylcyclohexanecarboxamide maleate salt (WAY-100635) (1 μmol L(-1)). 8-OH-DPAT had no effect on the glutamatergic spontaneous excitatory postsynaptic currents (sEPSCs) and caused no alterations in the baseline current and input resistance of T-AVPNs. DOI had no effect on any types of the synaptic inputs of T-AVPNs. These results suggest that 5-HT(1A/7) receptor agonist causes "disinhibition" of T-AVPNs, which might, in part, account for the reflex increase of airway resistance.
Collapse
Affiliation(s)
- Y Chen
- The State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University Shanghai Medical College, Shanghai, PR China
| | | | | | | | | | | |
Collapse
|
8
|
Yu SY, Wang GM, Wang H, Zhang H, Li Q. Raphe pallidus modulates Bötzinger complex-induced inhibition of the phrenic nerve activity in rats. Eur J Neurosci 2011; 34:1113-20. [PMID: 21895801 DOI: 10.1111/j.1460-9568.2011.07837.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The raphe pallidus (RPa) and Bötzinger complex (BötC) represent two important nuclei which project to spinal phrenic motor neurons. Stimulation of the RPa produces facilitative effects on respiratory activity, whereas stimulation of the BötC induces inhibitory effects on respiratory activity. In the present study, we examined the modulatory effects of serotonergic (5-hydroxytryptamine, 5-HT) RPa neurons on the inhibitory response of the phrenic nerve activity elicited from the BötC in rats. Experiments were performed on spontaneously breathing, urethane-anesthetized adult rats. Either high-frequency stimulation or glutamatergic chemical activation of the RPa region significantly attenuated the BötC-induced inhibition of the phrenic nerve. This attenuation showed a post-stimulation time and intensity dependency. Pharmacological experiments showed that intravenous injection of methysergide, a broad-spectrum antagonist of 5-HT receptors, markedly reduced the respiratory facilitation induced by electrical stimulation of the RPa. Furthermore, microinjections of methysergide into the cerebrospinal fluid around the phrenic motor nucleus (PMN) region at spinal cord segments C4 and C5 significantly decreased the RPa-related attenuation effects on BötC-evoked inhibition of phrenic nerve discharge. These results suggest that RPa serotonergic neurons could modulate the inhibition of phrenic nerve activity induced by BötC. Moreover, as the relevant 5-HT receptors for RPa's modulatory effects are located in the cervical spinal cord, 5-HT may, in part, function as a modulator to suppress the BötC neuronal activity via direct RPa-PMN and BötC-PMN convergent projection pathways to phrenic motoneurons.
Collapse
Affiliation(s)
- Shu-Yan Yu
- Department of Physiology, Shandong University, School of Medicine, Jinan, Shandong Province, China.
| | | | | | | | | |
Collapse
|
9
|
Hildreth CM, Goodchild AK. Role of ionotropic GABA, glutamate and glycine receptors in the tonic and reflex control of cardiac vagal outflow in the rat. BMC Neurosci 2010; 11:128. [PMID: 20939929 PMCID: PMC2964734 DOI: 10.1186/1471-2202-11-128] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 10/13/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cardiac vagal preganglionic neurons (CVPN) are responsible for the tonic, reflex and respiratory modulation of heart rate (HR). Although CVPN receive GABAergic and glutamatergic inputs, likely involved in respiratory and reflex modulation of HR respectively, little else is known regarding the functions controlled by ionotropic inputs. Activation of g-protein coupled receptors (GPCR) alters these inputs, but the functional consequence is largely unknown. The present study aimed to delineate how ionotropic GABAergic, glycinergic and glutamatergic inputs contribute to the tonic and reflex control of HR and in particular determine which receptor subtypes were involved. Furthermore, we wished to establish how activation of the 5-HT1A GPCR affects tonic and reflex control of HR and what ionotropic interactions this might involve. RESULTS Microinjection of the GABAA antagonist picrotoxin into CVPN decreased HR but did not affect baroreflex bradycardia. The glycine antagonist strychnine did not alter HR or baroreflex bradycardia. Combined microinjection of the NMDA antagonist, MK801, and AMPA antagonist, CNQX, into CVPN evoked a small bradycardia and abolished baroreflex bradycardia. MK801 attenuated whereas CNQX abolished baroreceptor bradycardia. Control intravenous injections of the 5-HT1A agonist 8-OH-DPAT evoked a small bradycardia and potentiated baroreflex bradycardia. These effects were still observed following microinjection of picrotoxin but not strychnine into CVPN. CONCLUSIONS We conclude that activation of GABAA receptors set the level of HR whereas AMPA to a greater extent than NMDA receptors elicit baroreflex changes in HR. Furthermore, activation of 5-HT1A receptors evokes bradycardia and enhances baroreflex changes in HR due to interactions with glycinergic neurons involving strychnine receptors. This study provides reference for future studies investigating how diseases alter neurochemical inputs to CVPN.
Collapse
Affiliation(s)
- Cara M Hildreth
- Australian School of Advanced Medicine, Macquarie University, Sydney, Australia
| | | |
Collapse
|