1
|
Huang R, Hui Z, Wei S, Li D, Li W, Daping W, Alahdal M. IRE1 signaling regulates chondrocyte apoptosis and death fate in the osteoarthritis. J Cell Physiol 2021; 237:118-127. [PMID: 34297411 PMCID: PMC9291116 DOI: 10.1002/jcp.30537] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 12/19/2022]
Abstract
IRE1 is an important central regulator of unfolded protein response (UPR) in the endoplasmic reticulum (ER) because of its ability to regulate cell fate as a function of stress sensing. When misfolded proteins accumulated in chondrocytes ER, IRE1 disintegrates with BIP/GRP78 and undergoes dimer/oligomerization and transautophosphorylation. These two processes are mediated through an enzyme activity of IRE1 to activate endoribonuclease and generates XBP1 by unconventional splicing of XBP1 messenger RNA. Thereby promoting the transcription of UPR target genes and apoptosis. The deficiency of inositol-requiring enzyme 1α (IRE1α) in chondrocytes downregulates prosurvival factors XBP1S and Bcl-2, which enhances the apoptosis of chondrocytes through increasing proapoptotic factors caspase-3, p-JNK, and CHOP. Meanwhile, the activation of IRE1α increases chondrocyte viability and reduces cell apoptosis. However, the understanding of IRE1 responses and cell death fate remains controversial. This review provides updated data about the role IRE1 plays in chondrocytes and new insights about the potential efficacy of IRE1 regulation in cartilage repair and osteoarthritis treatment.
Collapse
Affiliation(s)
- Rongxiang Huang
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center), Shenzhen, China.,Clinical Medicine Department, School of Medicine, University of South China, Hengyang, China
| | - Zhang Hui
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center), Shenzhen, China.,Clinical Medicine Department, School of Medicine, University of South China, Hengyang, China
| | - Sun Wei
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center), Shenzhen, China
| | - Duan Li
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center), Shenzhen, China
| | - Wencui Li
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center), Shenzhen, China
| | - Wang Daping
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center), Shenzhen, China.,Clinical Medicine Department, School of Medicine, University of South China, Hengyang, China
| | - Murad Alahdal
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center), Shenzhen, China.,Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China.,Department of Medical Laboratories, Hodeidah University, Al Hudaydah, Yemen
| |
Collapse
|
2
|
Endoplasmic Reticulum Stress in Metabolic Disorders. Cells 2018; 7:cells7060063. [PMID: 29921793 PMCID: PMC6025008 DOI: 10.3390/cells7060063] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023] Open
Abstract
Metabolic disorders have become among the most serious threats to human health, leading to severe chronic diseases such as obesity, type 2 diabetes, and non-alcoholic fatty liver disease, as well as cardiovascular diseases. Interestingly, despite the fact that each of these diseases has different physiological and clinical symptoms, they appear to share certain pathological traits such as intracellular stress and inflammation induced by metabolic disturbance stemmed from over nutrition frequently aggravated by a modern, sedentary life style. These modern ways of living inundate cells and organs with saturating levels of sugar and fat, leading to glycotoxicity and lipotoxicity that induce intracellular stress signaling ranging from oxidative to ER stress response to cope with the metabolic insults (Mukherjee, et al., 2015). In this review, we discuss the roles played by cellular stress and its responses in shaping metabolic disorders. We have summarized here current mechanistic insights explaining the pathogenesis of these disorders. These are followed by a discussion of the latest therapies targeting the stress response pathways.
Collapse
|
3
|
Ferreira RB, Wang M, Law ME, Davis BJ, Bartley AN, Higgins PJ, Kilberg MS, Santostefano KE, Terada N, Heldermon CD, Castellano RK, Law BK. Disulfide bond disrupting agents activate the unfolded protein response in EGFR- and HER2-positive breast tumor cells. Oncotarget 2018; 8:28971-28989. [PMID: 28423644 PMCID: PMC5438706 DOI: 10.18632/oncotarget.15952] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 02/12/2017] [Indexed: 12/14/2022] Open
Abstract
Many breast cancer deaths result from tumors acquiring resistance to available therapies. Thus, new therapeutic agents are needed for targeting drug-resistant breast cancers. Drug-refractory breast cancers include HER2+ tumors that have acquired resistance to HER2-targeted antibodies and kinase inhibitors, and “Triple-Negative” Breast Cancers (TNBCs) that lack the therapeutic targets Estrogen Receptor, Progesterone Receptor, and HER2. A significant fraction of TNBCs overexpress the HER2 family member Epidermal Growth Factor Receptor (EGFR). Thus agents that selectively kill EGFR+ and HER2+ tumors would provide new options for breast cancer therapy. We previously identified a class of compounds we termed Disulfide bond Disrupting Agents (DDAs) that selectively kill EGFR+ and HER2+ breast cancer cells in vitro and blocked the growth of HER2+ breast tumors in an animal model. DDA-dependent cytotoxicity was found to correlate with downregulation of HER1-3 and Akt dephosphorylation. Here we demonstrate that DDAs activate the Unfolded Protein Response (UPR) and that this plays a role in their ability to kill EGFR+ and HER2+ cancer cells. The use of breast cancer cell lines ectopically expressing EGFR or HER2 and pharmacological probes of UPR revealed all three DDA responses: HER1-3 downregulation, Akt dephosphorylation, and UPR activation, contribute to DDA-mediated cytotoxicity. Significantly, EGFR overexpression potentiates each of these responses. Combination studies with DDAs suggest that they may be complementary with EGFR/HER2-specific receptor tyrosine kinase inhibitors and mTORC1 inhibitors to overcome drug resistance.
Collapse
Affiliation(s)
- Renan B Ferreira
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Mengxiong Wang
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL 32610, USA.,UF-Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Mary E Law
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL 32610, USA.,UF-Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Bradley J Davis
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL 32610, USA.,UF-Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Ashton N Bartley
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Paul J Higgins
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY 12208, USA
| | - Michael S Kilberg
- Department of Biochemistry, University of Florida, Gainesville, FL, 32610, USA
| | - Katherine E Santostefano
- Department of Pathology, Immunology, and Laboratory Medicine, Center for Cellular Reprogramming, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Naohiro Terada
- Department of Pathology, Immunology, and Laboratory Medicine, Center for Cellular Reprogramming, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Coy D Heldermon
- Department of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | | | - Brian K Law
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL 32610, USA.,UF-Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
4
|
Meng X, Zhu Y, Tao L, Zhao S, Qiu S. Periostin has a protective role in melatonin‑induced cell apoptosis by inhibiting the eIF2α‑ATF4 pathway in human osteoblasts. Int J Mol Med 2017; 41:1003-1012. [PMID: 29207036 DOI: 10.3892/ijmm.2017.3300] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/28/2017] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the role of periostin (POSTN) and high melatonin concentrations in the apoptosis of hFOB 1.19 human normal fetal osteoblastic cells. hFOB 1.19 human osteoblastic cells were stably cultured and treated in different concentrations of melatonin for different durations of action. Apoptosis was assessed quantitatively using flow cytometric analysis. The results of western blot analysis demonstrated that the treatment of cells with different concentrations of melatonin for different durations of action revealed a positive association between melatonin and the expression levels of glucose‑regulated protein (GRP)78, GRP94, phosphorylated (p‑) eukaryotic initiation factor 2α (eIF2α), activating transcription factor (ATF)4, CCAAT/enhanced binding protein homologous protein (CHOP), cleaved caspase‑3, p‑c‑Jun N‑terminal kinase (JNK) and POSTN. When POSTN was inhibited, the levels of p‑JNK, CHOP, p‑eIF2α, ATF4 and cleaved caspase‑3 were significantly increased, whereas other proteins associated with the endoplasmic reticulum stress (ERS) pathways, including ATF6 and X‑box binding protein 1 (XBP1), were not significantly altered. Reverse transcription‑quantitative polymerase chain reaction analysis was also performed to assess the relative mRNA levels of ATF4, ATF6 and XBP1. The results of the present study are the first, to the best of our knowledge, to demonstrate that melatonin induced apoptosis in hFOB 1.19 human osteoblastic cells by activating the ERS‑associated eIF2α‑ATF4 pathway and subsequently triggered the cascade effects of CHOP, caspase‑3 and JNK. POSTN may function as a protective factor for osteoblasts during this process by inhibiting the eIF2α‑ATF4 pathway.
Collapse
Affiliation(s)
- Xiaotong Meng
- Department of Orthopaedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yue Zhu
- Department of Orthopaedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lin Tao
- Department of Orthopaedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Sichao Zhao
- Department of Orthopaedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shui Qiu
- Department of Orthopaedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
5
|
MicroRNA: a connecting road between apoptosis and cholesterol metabolism. Tumour Biol 2016; 37:8529-54. [PMID: 27105614 DOI: 10.1007/s13277-016-4988-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/10/2016] [Indexed: 12/15/2022] Open
Abstract
Resistance to apoptosis leads to tumorigenesis and failure of anti-cancer therapy. Recent studies also highlight abrogated lipid/cholesterol metabolism as one of the root causes of cancer that can lead to metastatic transformations. Cancer cells are dependent on tremendous supply of cellular cholesterol for the formation of new membranes and continuation of cell signaling. Cholesterol homeostasis network tightly regulates this metabolic need of cancer cells on cholesterol and other lipids. Genetic landscape is also shared between apoptosis and cholesterol metabolism. MicroRNAs (miRNAs) are the new fine tuners of signaling pathways and cellular processes and are known for their ability to post-transcriptionally repress gene expression in a targeted manner. This review summarizes the current knowledge about the cross talk between apoptosis and cholesterol metabolism via miRNAs. In addition, we also emphasize herein recent therapeutic modulations of specific miRNAs and their promising potential for the treatment of deadly diseases including cancer and cholesterol related pathologies. Understanding of the impact of miRNA-based regulation of apoptosis and metabolic processes is still at its dawn and needs further research for the development of future miRNA-based therapies. As both these physiological processes affect cellular homeostasis, we believe that this comprehensive summary of miRNAs modulating both apoptosis and cholesterol metabolism will open uncharted territory for scientific exploration and will provide the foundation for discovering novel drug targets for cancer and metabolic diseases.
Collapse
|
6
|
Tian H, Sun HW, Zhang JJ, Zhang XW, Zhao L, Guo SD, Li YY, Jiao P, Wang H, Qin SC, Yao ST. Ethanol extract of propolis protects macrophages from oxidized low density lipoprotein-induced apoptosis by inhibiting CD36 expression and endoplasmic reticulum stress-C/EBP homologous protein pathway. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:230. [PMID: 26169264 PMCID: PMC4501110 DOI: 10.1186/s12906-015-0759-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 07/02/2015] [Indexed: 01/04/2023]
Abstract
Background Ethanol extract of propolis (EEP), rich in flavones, has been known for various biological activities including antioxidant, antiinflammatory and antibiotic activities. Our previous studies have shown that EEP protects endothelial cells from oxidized low-density lipoprotein (ox-LDL)-induced apoptosis and inhibits atherosclerotic lesion development. In this present study, we explored the protective effect of EEP on ox-LDL-induced cytotoxicity in macrophages and specifically the endoplasmic reticulum (ER) stress-C/EBP homologous protein (CHOP) pathway-mediated apoptosis. Methods EEP was prepared and the total flavonoids content of EEP was determined by the colorimetric method of Chinese Standard (GB/T 20574-2006). The effects of EEP on lipid accumulation, cytotoxicity and apoptosis in RAW264.7 cells induced by ox-LDL or tunicamycin (TM, an ER stress inducer) were assayed using oil red O staining, MTT assay, flow cytometric analysis and so on. Immunofluorescence, Western blot and real time-PCR analysis were then used to further investigate the molecular mechanisms by which EEP protects macrophages from ox-LDL-induced apoptosis. 4-phenylbutyric acid (PBA), an ER stress inhibitor, was used as a positive control. Results EEP (7.5, 15 and 30 mg/L) not only attenuated ox-LDL-induced lipid accumulation in RAW264.7 macrophages in a dose-dependent manner but also inhibited the decreased cell viability and the increased lactate dehydrogenase (LDH) leakage, caspase-3 activation and apoptosis induced by ox-LDL or tunicamycin (TM, a classical ER stress inducer), which were similar to 4-phenylbutyric acid (PBA, an inhibitor of ER stress) treatment. In addition, like PBA, EEP significantly suppressed the ox-LDL- or TM-induced activation of ER stress signaling pathway including the phosphorylation of double-stranded RNA-activated protein kinase-like ER kinase (PERK) and eukaryotic translation initiation factor 2α (eIF2α) as well as upregulation of glucose regulated protein 78 (GRP78) and the pro-apoptotic protein CHOP. Furthermore, EEP significantly suppressed ox-LDL intake by macrophages and the upregulation of CD36 induced by ox-LDL. Conclusion These data indicate that EEP may protect macrophages from ox-LDL-induced apoptosis and the mechanism at least partially involves its ability to suppress the CD36-mediated ox-LDL intake and subsequent activation of ER stress-CHOP signalling pathway.
Collapse
|
7
|
Abstract
The endoplasmic reticulum (ER) is a central organelle for protein biosynthesis, folding, and traffic. Perturbations in ER homeostasis create a condition termed ER stress and lead to activation of the complex signaling cascade called the unfolded protein response (UPR). Recent studies have documented that the UPR coordinates multiple signaling pathways and controls various physiologies in cells and the whole organism. Furthermore, unresolved ER stress has been implicated in a variety of metabolic disorders, such as obesity and type 2 diabetes. Therefore, intervening in ER stress and modulating signaling components of the UPR would provide promising therapeutics for the treatment of human metabolic diseases.
Collapse
Affiliation(s)
- Jaemin Lee
- From the Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
8
|
Liposomal cholesterol delivery activates the macrophage innate immune arm to facilitate intracellular Leishmania donovani killing. Infect Immun 2013; 82:607-17. [PMID: 24478076 DOI: 10.1128/iai.00583-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leishmania donovani causes visceral leishmaniasis (VL) by infecting the monocyte/macrophage lineage and residing inside specialized structures known as parasitophorous vacuoles. The protozoan parasite has adopted several means of escaping the host immune response, with one of the major methods being deactivation of host macrophages. Previous reports highlight dampened macrophage signaling, defective antigen presentation due to increased membrane fluidity, and the downregulation of several genes associated with L. donovani infection. We have reported previously that the defective antigen presentation in infected hamsters could be corrected by a single injection of a cholesterol-containing liposome. Here we show that cholesterol in the form of a liposomal formulation can stimulate the innate immune arm and reactivate macrophage function. Augmented levels of reactive oxygen species (ROS) and reactive nitrogen intermediates (RNI), along with proinflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6), corroborate intracellular parasite killing. Cholesterol incorporation kinetics is favored in infected macrophages more than in normal macrophages. Such an enhanced cholesterol uptake is associated with preferential apoptosis of infected macrophages in an endoplasmic reticulum (ER) stress-dependent manner. All these events are coupled with mitogen-activated protein (MAP) kinase activation, while inhibition of such pathways resulted in increased parasite loads. Hence, liposomal cholesterol is a potential facilitator of the macrophage effector function in favor of the host, independently of the T-cell arm.
Collapse
|
9
|
Scull CM, Tabas I. Mechanisms of ER stress-induced apoptosis in atherosclerosis. Arterioscler Thromb Vasc Biol 2011; 31:2792-7. [PMID: 22096099 PMCID: PMC3220876 DOI: 10.1161/atvbaha.111.224881] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 07/05/2011] [Indexed: 01/05/2023]
Abstract
Endoplasmic reticulum (ER) stress is triggered by perturbations in ER function such as those caused by protein misfolding or by increases in protein secretion. Eukaryotic cells respond to ER stress by activating 3 ER-resident proteins, activating transcription factor-6, inositol requiring protein-1, and protein kinase RNA-like ER kinase (PERK). These proteins direct signaling pathways that relieve ER stress in a process known as the unfolded protein response (UPR). In pathological settings, however, prolonged UPR activation can promote cell death, and this process has recently emerged as an important concept in atherosclerosis. We review here the evidence for UPR activation and cell death in macrophages, smooth muscle cells, and endothelial cells in the context of advanced atherosclerosis as well as the existing literature regarding mechanisms of UPR-induced cell death. Knowledge in this area may suggest new therapeutic targets relevant to the formation of clinically dangerous atherosclerotic plaques.
Collapse
Affiliation(s)
- Christopher M Scull
- Department of Medicine, Columbia University-PH 9-405, 630 W. 168th St., New York, NY 10032, USA.
| | | |
Collapse
|
10
|
Abstract
Prolonged activation of the endoplasmic reticulum (ER) stress pathway known as the unfolded protein response (UPR) can lead to cell pathology and subsequent tissue dysfunction. There is now ample evidence that the UPR is chronically activated in atherosclerotic lesional cells, particularly advanced lesional macrophages and endothelial cells. The stressors in advanced lesions that can lead to prolonged activation of the UPR include oxidative stress, oxysterols, and high levels of intracellular cholesterol and saturated fatty acids. Importantly, these arterial wall stressors may be especially prominent in the settings of obesity, insulin resistance, and diabetes, all of which promote the clinical progression of atherosclerosis. In the case of macrophages, prolonged ER stress triggers apoptosis, which in turn leads to plaque necrosis if the apoptotic cells are not rapidly cleared. ER stress-induced endothelial cell apoptosis may also contribute to plaque progression. Another potentially important proatherogenic effect of prolonged ER stress is activation of inflammatory pathways in macrophages and, perhaps in response to atheroprone shear stress, endothelial cells. Although exciting work over the last decade has begun to shed light on the mechanisms and in vivo relevance of ER stress-driven atherosclerosis, much more work is needed to fully understand this area and to enable an informed approach to therapeutic translation.
Collapse
Affiliation(s)
- Ira Tabas
- Department of Medicine, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
11
|
Yin K, Liao DF, Tang CK. ATP-binding membrane cassette transporter A1 (ABCA1): a possible link between inflammation and reverse cholesterol transport. Mol Med 2010; 16:438-49. [PMID: 20485864 DOI: 10.2119/molmed.2010.00004] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 05/11/2010] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is characterized by a chronic inflammatory condition that involves numerous cellular and molecular inflammatory components. A wide array of inflammatory mediators, such as cytokines and proteins produced by macrophages and other cells, play a critical role in the development and progression of the disease. ATP-binding membrane cassette transporter A1 (ABCA1) is crucial for cellular cholesterol efflux and reverse cholesterol transport (RCT) and is also identified as an important target in antiatherosclerosis treatment. Evidence from several recent studies indicates that inflammation, along with other atherogenic-related mediators, plays distinct regulating roles in ABCA1 expression. Proatherogenic cytokines such as interferon (IFN)-γ and interleukin (IL)-1β have been shown to inhibit the expression of ABCA1, while antiatherogenic cytokines, including IL-10 and transforming growth factor (TGF)-β1, have been shown to promote the expression of ABCA1. Moreover, some cytokines such as tumor necrosis factor (TNF)-α seem to regulate ABCA1 expression in species-specific and dose-dependent manners. Inflammatory proteins such as C-reactive protein (CRP) and cyclooxygenase (COX)-2 are likely to inhibit ABCA1 expression during inflammation, and inflammation induced by lipopolysaccharide (LPS) was also found to block the expression of ABCA1. Interestingly, recent experiments revealed ABCA1 can function as an antiinflammatory receptor to suppress the expression of inflammatory factors, suggesting that ABCA1 may be the molecular basis for the interaction between inflammation and RCT. This review aims to summarize recent findings on the role of inflammatory cytokines, inflammatory proteins, inflammatory lipids, and the endotoxin-mediated inflammatory process in expression of ABCA1. Also covered is the current understanding of the function of ABCA1 in modulating the immune response and inflammation through its direct and indirect antiinflammatory mechanisms including lipid transport, high-density lipoprotein (HDL) formation and apoptosis.
Collapse
Affiliation(s)
- Kai Yin
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Life Science Research Center, University of South China, Hengyang, China
| | | | | |
Collapse
|