1
|
Mao L, Mostafa R, Ibili E, Fert-Bober J. Role of protein deimination in cardiovascular diseases: potential new avenues for diagnostic and prognostic biomarkers. Expert Rev Proteomics 2021; 18:1059-1071. [PMID: 34929115 DOI: 10.1080/14789450.2021.2018303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Arginine deimination (citrullination) is a post-translational modification catalyzed by a family of peptidyl arginine deiminase (PAD) enzymes. Cell-based functional studies and animal models have manifested the key role of PADs in various cardiovascular diseases (CVDs). AREA COVERED This review summarizes the latest developments in the role of PADs in CVD pathogenesis. It focuses on the PAD functions and diverse citrullinated proteins in cardiovascular conditions like deep vein thrombosis, ischemia/reperfusion, and atherosclerosis. Identification of PAD isoforms and citrullinated targets are essential for directing diagnosis and clinical intervention. Finally, anti-citrullinated protein antibodies (ACPAs) are addressed as an independent risk factor for cardiovascular events. A search of PubMed biomedical literature from the past ten years was performed with a combination of the following keywords: PAD/PADI, deimination/citrullination, autoimmune, fibrosis, NET, neutrophil, macrophage, inflammation, inflammasome, cardiovascular, heart disease, myocardial infarction, ischemia, atherosclerosis, thrombosis, and aging. Additional papers from retrieved articles were also considered. EXPERT OPINION PADs are unique family of enzymes that converts peptidyl-arginine to -citrulline in protein permanently. Overexpression or increased activity of PAD has been observed in various CVDs with acute and chronic inflammation as the background. Importantly, far beyond being simply involved in forming neutrophil extracellular traps (NETs), accumulating evidence indicated PAD activation as a trigger for numerous processes, such as transcriptional regulation, endothelial dysfunction, and thrombus formation. In summary, the findings so far have testified the important role of deimination in cardiovascular biology, while more basic and translational studies are essential to further exploration.
Collapse
Affiliation(s)
- Liqun Mao
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Advanced Clinical Biosystems Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Rowann Mostafa
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Advanced Clinical Biosystems Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Esra Ibili
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Advanced Clinical Biosystems Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Justyna Fert-Bober
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Advanced Clinical Biosystems Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
2
|
Lin XC, Pan M, Zhu LP, Sun Q, Zhou ZS, Li CC, Zhang GG. NFAT5 promotes arteriogenesis via MCP-1-dependent monocyte recruitment. J Cell Mol Med 2019; 24:2052-2063. [PMID: 31883300 PMCID: PMC6991654 DOI: 10.1111/jcmm.14904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/28/2019] [Accepted: 10/05/2019] [Indexed: 01/24/2023] Open
Abstract
Studies have demonstrated that nuclear factor of activated T cells 5 (NFAT5) is not only a tonicity‐responsive transcription factor but also activated by other stimuli, so we aim to investigate whether NFAT5 participates in collateral arteries formation in rats. We performed femoral artery ligature (FAL) in rats for hindlimb ischaemia model and found that NFAT5 was up‐regulated in rat adductors with FAL compared with sham group. Knockdown of NFAT5 with locally injection of adenovirus‐mediated NFAT5‐shRNA in rats significantly inhibited hindlimb blood perfusion recovery and arteriogenesis. Moreover, NFAT5 knockdown decreased macrophages infiltration and monocyte chemotactic protein‐1 (MCP‐1) expression in rats adductors. In vitro, with interleukin‐1β (IL‐1β) stimulation and loss‐of‐function studies, we demonstrated that NFAT5 knockdown inhibits MCP‐1 expression in endothelial cells and chemotaxis of THP‐1 cells regulated by ERK1/2 pathway. More importantly, exogenous MCP‐1 delivery could recover hindlimb blood perfusion, promote arteriogenesis and macrophages infiltration in rats after FAL, which were depressed by NFAT5 knockdown. Besides, NFAT5 knockdown also inhibited angiogenesis in gastrocnemius muscles in rats. Our results indicate that NFAT5 is a critical regulator of arteriogenesis and angiogenesis via MCP‐1‐dependent monocyte recruitment, suggesting that NFAT5 may represent an alternative therapeutic target for ischaemic diseases.
Collapse
Affiliation(s)
- Xing-Chi Lin
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Miao Pan
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Ping Zhu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Quan Sun
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Zheng-Shi Zhou
- Department of Laboratory Animal, Xiangya School of Medicine, Central South University, Changsha, China
| | - Chuan-Chang Li
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Guo-Gang Zhang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Cardiovascular Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
3
|
Rajendran S, Shen X, Glawe J, Kolluru GK, Kevil CG. Nitric Oxide and Hydrogen Sulfide Regulation of Ischemic Vascular Growth and Remodeling. Compr Physiol 2019; 9:1213-1247. [PMID: 31187898 DOI: 10.1002/cphy.c180026] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ischemic vascular remodeling occurs in response to stenosis or arterial occlusion leading to a change in blood flow and tissue perfusion. Altered blood flow elicits a cascade of molecular and cellular physiological responses leading to vascular remodeling of the macro- and micro-circulation. Although cellular mechanisms of vascular remodeling such as arteriogenesis and angiogenesis have been studied, therapeutic approaches in these areas have had limited success due to the complexity and heterogeneous constellation of molecular signaling events regulating these processes. Understanding central molecular players of vascular remodeling should lead to a deeper understanding of this response and aid in the development of novel therapeutic strategies. Hydrogen sulfide (H2 S) and nitric oxide (NO) are gaseous signaling molecules that are critically involved in regulating fundamental biochemical and molecular responses necessary for vascular growth and remodeling. This review examines how NO and H2 S regulate pathophysiological mechanisms of angiogenesis and arteriogenesis, along with important chemical and experimental considerations revealed thus far. The importance of NO and H2 S bioavailability, their synthesis enzymes and cofactors, and genetic variations associated with cardiovascular risk factors suggest that they serve as pivotal regulators of vascular remodeling responses. © 2019 American Physiological Society. Compr Physiol 9:1213-1247, 2019.
Collapse
Affiliation(s)
| | - Xinggui Shen
- Departments of Pathology, LSU Health Sciences Center, Shreveport
| | - John Glawe
- Departments of Pathology, LSU Health Sciences Center, Shreveport
| | - Gopi K Kolluru
- Departments of Pathology, LSU Health Sciences Center, Shreveport
| | - Christopher G Kevil
- Departments of Pathology, LSU Health Sciences Center, Shreveport.,Departments of Cellular Biology and Anatomy, LSU Health Sciences Center, Shreveport.,Departments of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport
| |
Collapse
|
4
|
Liao L, Bai Y. The dynamics of monocytes in the process of collateralization. Aging Med (Milton) 2019; 2:50-55. [PMID: 31942512 PMCID: PMC6880710 DOI: 10.1002/agm2.12054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/17/2019] [Indexed: 12/16/2022] Open
Abstract
Collateralization is an important way for patients with coronary heart disease to supply blood flow to the ischemic area. At present, research on the mechanism of collateral circulation mainly focuses on the inflammatory response. Monocytes are the kernel of inflammatory response during arteriogenesis. Therefore, we reviewed the recent developments in this field in terms of the dynamic changes of monocytes during collateralization. We searched and scanned PubMed for the following terms until November 2018: collateral, collateralization, monocyte, macrophage, and arteriogenesis. Articles were obtained and examined to figure out the dynamics of monocytes in the progress of collateralization. Substantial research shows that recruitment, infiltration, and phenotypic transformation of monocytes can affect function in various ways, respectively. Mechanical or chemical factors that can produce effects on collateral development may be due partly to impact on dynamics of monocytes. Although mechanisms of dynamics of monocytes during arteriogenesis are not elucidated clearly, there is no doubt that deeper exploration of the underlying mechanisms will contribute to pharmaceutical development aiming for promoting collateral development.
Collapse
Affiliation(s)
- Long‐Sheng Liao
- Department of Geriatric MedicineXiangya HospitalCentral South UniversityChangshaChina
| | - Yong‐Ping Bai
- Department of Geriatric MedicineXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
5
|
Coucha M, Abdelsaid M, Ward R, Abdul Y, Ergul A. Impact of Metabolic Diseases on Cerebral Circulation: Structural and Functional Consequences. Compr Physiol 2018; 8:773-799. [PMID: 29687902 DOI: 10.1002/cphy.c170019] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metabolic diseases including obesity, insulin resistance, and diabetes have profound effects on cerebral circulation. These diseases not only affect the architecture of cerebral blood arteries causing adverse remodeling, pathological neovascularization, and vasoregression but also alter the physiology of blood vessels resulting in compromised myogenic reactivity, neurovascular uncoupling, and endothelial dysfunction. Coupled with the disruption of blood brain barrier (BBB) integrity, changes in blood flow and microbleeds into the brain rapidly occur. This overview is organized into sections describing cerebrovascular architecture, physiology, and BBB in these diseases. In each section, we review these properties starting with larger arteries moving into smaller vessels. Where information is available, we review in the order of obesity, insulin resistance, and diabetes. We also tried to include information on biological variables such as the sex of the animal models noted since most of the information summarized was obtained using male animals. © 2018 American Physiological Society. Compr Physiol 8:773-799, 2018.
Collapse
Affiliation(s)
- Maha Coucha
- South University, School of Pharmacy, Savannah, Georgia, USA
| | | | - Rebecca Ward
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Yasir Abdul
- Charlie Norwood VA Medical Center, Augusta, Georgia, USA.,Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Adviye Ergul
- Charlie Norwood VA Medical Center, Augusta, Georgia, USA.,Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
6
|
Filipovic N, Ghimire K, Saveljic I, Milosevic Z, Ruegg C. Computational modeling of shear forces and experimental validation of endothelial cell responses in an orbital well shaker system. Comput Methods Biomech Biomed Engin 2015; 19:581-90. [DOI: 10.1080/10255842.2015.1051973] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
The relevance of epigenetics to occlusive cerebral and peripheral arterial disease. Clin Sci (Lond) 2015; 128:537-58. [PMID: 25671777 DOI: 10.1042/cs20140491] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Athero-thrombosis of the arteries supplying the brain and lower limb are the main causes of stroke and limb loss. New therapies are needed to improve the outcomes of athero-thrombosis. Recent evidence suggests a role for epigenetic changes in the development and progression of ischaemic injury due to atherosclerotic occlusion of peripheral arteries. DNA hypermethylation have been associated with cardiovascular diseases. Histone post-translational modifications have also been implicated in atherosclerosis. Oxidized low-density lipoprotein regulated pro-inflammatory gene expression within endothelial cells is controlled by phosphorylation/acetylation of histone H3 and acetylation of histone H4 for example. There are a number of challenges in translating the growing evidence implicating epigenetics in atherosclerosis to improved therapies for patients. These include the small therapeutic window in conditions such as acute stroke and critical limb ischaemia, since interventions introduced in such patients need to act rapidly and be safe in elderly patients with many co-morbidities. Pre-clinical animal experiments have also reported conflicting effects of some novel epigenetic drugs, which suggest that further in-depth studies are required to better understand their efficacy in resolving ischaemic injury. Effective ways of dealing with these challenges are needed before epigenetic approaches to therapy can be introduced into practice.
Collapse
|
8
|
El polimorfismo de un solo nucleótido PLAU P141L se asocia con el grado de circulación colateral en pacientes con enfermedad arterial coronaria. Rev Esp Cardiol 2014. [DOI: 10.1016/j.recesp.2013.11.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
9
|
Inhibition of protein tyrosine phosphatases enhances cerebral collateral growth in rats. J Mol Med (Berl) 2014; 92:983-94. [PMID: 24858946 DOI: 10.1007/s00109-014-1164-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/13/2014] [Accepted: 05/07/2014] [Indexed: 12/27/2022]
Abstract
UNLABELLED Arteriogenesis involves the rapid proliferation of preexisting arterioles to fully functional arteries as a compensatory mechanism to overcome circulatory deficits. Stimulation of arteriogenesis has therefore been considered a treatment concept in arterial occlusive disease. Here, we investigated the impact of inhibition of protein tyrosine phosphatases (PTPs) on cerebral arteriogenesis in rats. Arteriogenesis was induced by occlusion of one carotid and both vertebral arteries (three-vessel occlusion (3-VO)). Collateral growth and functional vessel perfusion was assessed 3-35 days following 3-VO. Furthermore, animals underwent 3-VO surgery and were treated with the pan-PTP inhibitor BMOV, the SHP-1 inhibitor sodium stibogluconate (SSG), or the PTP1B inhibitor AS279. Cerebral vessel diameters and cerebrovascular reserve capacity (CVRC) were determined, together with immunohistochemistry analyses and proximity ligation assays (PLA) for determination of tissue proliferation and phosphorylation patterns after 7 days. The most significant changes in vessel diameter increase were present in the ipsilateral posterior cerebral artery (PCA), with proliferative markers (PCNA) being time-dependently increased. The CVRC was lost in the early phase after 3-VO and partially recovered after 21 days. PTP inhibition resulted in a significant increase in the ipsilateral PCA diameter in BMOV-treated animals and rats subjected to PTP1B inhibition. Furthermore, CVRC was significantly elevated in AS279-treated rats compared to control animals, along with hyperphosphorylation of the platelet-derived growth factor-β receptor in the vascular wall in vivo. In summary, our data indicate PTPs as hitherto unrecognized negative regulators in cerebral arteriogenesis. Further, PTP inhibition leading to enhanced collateral growth and blood perfusion suggests PTPs as novel targets in anti-ischemic treatment. KEY MESSAGES PTPs exhibit negative regulatory function in cerebral collateral growth in rats. Inhibition of pan-PTP/PTP1B increases vessel PDGF-β receptor phosphorylation. PTP1B inhibition enhances arteriogenesis and cerebrovascular reserve capacity.
Collapse
|
10
|
The multifaceted functions of CXCL10 in cardiovascular disease. BIOMED RESEARCH INTERNATIONAL 2014; 2014:893106. [PMID: 24868552 PMCID: PMC4017714 DOI: 10.1155/2014/893106] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/06/2014] [Indexed: 02/07/2023]
Abstract
C-X-C motif ligand 10 (CXCL10), or interferon-inducible protein-10, is a small chemokine belonging to the CXC chemokine family. Its members are responsible for leukocyte trafficking and act on tissue cells, like endothelial and vascular smooth muscle cells. CXCL10 is secreted by leukocytes and tissue cells and functions as a chemoattractant, mainly for lymphocytes. After binding to its receptor CXCR3, CXCL10 evokes a range of inflammatory responses: key features in cardiovascular disease (CVD). The role of CXCL10 in CVD has been extensively described, for example for atherosclerosis, aneurysm formation, and myocardial infarction. However, there seems to be a discrepancy between experimental and clinical settings. This discrepancy occurs from differences in biological actions between species (e.g. mice and human), which is dependent on CXCL10 signaling via different CXCR3 isoforms or CXCR3-independent signaling. This makes translation from experimental to clinical settings challenging. Furthermore, the overall consensus on the actions of CXCL10 in specific CVD models is not yet reached. The purpose of this review is to describe the functions of CXCL10 in different CVDs in both experimental and clinical settings and to highlight and discuss the possible discrepancies and translational difficulties. Furthermore, CXCL10 as a possible biomarker in CVD will be discussed.
Collapse
|
11
|
Duran J, Sánchez-Olavarría P, Mola M, Götzens V, Carballo J, Martín-Pelegrina E, Petit M, García Del Blanco B, García-Dorado D, de Anta JM. The PLAU P141L single nucleotide polymorphism is associated with collateral circulation in patients with coronary artery disease. ACTA ACUST UNITED AC 2014; 67:552-7. [PMID: 24952395 DOI: 10.1016/j.rec.2013.11.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 11/13/2013] [Indexed: 11/16/2022]
Abstract
INTRODUCTION AND OBJECTIVES Urokinase-type plasminogen activator, which is encoded by the PLAU gene, plays a prominent role during collateral arterial growth. We investigated whether the PLAU P141L (C > T) polymorphism, which causes a mutation in the kringle domain of the protein, is associated with coronary collateral circulation in a cohort of 676 patients with coronary artery disease. METHODS The polymorphism was genotyped in blood samples using a TaqMan-based genotyping assay, and collateral circulation was assessed by the Rentrop method. Multivariate logistic regression models adjusted by clinically relevant variables to estimate odds ratios were used to examine associations of PLAU P141L allelic variants and genotypes with collateral circulation. RESULTS Patients with poor collateral circulation (Rentrop 0-1; n = 547) showed a higher frequency of the TT genotype than those with good collateral circulation (Rentrop 2-3; n = 129; P = .020). The T allele variant was also more common in patients with poor collateral circulation (P = .006). The odds ratio of having poorly developed collaterals in patients bearing the T allele (adjusted for clinically relevant variables) was statistically significant under the dominant model (odds ratio = 1.83 [95% confidence interval, 1.16-2.90]; P = .010) and the additive model (odds ratio = 1.73 [95% confidence interval, 1.14-2.62]; P = .009). CONCLUSIONS An association was found between coronary collateral circulation and the PLAU P141L polymorphism. Patients with the 141L variant are at greater risk of developing poor coronary collateral circulation.
Collapse
Affiliation(s)
- Joan Duran
- Unidad de Anatomía y Embriología Humanas, Departamento de Patología y Terapéutica Experimental, Facultad de Medicina, Campus de Ciencias de la Salud de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Pilar Sánchez-Olavarría
- Unidad de Anatomía y Embriología Humanas, Departamento de Patología y Terapéutica Experimental, Facultad de Medicina, Campus de Ciencias de la Salud de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain; Departamento de Estadística, Universidad de Valparaíso, Valparaíso, Chile
| | - Marina Mola
- Unidad de Anatomía y Embriología Humanas, Departamento de Patología y Terapéutica Experimental, Facultad de Medicina, Campus de Ciencias de la Salud de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain; Grupo de Investigación Neurovascular (NEUVAS), IMIM-Hospital del Mar, PRBB-Parque de Investigación Biomédica de Barcelona, Barcelona, Spain
| | - Víctor Götzens
- Unidad de Anatomía y Embriología Humanas, Departamento de Patología y Terapéutica Experimental, Facultad de Medicina, Campus de Ciencias de la Salud de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Julio Carballo
- Departamento de Cardiología y Hemodinamia, Centro Cardiovascular Sant Jordi, Barcelona, Spain
| | - Eva Martín-Pelegrina
- Departamento de Cardiología y Hemodinamia, Centro Cardiovascular Sant Jordi, Barcelona, Spain
| | - Màrius Petit
- Departamento de Cardiología y Hemodinamia, Centro Cardiovascular Sant Jordi, Barcelona, Spain
| | | | - David García-Dorado
- Departamento de Cardiología, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Josep M de Anta
- Unidad de Anatomía y Embriología Humanas, Departamento de Patología y Terapéutica Experimental, Facultad de Medicina, Campus de Ciencias de la Salud de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
12
|
Mona e Pinto J, Pavanelo V, Alves de Fátima L, Medeiros de Carvalho Sousa LM, Pacheco Mendes G, Machado Ferreira R, Ayres H, Sampaio Baruselli P, Palma Rennó F, de Carvallo Papa P. Treatment with eCG Decreases the Vascular Density and Increases the Glandular Density of the Bovine Uterus. Reprod Domest Anim 2014; 49:453-62. [DOI: 10.1111/rda.12307] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 02/18/2014] [Indexed: 11/27/2022]
Affiliation(s)
- J Mona e Pinto
- Department of Surgery; Faculty of Veterinary Medicine and Animal Sciences; University of São Paulo; São Paulo Brazil
| | - V Pavanelo
- Department of Surgery; Faculty of Veterinary Medicine and Animal Sciences; University of São Paulo; São Paulo Brazil
| | - L Alves de Fátima
- Department of Surgery; Faculty of Veterinary Medicine and Animal Sciences; University of São Paulo; São Paulo Brazil
| | - LM Medeiros de Carvalho Sousa
- Department of Surgery; Faculty of Veterinary Medicine and Animal Sciences; University of São Paulo; São Paulo Brazil
| | - G Pacheco Mendes
- Department of Surgery; Faculty of Veterinary Medicine and Animal Sciences; University of São Paulo; São Paulo Brazil
| | - R Machado Ferreira
- Department of Animal Reproduction; Faculty of Veterinary Medicine and Animal Sciences; University of São Paulo; São Paulo Brazil
| | - H Ayres
- Department of Animal Reproduction; Faculty of Veterinary Medicine and Animal Sciences; University of São Paulo; São Paulo Brazil
| | - P Sampaio Baruselli
- Department of Animal Reproduction; Faculty of Veterinary Medicine and Animal Sciences; University of São Paulo; São Paulo Brazil
| | - F Palma Rennó
- Department of Nutrition and Animal Production; Faculty of Veterinary Medicine and Animal Sciences; São Paulo Brazil
| | - P de Carvallo Papa
- Department of Surgery; Faculty of Veterinary Medicine and Animal Sciences; University of São Paulo; São Paulo Brazil
| |
Collapse
|
13
|
Rooke TW, Felty CL. A different way to look at varicose veins. J Vasc Surg Venous Lymphat Disord 2014; 2:207-11. [PMID: 26993192 DOI: 10.1016/j.jvsv.2013.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/20/2013] [Accepted: 08/21/2013] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The development of varicose veins is commonly attributed to vessel wall degeneration. The idea that varicose veins occur because of pathological processes, however, is challenged by certain observations. For example, their high prevalence (50% or greater) in many populations makes it statistically "normal" to have varicose veins; their well-established genetic predisposition raises the possibility that this high prevalence reflects a survival benefit. One way to explain this apparent contradiction is to theorize that varicose veins are produced by the same mechanism(s) that lead to the growth and remodeling of other types of blood vessels. If so, being "good" at forming varicose veins may also predispose to being "good" at forming various types of collateral blood vessels when necessary. METHODS A selected literature review was conducted. Works chosen for review included those suggesting that: the process of varicose vein formation may share the same basic mechanisms as the formation of collateral veins, arteries, and lymphatic vessels; and clinical outcomes may be different between subjects with and without varicose veins. RESULTS Evidence suggests that subjects who are "good" at forming varicose veins may also be "good" at forming various types of collateral vessels, and they may have better overall survival (with less cardiovascular morbidity) than those without varicose veins. CONCLUSIONS Varicose veins may be "the price we pay" for an enhanced ability to form collateral vessels when necessary.
Collapse
Affiliation(s)
- Thom W Rooke
- Department of Vascular Medicine, Mayo Clinic, Rochester, Minn.
| | - Cindy L Felty
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minn
| |
Collapse
|
14
|
Abstract
Peripheral arterial disease (PAD) is a common vascular disease that reduces blood flow capacity to the legs of patients. PAD leads to exercise intolerance that can progress in severity to greatly limit mobility, and in advanced cases leads to frank ischemia with pain at rest. It is estimated that 12 to 15 million people in the United States are diagnosed with PAD, with a much larger population that is undiagnosed. The presence of PAD predicts a 50% to 1500% increase in morbidity and mortality, depending on severity. Treatment of patients with PAD is limited to modification of cardiovascular disease risk factors, pharmacological intervention, surgery, and exercise therapy. Extended exercise programs that involve walking approximately five times per week, at a significant intensity that requires frequent rest periods, are most significant. Preclinical studies and virtually all clinical trials demonstrate the benefits of exercise therapy, including improved walking tolerance, modified inflammatory/hemostatic markers, enhanced vasoresponsiveness, adaptations within the limb (angiogenesis, arteriogenesis, and mitochondrial synthesis) that enhance oxygen delivery and metabolic responses, potentially delayed progression of the disease, enhanced quality of life indices, and extended longevity. A synthesis is provided as to how these adaptations can develop in the context of our current state of knowledge and events known to be orchestrated by exercise. The benefits are so compelling that exercise prescription should be an essential option presented to patients with PAD in the absence of contraindications. Obviously, selecting for a lifestyle pattern that includes enhanced physical activity prior to the advance of PAD limitations is the most desirable and beneficial.
Collapse
Affiliation(s)
- Tara L Haas
- Angiogenesis Research Group, Muscle Health Research Centre, Faculty of Health, York University, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
15
|
Regulation of collateral blood vessel development by the innate and adaptive immune system. Trends Mol Med 2012; 18:494-501. [PMID: 22818027 DOI: 10.1016/j.molmed.2012.06.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/11/2012] [Accepted: 06/15/2012] [Indexed: 12/21/2022]
|
16
|
Mechanotransduction in embryonic vascular development. Biomech Model Mechanobiol 2012; 11:1149-68. [PMID: 22744845 DOI: 10.1007/s10237-012-0412-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 06/09/2012] [Indexed: 12/25/2022]
Abstract
A plethora of biochemical signals provides spatial and temporal cues that carefully orchestrate the complex process of vertebrate embryonic development. The embryonic vasculature develops not only in the context of these biochemical cues, but also in the context of the biomechanical forces imparted by blood flow. In the mature vasculature, different blood flow regimes induce distinct genetic programs, and significant progress has been made toward understanding how these forces are perceived by endothelial cells and transduced into biochemical signals. However, it cannot be assumed that paradigms that govern the mature vasculature are pertinent to the developing embryonic vasculature. The embryonic vasculature can respond to the mechanical forces of blood flow, and these responses are critical in vascular remodeling, certain aspects of sprouting angiogenesis, and maintenance of arterial-venous identity. Here, we review data regarding mechanistic aspects of endothelial cell mechanotransduction, with a focus on the response to shear stress, and elaborate upon the multifarious effects of shear stress on the embryonic vasculature. In addition, we discuss emerging predictive vascular growth models and highlight the prospect of combining signaling pathway information with computational modeling. We assert that correlation of precise measurements of hemodynamic parameters with effects on endothelial cell gene expression and cell behavior is required for fully understanding how blood flow-induced loading governs normal vascular development and shapes congenital cardiovascular abnormalities.
Collapse
|
17
|
Shen Z, Li C, Frieler RA, Gerasimova AS, Lee SJ, Wu J, Wang MM, Lumeng CN, Brosius FC, Duan SZ, Mortensen RM. Smooth muscle protein 22 alpha-Cre is expressed in myeloid cells in mice. Biochem Biophys Res Commun 2012; 422:639-42. [PMID: 22609406 DOI: 10.1016/j.bbrc.2012.05.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 05/09/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Experiments using Cre recombinase to study smooth muscle specific functions rely on strict specificity of Cre transgene expression. Therefore, accurate determination of Cre activity is critical to the interpretation of experiments using smooth muscle specific Cre. METHODS AND RESULTS Two lines of smooth muscle protein 22 α-Cre (SM22α-Cre) mice were bred to floxed mice in order to define Cre transgene expression. Southern blotting demonstrated that SM22α-Cre was expressed not only in tissues abundant of smooth muscle, but also in spleen, which consists largely of immune cells including myeloid and lymphoid cells. PCR detected SM22α-Cre expression in peripheral blood and peritoneal macrophages. Analysis of SM22α-Cre mice crossed with a recombination detector GFP mouse revealed GFP expression, and hence recombination, in circulating neutrophils and monocytes by flow cytometry. CONCLUSIONS SM22α-Cre mediates recombination not only in smooth muscle cells, but also in myeloid cells including neutrophils, monocytes, and macrophages. Given the known contributions of myeloid cells to cardiovascular phenotypes, caution should be taken when interpreting data using SM22α-Cre mice to investigate smooth muscle specific functions. Strategies such as bone marrow transplantation may be necessary when SM22α-Cre is used to differentiate the contribution of smooth muscle cells versus myeloid cells to observed phenotypes.
Collapse
Affiliation(s)
- Zhuxia Shen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Clinical Research Center of Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Rocic P. Why is coronary collateral growth impaired in type II diabetes and the metabolic syndrome? Vascul Pharmacol 2012; 57:179-86. [PMID: 22342811 DOI: 10.1016/j.vph.2012.02.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 01/30/2012] [Accepted: 02/01/2012] [Indexed: 11/26/2022]
Abstract
Type II diabetes and the metabolic syndrome are strong predictors of severity of occlusive coronary disease and poorer outcomes of coronary revascularization therapies. Coronary collateral growth can provide an alternative or accessory pathway of revascularization. However, collateral growth is impaired in type II diabetes and the metabolic syndrome. Although many factors necessary for collateral growth are known and many interventions have shown promising results in animal studies, not a single attempt to induce coronary collateral growth in human clinical trials has led to satisfactory results. Accordingly, the first part of this review outlines the known deleterious effects of diabetes and the metabolic syndrome on factors necessary for collateral growth, including pro-angiogenic growth factors, endothelial function, the redox state of the coronary circulation, intracellular signaling, leukocytes and bone marrow-derived progenitors cells. The second section highlights the gaps in our current knowledge of how these factors interact with the radically altered environment of the coronary circulation in diabetes and the metabolic syndrome. The interplay between these pathologies and inadequately explored areas related to the temporal regulation of collateral remodeling and the roles of the extracellular matrix, vascular cell phenotype and pro-inflammatory cytokines are emphasized with implications to development of efficient therapies.
Collapse
Affiliation(s)
- Petra Rocic
- Department of Biochemistry and Molecular Biology, University of South Alabama College of Medicine, Mobile, AL 36688, United States.
| |
Collapse
|
19
|
Collateral vessel growth induced by femoral artery ligature is impaired by denervation. Mol Cell Biochem 2011; 354:219-29. [DOI: 10.1007/s11010-011-0821-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2011] [Accepted: 04/06/2011] [Indexed: 10/18/2022]
|
20
|
Meehan B, Appu S, St Croix B, Rak-Poznanska K, Klotz L, Rak J. Age-related properties of the tumour vasculature in renal cell carcinoma. BJU Int 2010; 107:416-24. [PMID: 20804487 DOI: 10.1111/j.1464-410x.2010.09569.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To assess whether ageing processes influence angiogenesis in renal cell carcinoma (RCC) we carried out a pilot study of vascular properties in a series of archival primary kidney tumours in patients of different ages. PATIENTS AND METHODS A cohort of patients with RCC was identified restrospectively, with an age range of 35-84 years. Paraffin-embedded, formalin-fixed sections of surgical tumour specimens were stained for endothelial (CD31, von Willebrand factor [vWF]), pericyte (alpha smooth muscle actin [SMA]) and leucocytic (CD45) markers, as well as for proliferative (Ki67) and angiogenic activity (tumour endothelial markers [TEMs], delta-like 4 [Dll4], Dll1, endothelial nitric oxide synthase [eNOS]). Vascular properties were compared between patients above and below 65 years of age. RESULTS Microvascular density (MVD) within capillary hot spots was generally higher in patients with non-metastatic clear-cell RCC (ccRCC; n = 21) than in those with metastatic RCC (mRCC; n= 9). Patients with ccRCC who were more than 65 years old showed significantly higher MVD than their younger (< 65 years) counterparts. There were dividing (Ki67-positive) endothelial and mural cells in both small (< 20 µm) capillary and large (> 20 µm), pre-capillary vessels, suggesting the involvement of both angiogenic and remodelling/arteriogenic processes. Tumour endothelial markers (TEM1, TEM7, TEM8), Notch ligands (Dll1, Dll4), and other molecular characteristics (eNOS) were analysed. Age-related differences were observed in the frequency of pre-capillary vessels expressing Dll1, which was significantly higher in tumours of younger patients (< 65 years), while eNOS was more prevalent among capillaries associated with ccRCC in older patients (>6 5 years). CONCLUSIONS The results of the present study suggest that age influences the structural and molecular properties of the tumour vasculature in ccRCC. We postulate that vascular ageing could also be relevant in the context of anti-angiogenic therapy.
Collapse
Affiliation(s)
- Brian Meehan
- Montreal Children's Hospital Research Institute, McGill University, Montreal, QC, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Scanning electron microscopy examination of endothelium morphology in human carotid plaques. Micron 2010; 41:532-6. [DOI: 10.1016/j.micron.2010.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 01/27/2010] [Accepted: 01/29/2010] [Indexed: 11/20/2022]
|
22
|
Abstract
1. Hydrogen sulphide (H(2)S) has recently been recognized as a gasotransmitter that regulates angiogenesis in vitro and in vivo under physiological and ischaemic conditions. 2. In the present review, the mechanisms underlying angiogenesis are summarized briefly and the most recent progress in H(2)S-induced angiogenesis in vivo and in vitro is described. The anti-angiogenic effects of garlic extracts, which may serve as substrates for H(2)S-generating enzymes in vivo, are also discussed. 3. Hydrogen sulphide increases cell growth, migration and the formation of tube-like structures in cultured endothelial cells. These effects are dependent on activation of the phosphatidylinositol 3-kinase-Akt-survivin signalling pathway. Neovascularization in vivo has also been demonstrated to be promoted in the mouse Matrigel plug assay, as well as in chicken chorioallantoic membranes. In a rat unilateral hindlimb ischaemic model, treatment with sodium hydrosulphide (NaHS), an H(2)S donor, promotes significant angiogenesis and improves regional blood flow. These effects may be mediated by interactions between upregulated vascular endothelial growth factor (VEGF) in skeletal muscle cells and VEGF receptor 2 and the downstream signalling element Akt in vascular endothelial cells. However, H(2)S does not exhibit a pro-angiogenic effect at a high concentrations/doses. 4. Based on the studies reviewed in the present article, we assume that, at physiologically relevant doses/concentrations, H(2)S/HS(-) promote angiogenesis at least partly via the VEGF signalling pathway. At high doses, H(2)S/HS(-) may act on additional cellular targets to evoke mechanisms that counteract the pro-angiogenic pathways. More studies need to be performed analysing the general interactions between H(2)S/HS(-) and other molecules, including other gasotransmitters, such as nitric oxide and carbon monoxide (CO).
Collapse
Affiliation(s)
- Ming-Jie Wang
- Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai, China
| | | | | |
Collapse
|
23
|
A technique based on laser Doppler flowmetry and photoplethysmography for simultaneously monitoring blood flow at different tissue depths. Med Biol Eng Comput 2010; 48:415-22. [PMID: 20107915 DOI: 10.1007/s11517-010-0577-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 01/11/2010] [Indexed: 10/19/2022]
Abstract
The aim of this study was to validate a non-invasive optical probe for simultaneous blood flow measurement at different vascular depths combining three photoplethysmography (PPG) channels and laser Doppler flowmeter (LDF). Wavelengths of the PPG were near-infrared 810 nm with source-to-detector separation of 10 and 25 mm, and green 560 nm with source-to-detector separation of 4 mm. The probe is intended for clinical studies of pressure ulcer aetiology. The probe was placed over the trapezius muscle, and depths from the skin to the trapezius muscle were measured using ultrasound and varied between 3.8 and 23 mm in the 11 subjects included. A provocation procedure inducing a local enhancement of blood flow in the trapezius muscle was used. Blood flows at rest and post-exercise were compared. It can be concluded that this probe is useful as a tool for discriminating between blood flows at different vascular tissue depths. The vascular depths reached for the different channels in this study were at least 23 mm for the near-infrared PPG channel (source-to-detector separation 25 mm), 10-15 mm for the near-infrared PPG channel (separation 10 mm), and shallower than 4 mm for both the green PPG channel (separation 4 mm) and LDF.
Collapse
|
24
|
Smart N, Dubé KN, Riley PR. Coronary vessel development and insight towards neovascular therapy. Int J Exp Pathol 2009; 90:262-83. [PMID: 19563610 PMCID: PMC2697550 DOI: 10.1111/j.1365-2613.2009.00646.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 12/21/2008] [Indexed: 12/20/2022] Open
Abstract
Formation of the coronary arteries consists of a precisely orchestrated series of morphogenetic and molecular events which can be divided into three distinct processes: vasculogenesis, angiogenesis and arteriogenesis (Risau 1997; Carmeliet 2000). Even subtle perturbations in this process may lead to congenital coronary artery anomalies, as occur in 0.2-1.2% of the general population (von Kodolitsch et al. 2004). Contrary to the previously held dogma, the process of vasculogenesis is not limited to prenatal development. Both vasculogenesis and angiogenesis are now known to actively occur within the adult heart. When the need for regeneration arises, for example in the setting of coronary artery disease, a reactivation of embryonic processes ensues, redeploying many of the same molecular regulators. Thus, an understanding of the mechanisms of embryonic coronary vasculogenesis and angiogenesis may prove invaluable in developing novel strategies for cardiovascular regeneration and therapeutic coronary angiogenesis.
Collapse
Affiliation(s)
- Nicola Smart
- Molecular Medicine Unit, UCL-Institute of Child Health, London, UK
| | | | | |
Collapse
|