1
|
Wani MY, Srivastava V, Saleh TS, Al-Bogami AS, Aqlan FM, Ahmad A. Regulation of oxidative stress enzymes in Candida auris by Dermaseptin: potential implications for antifungal drug discovery. RSC Adv 2024; 14:36886-36894. [PMID: 39568652 PMCID: PMC11576943 DOI: 10.1039/d4ra06392a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024] Open
Abstract
The emergence of Candida auris poses a significant global health threat due to its high mortality rates and multidrug resistance. The development of new antifungal drugs is essential to effectively combat this pathogen. Antimicrobial peptides, such as Dermaseptin, have demonstrated potent anti-Candida activity. This study aimed to investigate the antifungal activity of Dermaseptin against C. auris isolates and its ability to induce oxidative stress and apoptosis. The results revealed the robust anti-Candida activity of Dermaseptin, with a minimum inhibitory concentration (MIC) of 15.62 μg mL-1 and a minimum fungicidal concentration (MFC) of 31.25 μg mL-1. Spectrophotometric analysis demonstrated that Dermaseptin induced significant oxidative stress, as evidenced by the notable differences in the activity of primary antioxidant enzymes and lipid peroxidation (LPO) levels between the treated and untreated control groups. Moreover, Dermaseptin influenced the gene expression of antioxidant enzymes, as confirmed by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Additionally, Dermaseptin induced apoptosis in C. auris in a dose-dependent manner. This study highlights the potential of Dermaseptin to inhibit and potentially eradicate C. auris by increasing oxidative stress levels. The low MICs and fungicidal properties of Dermaseptin against C. auris isolates suggest its potential as a candidate for the development of a novel antifungal agent.
Collapse
Affiliation(s)
- Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah 21589 Jeddah Saudi Arabia
| | - Vartika Srivastava
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand South Africa
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Cleveland Ohio 44195 USA
| | - Tamer S Saleh
- Department of Chemistry, College of Science, University of Jeddah 21589 Jeddah Saudi Arabia
| | | | - Faisal Mohammed Aqlan
- Department of Chemistry, College of Science, University of Jeddah 21589 Jeddah Saudi Arabia
| | - Aijaz Ahmad
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand South Africa
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center Pittsburgh PA 15213 USA
| |
Collapse
|
2
|
Samat R, Sen S, Jash M, Ghosh S, Garg S, Sarkar J, Ghosh S. Venom: A Promising Avenue for Antimicrobial Therapeutics. ACS Infect Dis 2024; 10:3098-3125. [PMID: 39137302 DOI: 10.1021/acsinfecdis.4c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Venom in medicine is well documented in the chronicles of ancient Greece and the Roman Empire and persisted into the Renaissance and even into the modern era. Venoms were not always associated with detrimental consequences. Since ancient times, the curative capacity of venom has been recognized, portraying venom as a metaphor for pharmacy and medicine. Venom proteins and peptides' antimicrobial potential has not undergone systematic exploration despite the huge literature on natural antimicrobials. In light of the escalating challenge of antimicrobial resistance and the diminishing effectiveness of antibiotics, there is a pressing need for innovative antimicrobials capable of effectively addressing illnesses caused by multidrug-resistant microorganisms. This review adds to our understanding of the effectiveness of different venom components against a host of pathogenic microorganisms. The aim is to illuminate the various antimicrobials present in venom and venom peptides, thereby emphasizing the unexplored medicinal potential for antimicrobial properties. We have presented a concise summary of the molecular examination of the venom peptides' functioning processes, as well as the current clinical and preclinical progress of venom antimicrobial peptides.
Collapse
Affiliation(s)
- Ramkamal Samat
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Samya Sen
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Moumita Jash
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Satyajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Shubham Garg
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Jayita Sarkar
- Centre for Research and Development of Scientific Instruments (CRDSI), Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Surajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| |
Collapse
|
3
|
Chen Q, Wu J, Li X, Ye Z, Yang H, Mu L. Amphibian-Derived Natural Anticancer Peptides and Proteins: Mechanism of Action, Application Strategies, and Prospects. Int J Mol Sci 2023; 24:13985. [PMID: 37762285 PMCID: PMC10530844 DOI: 10.3390/ijms241813985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 09/29/2023] Open
Abstract
Cancer is one of the major diseases that seriously threaten human life. Traditional anticancer therapies have achieved remarkable efficacy but have also some unavoidable side effects. Therefore, more and more research focuses on highly effective and less-toxic anticancer substances of natural origin. Amphibian skin is rich in active substances such as biogenic amines, alkaloids, alcohols, esters, peptides, and proteins, which play a role in various aspects such as anti-inflammatory, immunomodulatory, and anticancer functions, and are one of the critical sources of anticancer substances. Currently, a range of natural anticancer substances are known from various amphibians. This paper aims to review the physicochemical properties, anticancer mechanisms, and potential applications of these peptides and proteins to advance the identification and therapeutic use of natural anticancer agents.
Collapse
Affiliation(s)
| | | | | | | | - Hailong Yang
- Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Lixian Mu
- Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| |
Collapse
|
4
|
Rangel K, Lechuga GC, Provance DW, Morel CM, De Simone SG. An Update on the Therapeutic Potential of Antimicrobial Peptides against Acinetobacter baumannii Infections. Pharmaceuticals (Basel) 2023; 16:1281. [PMID: 37765087 PMCID: PMC10537560 DOI: 10.3390/ph16091281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/09/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The rise in antibiotic-resistant strains of clinically important pathogens is a major threat to global health. The World Health Organization (WHO) has recognized the urgent need to develop alternative treatments to address the growing list of priority pathogens. Antimicrobial peptides (AMPs) rank among the suggested options with proven activity and high potential to be developed into effective drugs. Many AMPs are naturally produced by living organisms protecting the host against pathogens as a part of their innate immunity. Mechanisms associated with AMP actions include cell membrane disruption, cell wall weakening, protein synthesis inhibition, and interference in nucleic acid dynamics, inducing apoptosis and necrosis. Acinetobacter baumannii is a critical pathogen, as severe clinical implications have developed from isolates resistant to current antibiotic treatments and conventional control procedures, such as UV light, disinfectants, and drying. Here, we review the natural AMPs representing primary candidates for new anti-A. baumannii drugs in post-antibiotic-era and present computational tools to develop the next generation of AMPs with greater microbicidal activity and reduced toxicity.
Collapse
Affiliation(s)
- Karyne Rangel
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (K.R.); (G.C.L.); (D.W.P.J.); (C.M.M.)
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Guilherme Curty Lechuga
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (K.R.); (G.C.L.); (D.W.P.J.); (C.M.M.)
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - David W. Provance
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (K.R.); (G.C.L.); (D.W.P.J.); (C.M.M.)
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Carlos M. Morel
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (K.R.); (G.C.L.); (D.W.P.J.); (C.M.M.)
| | - Salvatore G. De Simone
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (K.R.); (G.C.L.); (D.W.P.J.); (C.M.M.)
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
- Program of Post-Graduation on Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University, Niterói 22040-036, RJ, Brazil
- Program of Post-Graduation on Parasitic Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| |
Collapse
|
5
|
Boaro A, Ageitos L, Torres MDT, Blasco EB, Oztekin S, de la Fuente-Nunez C. Structure-function-guided design of synthetic peptides with anti-infective activity derived from wasp venom. CELL REPORTS. PHYSICAL SCIENCE 2023; 4:101459. [PMID: 38239869 PMCID: PMC10795512 DOI: 10.1016/j.xcrp.2023.101459] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
Antimicrobial peptides (AMPs) derived from natural toxins and venoms offer a promising alternative source of antibiotics. Here, through structure-function-guided design, we convert two natural AMPs derived from the venom of the solitary eumenine wasp Eumenes micado into α-helical AMPs with reduced toxicity that kill Gram-negative bacteria in vitro and in a preclinical mouse model. To identify the sequence determinants conferring antimicrobial activity, an alanine scan screen and strategic single lysine substitutions are made to the amino acid sequence of these natural peptides. These efforts yield a total of 34 synthetic derivatives, including alanine substituted and lysine-substituted sequences with stabilized α-helical structures and increased net positive charge. The resulting lead synthetic peptides kill the Gram-negative pathogens Escherichia coli and Pseudomonas aeruginosa (PAO1 and PA14) by rapidly permeabilizing both their outer and cytoplasmic membranes, exhibit anti-infective efficacy in a mouse model by reducing bacterial loads by up to three orders of magnitude, and do not readily select for bacterial resistance.
Collapse
Affiliation(s)
- Andreia Boaro
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Present address: Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210-580, Brazil
- These authors contributed equally
| | - Lucía Ageitos
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Present address: CICA - Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15008 A Coruña, Spain
- These authors contributed equally
| | - Marcelo Der Torossian Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Esther Broset Blasco
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sebahat Oztekin
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Present address: Faculty of Engineering, Department of Food Engineering, Bayburt University, Bayburt 69000, Turkey
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lead contact
| |
Collapse
|
6
|
Kong X, Zhang N, Shen H, Wang N, Cong W, Liu C, Hu HG. Design, synthesis and antitumor activity of Ascaphin-8 derived stapled peptides based on halogen-sulfhydryl click chemical reactions. RSC Adv 2023; 13:19862-19868. [PMID: 37409042 PMCID: PMC10318414 DOI: 10.1039/d3ra02743k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023] Open
Abstract
Ascaphin-8 (GFKDLLKGAAKALVKTVLF-NH2), isolated from the norepinephrine-stimulated skin secretion of the North American-tailed frog Ascaphus truei, is a C-terminal α-helical antimicrobial peptide with potential antitumor activity. However, linear peptides are difficult to be applied directly as drugs because of their inherent defects, such as low hydrolytic enzyme tolerance and poor structural stability. In this study, we designed and synthesized a series of stapled peptides based on Ascaphin-8 via thiol-halogen click chemistry. Most of the stapled peptide derivatives showed enhanced antitumor activity. Among them, A8-2-o and A8-4-Dp had the most improved structural stability, stronger hydrolytic enzyme tolerance and highest biological activity. This research may provide a reference for the stapled modification of other similar natural antimicrobial peptides.
Collapse
Affiliation(s)
- Xianglong Kong
- School of Pharmacy, Weifang Medical University Weifang 261053 PR China
| | - Nan Zhang
- School of Medicine, Shanghai University Shanghai 200444 China
| | - Huaxing Shen
- School of Medicine, Shanghai University Shanghai 200444 China
| | - Nan Wang
- School of Medicine, Shanghai University Shanghai 200444 China
| | - Wei Cong
- School of Medicine, Shanghai University Shanghai 200444 China
| | - Chao Liu
- School of Medicine, Shanghai University Shanghai 200444 China
| | - Hong-Gang Hu
- School of Pharmacy, Weifang Medical University Weifang 261053 PR China
- School of Medicine, Shanghai University Shanghai 200444 China
| |
Collapse
|
7
|
Jakkampudi T, Lin Q, Mitra S, Vijai A, Qin W, Kang A, Chen J, Ryan E, Wang R, Gong Y, Heinrich F, Song J, Di YP(P, Tristram-Nagle S. Lung SPLUNC1 Peptide Derivatives in the Lipid Membrane Headgroup Kill Gram-Negative Planktonic and Biofilm Bacteria. Biomacromolecules 2023; 24:2804-2815. [PMID: 37223955 PMCID: PMC10265666 DOI: 10.1021/acs.biomac.3c00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/03/2023] [Indexed: 05/25/2023]
Abstract
SPLUNC1 (short palate lung and nasal epithelial clone 1) is a multifunctional host defense protein found in human respiratory tract with antimicrobial properties. In this work, we compare the biological activities of four SPLUNC1 antimicrobial peptide (AMP) derivatives using paired clinical isolates of the Gram-negative (G(-)) bacteria Klebsiella pneumoniae, obtained from 11 patients with/without colistin resistance. Secondary structural studies were carried out to study interactions between the AMPs and lipid model membranes (LMMs) utilizing circular dichroism (CD). Two peptides were further characterized using X-ray diffuse scattering (XDS) and neutron reflectivity (NR). A4-153 displayed superior antibacterial activity in both G(-) planktonic cultures and biofilms. NR and XDS revealed that A4-153 (highest activity) is located primarily in membrane headgroups, while A4-198 (lowest activity) is located in hydrophobic interior. CD revealed that A4-153 is helical, while A4-198 has little helical character, demonstrating that helicity and efficacy are correlated in these SPLUNC1 AMPs.
Collapse
Affiliation(s)
- Tanvi Jakkampudi
- Biological
Physics, Physics Department, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Qiao Lin
- Department
of Environmental and Occupational Health, University of Pittsburgh, 130 DeSoto Street, Pittsburgh, Pennsylvania 15261, United States
| | - Saheli Mitra
- Biological
Physics, Physics Department, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Aishwarya Vijai
- Biological
Physics, Physics Department, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Weiheng Qin
- Biological
Physics, Physics Department, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Ann Kang
- Biological
Physics, Physics Department, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Jespar Chen
- Biological
Physics, Physics Department, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Emma Ryan
- Biological
Physics, Physics Department, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Runxuan Wang
- Biological
Physics, Physics Department, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Yuqi Gong
- Biological
Physics, Physics Department, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Frank Heinrich
- NIST
Center for Neutron Research, National Institute
of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Junming Song
- Department
of Environmental and Occupational Health, University of Pittsburgh, 130 DeSoto Street, Pittsburgh, Pennsylvania 15261, United States
| | - Yuan-Pu (Peter) Di
- Department
of Environmental and Occupational Health, University of Pittsburgh, 130 DeSoto Street, Pittsburgh, Pennsylvania 15261, United States
| | - Stephanie Tristram-Nagle
- Biological
Physics, Physics Department, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
8
|
Zhao Y, Wang XY, Sun Y, Li Z, Liu T, Liu QM, Chen J. Truncated analog Brevinin2-CE-N26V5K: Revelation the Augmentation of Antimicrobial Activity. World J Microbiol Biotechnol 2022; 38:162. [PMID: 35834028 DOI: 10.1007/s11274-022-03333-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022]
Abstract
Brevinin2-CE (B2CE), a natural peptide containing 37 amino acids, was first isolated from the skin secretions of the Chinese forest frog Rana chensinensis. B2CE shows good antibacterial activity. In this study, a series of B2CE analogs with differences in cationicity, α-helicity, hydrophobicity and amphipathic properties were designed through chain-length deletion and amino acid substitution. The most potent, nontoxic analog, B2CE-N26V5K, was identified by examination of its antibacterial activity, hemolytic activity, and stability under physiological conditions. The increased cationicity, hydrophobicity and more obvious hydrophilic and hydrophobic surface of B2CE-N26-N16WA18KG23K did not improve the antibacterial activity but increased the hemolytic activity of this modified peptide. The helicity might promote antibacterial activity for brevinin-2 peptides, as the 15-aa analogs with lower helicity show decreased potency against different test bacteria (approximately 2- to 72-fold) compared to B2CE-N26V5K. Additionally, the results indicated that the "Rana box" does not affect the antimicrobial activity of brevinin-2 peptides, as B2CE, B2CE-nonDS and B2CE-C31-37 S have similar strong inhibitory effects on both gram-positive and gram-negative bacteria. However, the "Rana box" does affect the hemolytic activity, as the HC50 values of the 3 peptides range from 25 ~ 130 µM. Furthermore, B2CE-N26V5K caused obvious morphological alterations of the bacterial surfaces, as shown by atomic force microscopy. Additionally, B2CE-N26V5K exhibited strong membrane-disrupting activity when examined using the LIVE/DEAD Bac Light Bacterial Viability Kit. Thus, the antibacterial effect of B2CE-N26V5K on gram-negative and gram-positive bacteria may be caused by cell membrane attack. In conclusion, the excellent candidate B2CE-N26V5K was obtained and has application prospects as a novel anti-infective agent.
Collapse
Affiliation(s)
- Yi Zhao
- College of Life Sciences, Shaanxi Normal University, 710119, Xi'an, P. R. China
| | - Xiao-Yan Wang
- College of Life Sciences, Shaanxi Normal University, 710119, Xi'an, P. R. China
| | - Yan Sun
- College of Life Sciences, Shaanxi Normal University, 710119, Xi'an, P. R. China.
| | - Zhi Li
- College of Life Sciences, Shaanxi Normal University, 710119, Xi'an, P. R. China.
| | - Tao Liu
- College of Life Sciences, Shaanxi Normal University, 710119, Xi'an, P. R. China
| | - Qing-Mei Liu
- College of Life Sciences, Shaanxi Normal University, 710119, Xi'an, P. R. China
| | - Jingyi Chen
- College of Life Sciences, Shaanxi Normal University, 710119, Xi'an, P. R. China
| |
Collapse
|
9
|
Samot J, Rouabhia M. Effect of Dermaseptin S4 on C. albicans Growth and EAP1 and HWP1 Gene Expression. Probiotics Antimicrob Proteins 2021; 13:287-298. [PMID: 32691243 DOI: 10.1007/s12602-020-09685-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Increasing resistance and changes in the spectrum of Candida infections have generated considerable interest in the development of new antifungal molecules. The use of antimicrobial peptides (AMPs) appears to be a promising approach. Frog skin AMPs (such as dermaseptins) have shown antimicrobial activity against several pathogens. In this study, we aimed to test the antimicrobial efficacy of dermaseptin S4 (DS4) against C. albicans. We determined the minimal inhibitory concentration (MIC) of DS4, and investigated the effects of the DS4 at low concentrations on human primary gingival fibroblasts. Additionally, we evaluated the effect of DS4 on C. albicans growth, form changes, and biofilm formation, as well as the expression of certain virulent genes. Our data show that DS4 completely inhibits C. albicans growth at a concentration of 32 μg/mL referring to the MIC of DS4. It should be noted that even with low concentrations (below 16 μg/mL), DS4 still have significant growth reduction of C. albicans, but were not toxic to human gingival fibroblasts. DS4 inhibited the transition from yeast to hyphae, and decreased the biofilm formation by reducing the biofilm mass weight. Surface morphological changes in the yeast cell membrane were observed following exposure to DS4. The gene expression analyses revealed that DS4 significantly decreased the expression of EAP1 and HWP1 genes. Overall results suggest the potential use of DS4 as an antifungal therapy to prevent C. albicans pathogenesis.
Collapse
Affiliation(s)
- Johan Samot
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC, Canada.,Université de Bordeaux UFR d'odontologie, Bordeaux, France.,Unive. Bordeaux, ISVV, Unité de recherche Œnologie, USC 1366 INRAE, 4577, Villenave d'Ornon, EA, France.,Centre hospitalier universitaire de Bordeaux pôle de médecine et chirurgie bucco-dentaire, Bordeaux, France
| | - Mahmoud Rouabhia
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC, Canada.
| |
Collapse
|
10
|
Sun ZG, Zhao LH, Yeh SM, Li ZN, Ming X. Research Development, Optimization and Modifications of Anti-cancer Peptides. Mini Rev Med Chem 2021; 21:58-68. [PMID: 32767954 DOI: 10.2174/1389557520666200729163146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 11/22/2022]
Abstract
Anti-cancer peptides play an important role in the area of cancer inhibition. A variety of anti- cancer peptides have emerged through the extraction and structural modification of peptides from biological tissues. This review provides the research background of anti-cancer peptides, the introduction of the mechanism of anti-cancer peptides for inhibition of cancers, the discovery and development along with optimization and modifications of these peptides in the clinical application. In conclusion, it can be said that anti-cancer peptides will play a major role in the future oncologic clinic.
Collapse
Affiliation(s)
- Zhi-Gang Sun
- Central Laboratory, Linyi Central Hospital, No. 17 Jiankang Road, Linyi 276400, China
| | - Liang-Hui Zhao
- Weifang Medical University, No. 7166 Baotong West Street, Weifang 261000, China
| | - Stacy Mary Yeh
- Departments of Cancer Biology and Biomedical Engineering, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston- Salem, NC 27101, United States
| | - Zhi-Na Li
- Central Laboratory, Linyi Central Hospital, No. 17 Jiankang Road, Linyi 276400, China
| | - Xin Ming
- Departments of Cancer Biology and Biomedical Engineering, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston- Salem, NC 27101, United States
| |
Collapse
|
11
|
Anwar S, Almatroudi A, Alsahli MA, Khan MA, Khan AA, Rahmani AH. Natural Products: Implication in Cancer Prevention and Treatment through Modulating Various Biological Activities. Anticancer Agents Med Chem 2021; 20:2025-2040. [PMID: 32628596 DOI: 10.2174/1871520620666200705220307] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022]
Abstract
Cancer is one of the most leading causes of death worldwide. It is one of the primary global diseases that cause morbidity and mortality in millions of people. It is usually caused by different carcinogenic agents that damage the genetic material and alter the cell signaling pathways. Carcinogens are classified into two groups as genotoxic and non-genotoxic agents. Genotoxic carcinogens are capable of directly altering the genetic material, while the non-genotoxic carcinogens are capable of producing cancer by some secondary mechanisms not related to direct gene damage. There is undoubtedly the greatest need to utilize some novel natural products as anticancer agents, as these are within reach everywhere. Interventions by some natural products aimed at decreasing the levels and conditions of these risk factors can reduce the frequency of cancer incidences. Cancer is conventionally treated by surgery, radiation therapy and chemotherapy, but such treatments may be fast-acting and causes adverse effects on normal tissues. Alternative and innovative methods of cancer treatment with the least side effects and improved efficiency are being encouraged. In this review, we discuss the different risk factors of cancer development, conventional and innovative strategies of its management and provide a brief review of the most recognized natural products used as anticancer agents globally.
Collapse
Affiliation(s)
- Shehwaz Anwar
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia
| | - Masood A Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Amjad A Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Arshad H Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia
| |
Collapse
|
12
|
Liu J, Chen S, Chai XY, Gao F, Wang C, Tang H, Li X, Liu Y, Hu HG. Design, synthesis, and biological evaluation of stapled ascaphin-8 peptides. Bioorg Med Chem 2021; 40:116158. [PMID: 33932712 DOI: 10.1016/j.bmc.2021.116158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 01/07/2023]
Abstract
Ascaphin-8 is an α-helical anti-tumor and antimicrobial peptide containing 19 residues, which was isolated from norepinephrine-stimulated skin secretions of the North American tailed frog Ascaphus truei. To improve both its stability and biological activities, a series of hydrocarbon-stapled analogs of Ascaphin-8 were synthesized and investigated for their potential antiproliferative activities. The activity studies were evaluated using the CCK-8 method and colony formation assay on human cancer cell lines. Ascaphin-8-3, as the most active peptide, showed a stronger inhibition effect when compared with the parent peptide for the tested cell lines. In addition, the effect of Ascaphin-8-3 on inhibiting the metastatic capabilities of A549 cells was more powerful than that of the parent peptide. This peptide derivative showed potentiality for further optimization in antitumor drugs.
Collapse
Affiliation(s)
- Jing Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
| | - Si Chen
- School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Xiao-Yun Chai
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Fei Gao
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
| | - Chen Wang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
| | - Hua Tang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
| | - Xiang Li
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Ying Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
| | - Hong-Gang Hu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
13
|
Aguilera-Mendoza L, Marrero-Ponce Y, García-Jacas CR, Chavez E, Beltran JA, Guillen-Ramirez HA, Brizuela CA. Automatic construction of molecular similarity networks for visual graph mining in chemical space of bioactive peptides: an unsupervised learning approach. Sci Rep 2020; 10:18074. [PMID: 33093586 PMCID: PMC7583304 DOI: 10.1038/s41598-020-75029-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 09/23/2020] [Indexed: 12/15/2022] Open
Abstract
The increasing interest in bioactive peptides with therapeutic potentials has been reflected in a large variety of biological databases published over the last years. However, the knowledge discovery process from these heterogeneous data sources is a nontrivial task, becoming the essence of our research endeavor. Therefore, we devise a unified data model based on molecular similarity networks for representing a chemical reference space of bioactive peptides, having an implicit knowledge that is currently not explicitly accessed in existing biological databases. Indeed, our main contribution is a novel workflow for the automatic construction of such similarity networks, enabling visual graph mining techniques to uncover new insights from the "ocean" of known bioactive peptides. The workflow presented here relies on the following sequential steps: (i) calculation of molecular descriptors by applying statistical and aggregation operators on amino acid property vectors; (ii) a two-stage unsupervised feature selection method to identify an optimized subset of descriptors using the concepts of entropy and mutual information; (iii) generation of sparse networks where nodes represent bioactive peptides, and edges between two nodes denote their pairwise similarity/distance relationships in the defined descriptor space; and (iv) exploratory analysis using visual inspection in combination with clustering and network science techniques. For practical purposes, the proposed workflow has been implemented in our visual analytics software tool ( http://mobiosd-hub.com/starpep/ ), to assist researchers in extracting useful information from an integrated collection of 45120 bioactive peptides, which is one of the largest and most diverse data in its field. Finally, we illustrate the applicability of the proposed workflow for discovering central nodes in molecular similarity networks that may represent a biologically relevant chemical space known to date.
Collapse
Affiliation(s)
- Longendri Aguilera-Mendoza
- Departamento de Ciencias de la Computación, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California, 22860, Mexico
| | - Yovani Marrero-Ponce
- Universidad San Francisco de Quito, Grupo de Medicina Molecular y Traslacional (MeM&T), Escuela de Medicina, Colegio de Ciencias de la Salud (COCSA), Av. Interoceánica Km 12 1/2 y Av. Florencia, 17-1200-841, Quito, Ecuador.
- Grupo GINUMED, Corporacion Universitaria Rafael Nuñez. Facultad de Salud, Programa de Medicina, Cartagena, Colombia.
- Unidad de Investigación de Diseño de Fármacos y Conectividad Molecular, Departamento de Química Física, Facultad de Farmacia, Universitat de València, Valencia, Spain.
| | - César R García-Jacas
- Cátedras Conacyt - Departamento de Ciencias de la Computación, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, Mexico
| | - Edgar Chavez
- Departamento de Ciencias de la Computación, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California, 22860, Mexico
| | - Jesus A Beltran
- Department of Informatics, University of California, Irvine, Irvine, CA, USA
| | - Hugo A Guillen-Ramirez
- Department of BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland
- Department of Medical Oncology, Inselspital, University Hospital and University of Bern, 3010, Bern, Switzerland
| | - Carlos A Brizuela
- Departamento de Ciencias de la Computación, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California, 22860, Mexico.
| |
Collapse
|
14
|
Yacoub T, Rima M, Karam M, Sabatier JM, Fajloun Z. Antimicrobials from Venomous Animals: An Overview. Molecules 2020; 25:molecules25102402. [PMID: 32455792 PMCID: PMC7287856 DOI: 10.3390/molecules25102402] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 01/17/2023] Open
Abstract
The inappropriate or excessive use of antimicrobial agents caused an emerging public health problem due to the resulting resistance developed by microbes. Therefore, there is an urgent need to develop effective antimicrobial strategies relying on natural agents with different mechanisms of action. Nature has been known to offer many bioactive compounds, in the form of animal venoms, algae, and plant extracts that were used for decades in traditional medicine. Animal venoms and secretions have been deeply studied for their wealth in pharmaceutically promising molecules. As such, they were reported to exhibit many biological activities of interest, such as antibacterial, antiviral, anticancer, and anti-inflammatory activities. In this review, we summarize recent findings on the antimicrobial activities of crude animal venoms/secretions, and describe the peptides that are responsible of these activities.
Collapse
Affiliation(s)
- Tania Yacoub
- Department of Biology, University of Balamand, Kalhat, Al-Kurah, P.O. box 100 Tripoli, Lebanon; (T.Y.); (M.K.)
| | - Mohamad Rima
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS U7104, Université de Strasbourg, 67400 Illkirch, France;
| | - Marc Karam
- Department of Biology, University of Balamand, Kalhat, Al-Kurah, P.O. box 100 Tripoli, Lebanon; (T.Y.); (M.K.)
| | - Jean-Marc Sabatier
- Université Aix-Marseille, Institut de NeuroPhysiopathologie, UMR 7051, Faculté de Médecine Secteur Nord, 51, Boulevard Pierre Dramard-CS80011, 13344-Marseille CEDEX 15, France
- Correspondence: (J.-M.S.); (Z.F.)
| | - Ziad Fajloun
- Faculty of Sciences 3, Lebanese University, Michel Slayman Tripoli Campus, Ras Maska 1352, Lebanon
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and its Applications, Doctoral School for Sciences and Technology, Lebanese University, El Mittein Street, 1300 Tripoli, Lebanon
- Correspondence: (J.-M.S.); (Z.F.)
| |
Collapse
|
15
|
Neshani A, Sedighian H, Mirhosseini SA, Ghazvini K, Zare H, Jahangiri A. Antimicrobial peptides as a promising treatment option against Acinetobacter baumannii infections. Microb Pathog 2020; 146:104238. [PMID: 32387392 DOI: 10.1016/j.micpath.2020.104238] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND With the increasing rate of antibiotic resistance in Acinetobacter, the World Health Organization introduced the carbapenem-resistant isolates in the priority pathogens list for which innovative new treatments are urgently needed. Antimicrobial peptides (AMPs) are one of the antimicrobial agents with high potential to produce new anti-Acinetobacter drugs. This review aims to summarize recent advances and compare AMPs with anti-Acinetobacter baumannii activity. METHODS Active AMPs against Acinetobacter were considered, and essential features, including structure, mechanism of action, anti-A. baumannii potent, and other prominent characteristics, were investigated and compared to each other. In this regard, the Google Scholar search engine and databases of PubMed, Scopus, and Web of Science were used. RESULTS Forty-six anti-Acinetobacter peptides were identified and classified into ten groups: Cathelicidins, Defensins, Frog AMPs, Melittin, Cecropins, Mastoparan, Histatins, Dermcidins, Tachyplesins, and computationally designed AMPs. According to the Minimum Inhibitory Concentration (MIC) reports, six peptides of Melittin, Histatin-8, Omega76, AM-CATH36, Hymenochirin, and Mastoparan have the highest anti-A. baumannii power against sensitive and antibiotic-resistant isolates. All anti-Acinetobacter peptides except Dermcidin have a net positive charge. Most of these peptides have alpha-helical structure; however, β-sheet and other structures have been observed among them. The mechanism of action of these antimicrobial agents is divided into two categories of membrane-based and intracellular target-based attack. CONCLUSION Evidence from this review indicates that AMPs would be likely among the main anti-A. baumannii drugs in the post-antibiotic era. Also, the application of computer science to increase anti-A. baumannii activity and reduce toxicity could be helpful.
Collapse
Affiliation(s)
- Alireza Neshani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran; Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mirhosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hosna Zare
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Jahangiri
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Aaghaz S, Gohel V, Kamal A. Peptides as Potential Anticancer Agents. Curr Top Med Chem 2019; 19:1491-1511. [DOI: 10.2174/1568026619666190125161517] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/26/2018] [Accepted: 01/18/2019] [Indexed: 12/21/2022]
Abstract
Cancer consists of heterogeneous multiple cell subpopulation which at a later stage develop resistant phenotypes, which include resistance to pro-apoptotic stimuli and/or cytotoxic resistance to anticancer compounds. The property of cancerous cells to affect almost any part of the body categorizes cancer to many anatomic and molecular subtypes, each requiring a particular therapeutic intervention. As several modalities are hindered in a variety of cancers and as the cancer cells accrue varied types of oncogenic mutations during their progression the most likely benefit will be obtained by a combination of therapeutic agents that might address the diverse hallmarks of cancer. Natural compounds are the backbone of cancer therapeutics owing to their property of affecting the DNA impairment and restoration mechanisms and also the gene expression modulated via several epigenetic molecular mechanisms. Bioactive peptides isolated from flora and fauna have transformed the arena of antitumour therapy and prompt progress in preclinical studies is promising. The difficulties in creating ACP rest in improving its delivery to the tumour site and it also must maintain a low toxicity profile. The substantial production costs, low selectivity and proteolytic stability of some ACP are some of the factors hindering the progress of peptide drug development. Recently, several publications have tried to edify the field with the idea of using peptides as adjuvants with established drugs for antineoplastic use. This review focuses on peptides from natural sources that precisely target tumour cells and subsequently serve as anticancer agents that are less toxic to normal tissues.
Collapse
Affiliation(s)
- Shams Aaghaz
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar, Mohali, India
| | - Vivek Gohel
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar, Mohali, India
| | - Ahmed Kamal
- School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| |
Collapse
|
17
|
Barreto-Santamaría A, Patarroyo ME, Curtidor H. Designing and optimizing new antimicrobial peptides: all targets are not the same. Crit Rev Clin Lab Sci 2019; 56:351-373. [DOI: 10.1080/10408363.2019.1631249] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Adriana Barreto-Santamaría
- Fundación Instituto de Inmunología de Colombia - FIDIC, Receptor-Ligand Department, Bogotá D.C, Colombia
- Universidad del Rosario, School of Medicine and Health Sciences, Bogotá D.C., Colombia
| | - Manuel E. Patarroyo
- Fundación Instituto de Inmunología de Colombia - FIDIC, Receptor-Ligand Department, Bogotá D.C, Colombia
- Universidad Nacional de Colombia - Bogotá, Faculty of Medicine, Bogotá D.C., Colombia
| | - Hernando Curtidor
- Fundación Instituto de Inmunología de Colombia - FIDIC, Receptor-Ligand Department, Bogotá D.C, Colombia
- Universidad del Rosario, School of Medicine and Health Sciences, Bogotá D.C., Colombia
| |
Collapse
|
18
|
Popov CSFC, Magalhães BS, Goodfellow BJ, Bocca AL, Pereira DM, Andrade PB, Valentão P, Pereira PJB, Rodrigues JE, de Holanda Veloso PH, Rezende TMB. Host-defense peptides AC12, DK16 and RC11 with immunomodulatory activity isolated from Hypsiboas raniceps skin secretion. Peptides 2019; 113:11-21. [PMID: 30610885 DOI: 10.1016/j.peptides.2018.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 01/07/2023]
Abstract
Inflammation is a natural defense mechanism of the immune system; however, when unregulated, it can lead to chronic illness. Glucocorticoids are the most commonly used agents to effectively treat inflammatory conditions, including autoimmune diseases, however these substances can trigger a number of side effects. Thus, viable alternatives to the use of these drugs would be advantageous. In this study, we have analyzed the anti-inflammatory profile of three synthetic peptides first identified in skin secretion of the tree frog Hypsiboas raniceps. Structural characterization was performed using NMR spectroscopy and Mass Spectrometry, and the peptides were tested in vitro in RAW 264.7 cells and in vivo in Balb/c mice for their functional properties. The samples did not show a significant antimicrobial profile. NMR spectroscopy indicated that AC12 (ACFLTRLGTYVC) has a disulfide bond between C2 and C11 and a β-sheet-turn-β-sheet conformation in aqueous solution. This peptide showed no cytotoxic effect in mammalian cells and it was the most effective in reducing anti-inflammatory markers, such as NO, TNF-α and IL-12. Peptide DK16 (DKERPICSNTFRGRKC) demonstrated anti-inflammatory properties in vitro, while RC11 (RCFRRRGKLTC) significantly altered the cell viability in RAW 264.7 but was shown to be safe in Balb/c erythrocytes. Our results indicate that, of the three peptides studied, AC12 is the most efficient in reducing anti-inflammatory markers, and it could be a potential agent for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Cláudia S F C Popov
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia da Universidade Católica de Brasília, Brasília, Brazil
| | - Beatriz Simas Magalhães
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia da Universidade Católica de Brasília, Brasília, Brazil
| | | | - Anamélia Lorenzetti Bocca
- Laboratório de Imunologia Aplicada, Departamento de Ciências Biológicas, Instituto de Ciências Biológicas da Universidade de Brasília, Brasília, Brazil
| | - David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| | - Pedro José Barbosa Pereira
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | | | - Paulo H de Holanda Veloso
- Laboratório de Imunologia Aplicada, Departamento de Ciências Biológicas, Instituto de Ciências Biológicas da Universidade de Brasília, Brasília, Brazil
| | - Taia M B Rezende
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia da Universidade Católica de Brasília, Brasília, Brazil; Curso de Odontologia, Universidade Católica de Brasília, Brasília, Brazil; Programa de Pós-graduação em Ciências da Saúde, Universidade de Brasília, Brasília, Brazil.
| |
Collapse
|
19
|
Pantic JM, Jovanovic IP, Radosavljevic GD, Arsenijevic NN, Conlon JM, Lukic ML. The Potential of Frog Skin-Derived Peptides for Development into Therapeutically-Valuable Immunomodulatory Agents. Molecules 2017; 22:E2071. [PMID: 29236056 PMCID: PMC6150033 DOI: 10.3390/molecules22122071] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 11/20/2017] [Accepted: 11/23/2017] [Indexed: 12/19/2022] Open
Abstract
The aim of this article is to review the immunoregulatory actions of frog skin-derived peptides in order to assess their potential as candidates for immunomodulatory or anti-inflammatory therapy. Frog skin peptides with demonstrable immunomodulatory properties have been isolated from skin secretions of a range of species belonging to the families Alytidae, Ascaphidae, Discoglossidae, Leptodactylidae, Pipidae and Ranidae. Their effects upon production of inflammatory and immunoregulatory cytokines by target cells have been evaluated ex vivo and effects upon cytokine expression and immune cell activity have been studied in vivo by flow cytometry after injection into mice. The naturally-occurring peptides and/or their synthetic analogues show complex and variable actions on the production of proinflammatory (TNF-α, IL-1β, IL-12, IL-23, IL-8, IFN-γ and IL-17), pleiotropic (IL-4 and IL-6) and immunosuppressive (IL-10 and TGF-β) cytokines by peripheral and spleen cells, peritoneal cells and/or isolated macrophages. The effects of frenatin 2.1S include enhancement of the activation state and homing capacity of Th1-type lymphocytes and NK cells in the mouse peritoneal cavity, as well as the promotion of their tumoricidal capacities. Overall, the diverse effects of frog skin-derived peptides on the immune system indicate their potential for development into therapeutic agents.
Collapse
Affiliation(s)
- Jelena M Pantic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia.
| | - Ivan P Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia.
| | - Gordana D Radosavljevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia.
| | - Nebojsa N Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia.
| | - J Michael Conlon
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK.
| | - Miodrag L Lukic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia.
| |
Collapse
|
20
|
Wang L, Dong C, Li X, Han W, Su X. Anticancer potential of bioactive peptides from animal sources (Review). Oncol Rep 2017; 38:637-651. [PMID: 28677775 DOI: 10.3892/or.2017.5778] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 04/10/2017] [Indexed: 11/06/2022] Open
Abstract
Cancer is the most common cause of human death worldwide. Conventional anticancer therapies, including chemotherapy and radiation, are associated with severe side effects and toxicities as well as low specificity. Peptides are rapidly being developed as potential anticancer agents that specifically target cancer cells and are less toxic to normal tissues, thus making them a better alternative for the prevention and management of cancer. Recent research has focused on anticancer peptides from natural animal sources, such as terrestrial mammals, marine animals, amphibians, and animal venoms. However, the mode of action by which bioactive peptides inhibit the proliferation of cancer cells remains unclear. In this review, we present the animal sources from which bioactive peptides with anticancer activity are derived and discuss multiple proposed mechanisms by which these peptides exert cytotoxic effects against cancer cells.
Collapse
Affiliation(s)
- Linghong Wang
- Clinical Medicine Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Huimin, Hohhot, Inner Mongolia 010050, P.R. China
| | - Chao Dong
- College of Basic Medicine of Inner Mongolia Medical University, Huimin, Hohhot, Inner Mongolia 010050, P.R. China
| | - Xian Li
- Clinical Medicine Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Huimin, Hohhot, Inner Mongolia 010050, P.R. China
| | - Wenyan Han
- Clinical Medicine Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Huimin, Hohhot, Inner Mongolia 010050, P.R. China
| | - Xiulan Su
- Clinical Medicine Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Huimin, Hohhot, Inner Mongolia 010050, P.R. China
| |
Collapse
|
21
|
Identification and characterization of an antimicrobial peptide of Hypsiboas semilineatus (Spix, 1824) (Amphibia, Hylidae). Toxicon 2015; 99:16-22. [PMID: 25772860 DOI: 10.1016/j.toxicon.2015.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 02/28/2015] [Accepted: 03/11/2015] [Indexed: 11/23/2022]
Abstract
The multidrug-resistant bacteria have become a serious problem to public health. In this scenery the antimicrobial peptides (AMPs) derived from animals and plants emerge as a novel therapeutic modality, substituting or in addition to the conventional antimicrobial. The anurans are one of the richest natural sources of AMPs. In this work several cycles of cDNA cloning of the skin of the Brazilian treefrog Hypsiboas semilineatus led to isolation of a precursor sequence that encodes a new AMP. The sequence comprises a 27 residue signal peptide, followed by an acidic intervening sequence that ends in the mature peptide at the carboxy terminal. The AMP, named Hs-1, has 20 amino acids residues, mostly arranged in an alpha helix and with a molecular weight of 2144.6 Da. The chemically synthesized Hs-1 showed an antimicrobial activity against all Gram-positive bacteria tested, with a range of 11-46 μM, but it did not show any effect against Gram-negative bacteria, which suggest that Hs-1 may have a selective action for Gram-positive bacteria. The effects of Hs-1 on bacterial cells were also demonstrated by transmission electron microscopy. Hs-1 is the first AMP to be described from H. semilineatus.
Collapse
|
22
|
Xu X, Lai R. The chemistry and biological activities of peptides from amphibian skin secretions. Chem Rev 2015; 115:1760-846. [PMID: 25594509 DOI: 10.1021/cr4006704] [Citation(s) in RCA: 246] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xueqing Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology , Kunming 650223, Yunnan, China
| | | |
Collapse
|
23
|
Mechkarska M, Attoub S, Sulaiman S, Pantic J, Lukic ML, Conlon JM. Anti-cancer, immunoregulatory, and antimicrobial activities of the frog skin host-defense peptides pseudhymenochirin-1Pb and pseudhymenochirin-2Pa. ACTA ACUST UNITED AC 2014; 194-195:69-76. [PMID: 25447194 DOI: 10.1016/j.regpep.2014.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 10/27/2014] [Accepted: 11/05/2014] [Indexed: 01/04/2023]
Abstract
Pseudhymenochirin-1Pb (Ps-1Pb) and pseudhymenochirin-2Pa (Ps-2Pa) are host-defense peptides, first isolated from skin secretions of the frog Pseudhymenochirus merlini (Pipidae). Ps-1Pb and Ps-2Pa are highly cytotoxic (LC50<12 μM) against non-small cell lung adenocarcinoma A549 cells, breast adenocarcinoma MDA-MB-231 cells, and colorectal adenocarcinoma HT-29 cells but are also hemolytic against human erythrocytes (LC50=28±2 μM for Ps-1Pb and LC50=6±1 μM for Ps-2Pa). Ps-2Pa shows selective cytotoxicity for tumor cells (LC50 against non-neoplastic human umbilical vein (HUVEC) cells=68±2 μM). Ps-1Pb and Ps-2Pa (5 μg/mL) significantly inhibit production of the anti-inflammatory cytokine IL-10 and the multifunctional cytokine IL-6 from lipopolysaccharide (LPS)-stimulated peritoneal macrophages from C57BL/6 mice and enhance the production of the pro-inflammatory cytokine IL-23 from both unstimulated and LPS-stimulated macrophages. Ps-1Pb potently (MIC≤10 μM) inhibits growth of multidrug-resistant clinical isolates of the Gram-positive bacteria methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis, and the Gram-negative bacteria Acinetobacter baumannii and Stenotrophomonas maltophilia. Ps-2Pa shows the same high potency (MIC≤10 μM) against the Gram-positive bacteria but is 2-4 fold less potent against the Gram-negative isolates. Ps-1Pb at 4×MIC kills 99.9% of Escherichia coli within 30 min and 99.9% of S. aureus within 180 min. In conclusion, cytotoxicity against tumor cells, cytokine-mediated immunomodulatory properties, and broad-spectrum antimicrobial activity suggest that the Ps-1Pb and Ps-2Pa represent templates for design of non-hemolytic analogs for tumor therapy and for treatment of infections in cancer patients produced by multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Milena Mechkarska
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Samir Attoub
- Department of Pharmacology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Shahrazad Sulaiman
- Department of Pharmacology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Jelena Pantic
- Center for Molecular Medicine, Faculty of Medicine, University of Kragujevac, Kragujevac, Serbia
| | - Miodrag L Lukic
- Center for Molecular Medicine, Faculty of Medicine, University of Kragujevac, Kragujevac, Serbia
| | - J Michael Conlon
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, UK.
| |
Collapse
|
24
|
Conlon JM, Mechkarska M, Lukic ML, Flatt PR. Potential therapeutic applications of multifunctional host-defense peptides from frog skin as anti-cancer, anti-viral, immunomodulatory, and anti-diabetic agents. Peptides 2014; 57:67-77. [PMID: 24793775 DOI: 10.1016/j.peptides.2014.04.019] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/24/2014] [Accepted: 04/24/2014] [Indexed: 12/14/2022]
Abstract
Frog skin constitutes a rich source of peptides with a wide range of biological properties. These include host-defense peptides with cytotoxic activities against bacteria, fungi, protozoa, viruses, and mammalian cells. Several hundred such peptides from diverse species have been described. Although attention has been focused mainly on antimicrobial activity, the therapeutic potential of frog skin peptides as anti-infective agents remains to be realized and no compound based upon their structures has yet been adopted in clinical practice. Consequently, alternative applications are being explored. Certain naturally occurring frog skin peptides, and analogs with improved therapeutic properties, show selective cytotoxicity against tumor cells and viruses and so have potential for development into anti-cancer and anti-viral agents. Some peptides display complex cytokine-mediated immunomodulatory properties. Effects on the production of both pro-inflammatory and anti-inflammatory cytokines by peritoneal macrophages and peripheral blood mononuclear cells have been observed so that clinical applications as anti-inflammatory, immunosuppressive, and immunostimulatory agents are possible. Several frog skin peptides, first identified on the basis of antimicrobial activity, have been shown to stimulate insulin release both in vitro and in vivo and so show potential as incretin-based therapies for treatment of patients with Type 2 diabetes mellitus. This review assesses the therapeutic possibilities of peptides from frogs belonging to the Ascaphidae, Alytidae, Pipidae, Dicroglossidae, Leptodactylidae, Hylidae, and Ranidae families that complement their potential role as anti-infectives for use against multidrug-resistant microorganisms.
Collapse
Affiliation(s)
- J Michael Conlon
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, 17666 Al Ain, United Arab Emirates; School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK.
| | - Milena Mechkarska
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, 17666 Al Ain, United Arab Emirates
| | - Miodrag L Lukic
- Center for Molecular Medicine, Faculty of Medicine, University of Kragujevac, Kragujevac, Serbia
| | - Peter R Flatt
- School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| |
Collapse
|
25
|
Conlon JM, Mechkarska M. Host-defense peptides with therapeutic potential from skin secretions of frogs from the family pipidae. Pharmaceuticals (Basel) 2014; 7:58-77. [PMID: 24434793 PMCID: PMC3915195 DOI: 10.3390/ph7010058] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 12/24/2022] Open
Abstract
Skin secretions from frogs belonging to the genera Xenopus, Silurana, Hymenochirus, and Pseudhymenochirus in the family Pipidae are a rich source of host-defense peptides with varying degrees of antimicrobial activities and cytotoxicities to mammalian cells. Magainin, peptide glycine-leucine-amide (PGLa), caerulein-precursor fragment (CPF), and xenopsin-precursor fragment (XPF) peptides have been isolated from norepinephrine-stimulated skin secretions from several species of Xenopus and Silurana. Hymenochirins and pseudhymenochirins have been isolated from Hymenochirus boettgeri and Pseudhymenochirus merlini. A major obstacle to the development of these peptides as anti-infective agents is their hemolytic activities against human erythrocytes. Analogs of the magainins, CPF peptides and hymenochirin-1B with increased antimicrobial potencies and low cytotoxicities have been developed that are active (MIC < 5 μM) against multidrug-resistant clinical isolates of Staphylococcus aureus, Escherichia coli, Acinetobacter baumannii, Stenotrophomonas maltophilia and Klebsiella pneumoniae. Despite this, the therapeutic potential of frog skin peptides as anti-infective agents has not been realized so that alternative clinical applications as anti-cancer, anti-viral, anti-diabetic, or immunomodulatory drugs are being explored.
Collapse
Affiliation(s)
- J Michael Conlon
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, UAE.
| | - Milena Mechkarska
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, UAE.
| |
Collapse
|
26
|
Attoub S, Arafat H, Mechkarska M, Conlon JM. Anti-tumor activities of the host-defense peptide hymenochirin-1B. ACTA ACUST UNITED AC 2013; 187:51-6. [PMID: 24185042 DOI: 10.1016/j.regpep.2013.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 10/23/2013] [Accepted: 10/28/2013] [Indexed: 11/17/2022]
Abstract
The hymenochirins are a family of cationic, amphipathic, α-helical host-defense peptides, first isolated from skin secretions of the Congo clawed frog Hymenochirus boettgeri (Pipidae). Of the four hymenochirins tested, hymenochirin-1B (IKLSPETKDNLKKVLKGAIKGAIVAKMV.NH2) shows the greatest cytotoxic potency against non-small cell lung adenocarcinoma A549 cells (LC50=2.5±0.2 μM), breast adenocarcinoma MDA-MB-231 cells (LC50=9.0±0.3 μM), colorectal adenocarcinoma HT-29 cells (LC50=9.7±0.2 μM), and hepatocarcinoma HepG2 cells (LC50=22.5±1.4 μM) with appreciably less hemolytic activity against human erythrocytes (LC50=213±18μM). Structure-activity relationships were investigated by synthesizing analogs of hymenochirin-1B in which Pro(5), Glu(6) and Asp(9)on the hydrophilic face of the helix were replaced by one or more L-lysine or D-lysine residues. The [D9K] analog displays the greatest increase in potency against all four cell lines (up to 6 fold) but hemolytic activity also increases (LC50=174±12 μM). The [D9k] and [E6k,D9k] analogs retain relatively high cytotoxic potency against the tumor cells (LC50 in the range 2.1-21 μM) but show reduced hemolytic activity (LC50>300 μM). The data suggest that hymenochirin-1B has therapeutic potential as a template to generate potent, non-toxic anti-cancer agents.
Collapse
Affiliation(s)
- Samir Attoub
- Department of Pharmacology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | | | | |
Collapse
|
27
|
Vicente EF, Basso LGM, Cespedes GF, Lorenzón EN, Castro MS, Mendes-Giannini MJS, Costa-Filho AJ, Cilli EM. Dynamics and conformational studies of TOAC spin labeled analogues of Ctx(Ile(21))-Ha peptide from Hypsiboas albopunctatus. PLoS One 2013; 8:e60818. [PMID: 23585852 PMCID: PMC3621989 DOI: 10.1371/journal.pone.0060818] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/03/2013] [Indexed: 11/26/2022] Open
Abstract
Antimicrobial peptides (AMPs) isolated from several organisms have been receiving much attention due to some specific features that allow them to interact with, bind to, and disrupt cell membranes. The aim of this paper was to study the interactions between a membrane mimetic and the cationic AMP Ctx(Ile(21))-Ha as well as analogues containing the paramagnetic amino acid 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC) incorporated at residue positions n = 0, 2, and 13. Circular dichroism studies showed that the peptides, except for [TOAC(13)]Ctx(Ile(21))-Ha, are unstructured in aqueous solution but acquire different amounts of α-helical secondary structure in the presence of trifluorethanol and lysophosphocholine micelles. Fluorescence experiments indicated that all peptides were able to interact with LPC micelles. In addition, Ctx(Ile(21))-Ha and [TOAC(13)]Ctx(Ile(21))-Ha peptides presented similar water accessibility for the Trp residue located near the N-terminal sequence. Electron spin resonance experiments showed two spectral components for [TOAC(0)]Ctx(Ile(21))-Ha, which are most likely due to two membrane-bound peptide conformations. In contrast, TOAC(2) and TOAC(13) derivatives presented a single spectral component corresponding to a strong immobilization of the probe. Thus, our findings allowed the description of the peptide topology in the membrane mimetic, where the N-terminal region is in dynamic equilibrium between an ordered, membrane-bound conformation and a disordered, mobile conformation; position 2 is most likely situated in the lipid polar head group region, and residue 13 is fully inserted into the hydrophobic core of the membrane.
Collapse
Affiliation(s)
- Eduardo F. Vicente
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP-Univ Estadual Paulista, Araraquara/SP, Brazil
| | - Luis Guilherme M. Basso
- Grupo de Biofísica Molecular Sérgio Mascarenhas, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos/SP, Brazil
| | - Graziely F. Cespedes
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP-Univ Estadual Paulista, Araraquara/SP, Brazil
| | - Esteban N. Lorenzón
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP-Univ Estadual Paulista, Araraquara/SP, Brazil
| | - Mariana S. Castro
- Brazilian Center for Protein Research, Department of Cell Biology, University of Brasília, Brasília/DF, Brazil
| | - Maria José S. Mendes-Giannini
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, UNESP-Univ Estadual Paulista, Araraquara/SP, Brazil
| | - Antonio José Costa-Filho
- Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto/SP, Brazil
| | - Eduardo M. Cilli
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP-Univ Estadual Paulista, Araraquara/SP, Brazil
| |
Collapse
|
28
|
Kamech N, Vukičević D, Ladram A, Piesse C, Vasseur J, Bojović V, Simunić J, Juretić D. Improving the Selectivity of Antimicrobial Peptides from Anuran Skin. J Chem Inf Model 2012; 52:3341-51. [DOI: 10.1021/ci300328y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Nédia Kamech
- Université Pierre et Marie Curie - Paris 06, Equipe Biogenèse des signaux
peptidiques, ER3, 7 Quai Saint-Bernard, 75252 Paris cedex 05, France
| | - Damir Vukičević
- Faculty of Science, University of Split, 21000 Split, Croatia
| | - Ali Ladram
- Université Pierre et Marie Curie - Paris 06, Equipe Biogenèse des signaux
peptidiques, ER3, 7 Quai Saint-Bernard, 75252 Paris cedex 05, France
| | - Christophe Piesse
- Université Pierre et Marie Curie - Paris 06, Ingénierie des protéines,
Institut de Biologie intégrative IFR 83, 7 Quai Saint-Bernard,
75252 Paris cedex 05, France
| | - Julie Vasseur
- Université Pierre et Marie Curie - Paris 06, Equipe Biogenèse des signaux
peptidiques, ER3, 7 Quai Saint-Bernard, 75252 Paris cedex 05, France
| | - Viktor Bojović
- Ruđer Bošković Institute, Centre for Informatics and Computing, 10000 Zagreb, Croatia
| | - Juraj Simunić
- Faculty of Science, University of Split, 21000 Split, Croatia
| | - Davor Juretić
- Faculty of Science, University of Split, 21000 Split, Croatia
| |
Collapse
|
29
|
Transformation of the naturally occurring frog skin peptide, alyteserin-2a into a potent, non-toxic anti-cancer agent. Amino Acids 2012; 44:715-23. [PMID: 22965637 DOI: 10.1007/s00726-012-1395-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 08/24/2012] [Indexed: 01/06/2023]
Abstract
Alyteserin-2a (ILGKLLSTAAGLLSNL.NH(2)) is a cationic, amphipathic α-helical cell-penetrating peptide, first isolated from skin secretions of the midwife toad Alytes obstetricans. Structure-activity relationships were investigated by synthesizing analogs of alyteserin-2a in which amino acids on the hydrophobic face of the helix were replaced by L-tryptophan and amino acids on the hydrophilic face were replaced by one or more L-lysine or D-lysine residues. The Trp-containing peptides display increased cytotoxic activity against non-small cell lung adenocarcinoma A549 cells (up to 11-fold), but hemolytic activity against human erythrocytes increases in parallel. The potency of the N15K analog against A549 cells (LC(50) = 13 μM) increases sixfold relative to alyteserin-2a and the therapeutic index (ratio of LC(50) for erythrocytes and tumor cells) increases twofold. Incorporation of a D-Lys(11) residue into the N15K analog generates a peptide that retains potency against A549 cells (LC(50) = 15 μM) but whose therapeutic index is 13-fold elevated relative to the native peptide. [G11k, N15K] alyteserin-2a is also active against human hepatocarcinoma HepG2 cells (LC(50) = 26 μM), breast adenocarcinoma MDA-MB-231 cells (LC(50) = 20 μM), and colorectal adenocarcinoma HT-29 cells (LC(50) = 28 μM). [G11k, N15K] alyteserin-2a, in concentrations as low as 1 μg/mL, significantly (P < 0.05) inhibits the release of the immune-suppressive cytokines IL-10 and TGF-β from unstimulated and concanavalin A-stimulated peripheral blood mononuclear cells. The data suggest a strategy of increasing the cationicity while reducing the helicity of naturally occurring amphipathic α-helical peptides to generate analogs with improved cytotoxicity against tumor cells but decreased activity against non-neoplastic cells.
Collapse
|
30
|
Conlon JM, Mechkarska M, Prajeep M, Sonnevend A, Coquet L, Leprince J, Jouenne T, Vaudry H, King JD. Host-defense peptides in skin secretions of the tetraploid frog Silurana epitropicalis with potent activity against methicillin-resistant Staphylococcus aureus (MRSA). Peptides 2012; 37:113-9. [PMID: 22800690 DOI: 10.1016/j.peptides.2012.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/06/2012] [Accepted: 07/06/2012] [Indexed: 11/21/2022]
Abstract
A putative genome duplication event within the Silurana lineage has given rise to the tetraploid Cameroon clawed frog Silurana epitropicalis (Fischberg, Colombelli, and Picard, 1982). Peptidomic analysis of norepinephrine-stimulated skin secretions of S. epitropicalis led to identification of 10 peptides with varying degrees of growth-inhibitory activity against Escherichia coli and Staphylococcus aureus. Structural characterization identified the peptides as belonging to the magainin family (magainin-SE1), the caerulein-precursor fragment family (CPF-SE1, -SE2 and -SE3), the xenopsin-precursor fragment family (XPF-SE1, SE-2, SE-3 and -SE4), and the peptide glycine-leucine-amide family (PGLa-SE1 and -SE2). In addition, peptide phenylalanine-glutamine-amide (FLGALLGPLMNLLQ·NH(2)) was isolated from the secretions that lacked antimicrobial activity. Comparison of the multiplicity of orthologous peptides in S. epitropicalis and the diploid Silurana tropicalis indicates that extensive nonfunctionalization (deletion or silencing) of antimicrobial peptide genes has occurred after polyploidization in the Silurana lineage, as in the Xenopus lineage. CPF-SE2 (GFLGPLLKLGLKGAAKLLPQLLPSRQQ; MIC=2.5μM) and CPF-SE3 (GFLGSLLKTGLKVGSNLL·NH(2); MIC=5μM) showed potent growth-inhibitory activity against a range of clinical isolates of methicillin-resistant S. aureus (MRSA). Their utility as systemic anti-infective drugs is limited by significant hemolytic activity against human erythrocytes (LC(50)=50μM for CPF-SE2 and 220μM for CPF-SE3) but the peptides may find application as topical agents in treatment of MRSA skin infections and decolonization of MRSA carriers.
Collapse
Affiliation(s)
- J Michael Conlon
- Department of Biochemistry, Faculty of Medicine and Health Sciences, United Arab Emirates University, 17666 Al-Ain, United Arab Emirates.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Popovic S, Urbán E, Lukic M, Conlon JM. Peptides with antimicrobial and anti-inflammatory activities that have therapeutic potential for treatment of acne vulgaris. Peptides 2012; 34:275-82. [PMID: 22374306 DOI: 10.1016/j.peptides.2012.02.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 02/13/2012] [Accepted: 02/13/2012] [Indexed: 11/23/2022]
Abstract
The pathogenesis of acne vulgaris is multifactorial involving infection of the pilosebaceous unit with Propionibacterium acnes and a cytokine-mediated inflammatory response. Five frog skin-derived antimicrobial peptides ([D4k]ascaphin-8, [G4K]XT-7, [T5k]temporin-DRa, brevinin-2GU, and B2RP-ERa), chosen for their low hemolytic activity against human erythrocytes, were assessed for their effects on the growth of clinical isolates of P. acnes and on the release of pro-inflammatory and anti-inflammatory cytokines from peripheral blood mononuclear (PBM) cells. All peptides inhibited the growth of P. acnes with the highest potency exhibited by [D4k]ascaphin-8 (minimum inhibitory concentration, MIC=3-12.5 μM). Release of TNF-α from concanavalin A (ConA)-stimulated PBM cells was significantly reduced by [D4k]ascaphin-8, [G4K]XT-7, brevinin-2GU, and B2RP-ERa (1 and 20 μg/ml) and by [T5k]temporin-DRa (20 μg/ml). Release of IFN-γ from unstimulated PBM cells was significantly reduced by [D4k]ascaphin-8 and brevinin-2GU (1 and 20 μg/ml). No peptide showed significant effects on Il-17 release. Release of the anti-inflammatory cytokines TGF-β, IL-4, and IL-10 from both unstimulated and ConA-treated PBM cells was significantly increased by [T5k]temporin-DRa and B2RP-ERa (1 and 20μg/ml). The potent activities of [D4k]ascaphin-8 and [T5k]temporin-DRa in inhibiting the growth of P. acnes and the release of pro-inflammatory cytokines, and in stimulating the release of anti-inflammatory cytokines suggest a possible therapeutic role in the treatment of acne vulgaris.
Collapse
Affiliation(s)
- Suzana Popovic
- Department of Immunology and Microbiology, Faculty of Medicine, University of Kragujevac, Serbia
| | | | | | | |
Collapse
|
32
|
Efficacy of six frog skin-derived antimicrobial peptides against colistin-resistant strains of the Acinetobacter baumannii group. Int J Antimicrob Agents 2012; 39:317-20. [DOI: 10.1016/j.ijantimicag.2011.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 12/06/2011] [Accepted: 12/07/2011] [Indexed: 11/23/2022]
|
33
|
Shang D, Li X, Sun Y, Wang C, Sun L, Wei S, Gou M. Design of potent, non-toxic antimicrobial agents based upon the structure of the frog skin peptide, temporin-1CEb from Chinese brown frog, Rana chensinensis. Chem Biol Drug Des 2012; 79:653-62. [PMID: 22348663 DOI: 10.1111/j.1747-0285.2012.01363.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Temporin-1CEb shows antimicrobial activity against Gram-positive bacteria, but its therapeutic potential is limited by its haemolysis. In this study, eight temporin-1CEb analogues with altered cationicities and hydrophobicities were synthesized. Increasing cationicity and amphipathicity by substituting neutral and non-polar amino acid residues on the hydrophilic face of the α-helix by five or six lysines increased antimicrobial potency approximately 10-fold to 40-fold, although when the number of positive charges was increased from +6 to +7, the antimicrobial potency was not additionally enhanced. The substitution of an l-lysine with a d-lysine, meanwhile maintaining the net charge and the mean hydrophobicity values, had only a minor effect on its antimicrobial activity, whereas significantly led a decrease in its haemolytic activity. Of all the peptides, l-K6 has the best potential as an antimicrobial agent because its antimicrobial activity against both Gram-positive and Gram-negative bacteria is substantial, and its haemolytic activity is negligible. l-K6 adopts an α-helix in 50% trifluoroethanol/water and 30 mm SDS solutions. l-K6 killed 99.9% of E. coli and S. aureus at 4× MIC in 60 min, and its postantibiotic effect was >5 h. l-K6 affects the integrity of E. coli and S. aureus plasma membranes by rapidly inducing membrane depolarization.
Collapse
Affiliation(s)
- Dejing Shang
- Faculty of Life Science, Liaoning Normal University, Dalian, China.
| | | | | | | | | | | | | |
Collapse
|
34
|
Wu S, Liu X, Yeung A, Yeung KWK, Kao RYT, Wu G, Hu T, Xu Z, Chu PK. Plasma-modified biomaterials for self-antimicrobial applications. ACS APPLIED MATERIALS & INTERFACES 2011; 3:2851-2860. [PMID: 21668027 DOI: 10.1021/am2003944] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The surface compatibility and antibacterial properties of biomaterials are crucial to tissue engineering and other medical applications, and plasma-assisted technologies have been employed to enhance these characteristics with good success. Herein, we describe and review the recent developments made by our interdisciplinary team on self-antimicrobial biomaterials with emphasis on plasma-based surface modification. Our results indicate that a self-antibacterial surface can be produced on various types of materials including polymers, metals, and ceramics by plasma treatment. Surface characteristics such as roughness, microstructure, chemistry, electronegativity, free energy, hydrophilicity, and interfacial physiochemistry are important factors and can be tailored by using the appropriate plasma-assisted processing parameters. In particular, mechanistic studies reveal that the interfacial physiochemical processes, biocidal agents, and surface free energy are predominantly responsible for the antibacterial effects of plasma-modified biomaterials.
Collapse
Affiliation(s)
- Shuilin Wu
- Department of Physics & Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Conlon JM. Structural diversity and species distribution of host-defense peptides in frog skin secretions. Cell Mol Life Sci 2011; 68:2303-15. [PMID: 21560068 PMCID: PMC11114843 DOI: 10.1007/s00018-011-0720-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 04/26/2011] [Accepted: 04/26/2011] [Indexed: 01/24/2023]
Abstract
Cationic peptides that adopt an amphipathic α-helical conformation in a membrane-mimetic environment are synthesized in the skins of many frog species. These peptides often display cytolytic activities against bacteria and fungi consistent with the idea that they play a role in the host's system of defense against pathogenic microorganisms, but their importance in the survival strategy of the animal is not clearly understood. Despite the common misconception that antimicrobial peptides are synthesized in the skins of all anurans, the species distribution is sporadic, suggesting that their production may confer some evolutionary advantage to the organism but is not necessary for survival. The low potency of many frog skin antimicrobial peptides is consistent with the hypothesis that cutaneous symbiotic bacteria may provide the major system of defense against pathogenic microorganisms in the environment with antimicrobial peptides assuming a supplementary role in some species.
Collapse
Affiliation(s)
- J Michael Conlon
- Department of Biochemistry, Faculty of Medicine and Health Sciences, United Arab Emirates University, 17666, Al-Ain, United Arab Emirates.
| |
Collapse
|
36
|
Knowledge-based computational methods for identifying or designing novel, non-homologous antimicrobial peptides. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:371-85. [DOI: 10.1007/s00249-011-0674-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 12/16/2010] [Accepted: 01/04/2011] [Indexed: 02/07/2023]
|
37
|
Crusca E, Rezende AA, Marchetto R, Mendes-Giannini MJS, Fontes W, Castro MS, Cilli EM. Influence of N-terminus modifications on the biological activity, membrane interaction, and secondary structure of the antimicrobial peptide hylin-a1. Biopolymers 2011; 96:41-8. [DOI: 10.1002/bip.21454] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Conlon JM, Ahmed E, Pal T, Sonnevend A. Potent and rapid bactericidal action of alyteserin-1c and its [E4K] analog against multidrug-resistant strains of Acinetobacter baumannii. Peptides 2010; 31:1806-10. [PMID: 20603168 DOI: 10.1016/j.peptides.2010.06.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 06/26/2010] [Accepted: 06/28/2010] [Indexed: 11/28/2022]
Abstract
The emergence of multidrug-resistant strains of Acinetobacter baumannii (MDRAB) constitutes a serious threat to public health and necessitates the discovery of new types of antimicrobial agents. Alyteserin-1c (GLKEIFKAGLGSLVKGIAAHVAS·NH(2)) is a cationic, α-helical peptide that was first isolated from skin secretions of the midwife toad Alytes obstetricans. Synthetic alyteserin-1c displayed potent activity against clinical isolates of MDRAB (minimum inhibitory concentration, MIC=5-10 μM; minimum bactericidal concentration, MBC=5-10 μM) while displaying low hemolytic activity against human erythrocytes (LD(50)=220 μM). Increasing the cationicity of alyteserin-1c by the substitution Glu(4)→Lys enhanced the potency against MDRAB (MIC=1.25-5 μM; MBC=1.25-5 μM) as well as decreasing hemolytic activity (HC(50)>400 μM). More than 99.9% of the bacteria were killed within 30 min by the [E4K] analog at a concentration of 1 × MBC. Increasing the cationicity of [E4K]alyteserin-1c further by the additional substitutions of Ala(8),Val(14) or Ala(18) by l-Lys did not enhance antimicrobial potency. Derivatives of [E4K]alyteserin-1c containing a palmitate group coupled either to α-amino group at the N-terminus or to ɛ-amino group on the Lys(18) residue of the [E4K,A18K] analog retained antimicrobial activity but showed dramatically increased hemolytic activities (>40- and >13-fold, respectively).
Collapse
Affiliation(s)
- J Michael Conlon
- Department of Biochemistry, Faculty of Medicine and Health Sciences, United Arab Emirates University, 17666 Al-Ain, United Arab Emirates.
| | | | | | | |
Collapse
|
39
|
The contribution of skin antimicrobial peptides to the system of innate immunity in anurans. Cell Tissue Res 2010; 343:201-12. [PMID: 20640445 DOI: 10.1007/s00441-010-1014-4] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 06/08/2010] [Indexed: 10/19/2022]
Abstract
Cationic peptides with the propensity to adopt an amphipathic α-helical conformation in a membrane-mimetic environment are synthesized in the skins of many species of anurans (frogs and toads). These peptides frequently display cytolytic activities against a range of pathogenic bacteria and fungi consistent with the idea that they play a role in the host's system of innate immunity. However, the importance of the peptides in the survival strategy of the animal is not clearly understood. It is a common misconception that antimicrobial peptides are synthesized in the skins of all anurans. In fact, the species distribution is sporadic suggesting that their production may confer some evolutionary advantage to the organism but is not necessary for survival. Although growth inhibitory activity against the chytrid fungus Batrachochytrium dendrobatidis, responsible for anuran population declines worldwide, has been demonstrated in vitro, the ability of frog skin antimicrobial peptides to protect the animal in the wild appears to be limited and there is no clear correlation between their production by a species and its resistance to fatal chytridiomycosis. The low potency of many frog skin antimicrobial peptides is consistent with the hypothesis that cutaneous symbiotic bacteria may provide the major system of defense against pathogenic microorganisms in the environment with antimicrobial peptides assuming a supplementary role in some species.
Collapse
|
40
|
Development of potent anti-infective agents from Silurana tropicalis: Conformational analysis of the amphipathic, alpha-helical antimicrobial peptide XT-7 and its non-haemolytic analogue [G4K]XT-7. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1020-8. [DOI: 10.1016/j.bbapap.2010.01.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 12/22/2009] [Accepted: 01/20/2010] [Indexed: 11/22/2022]
|
41
|
Abstract
Skin secretions from many species of anurans (frogs and toads) are a rich source of peptides with broad-spectrum antimicrobial activities that may be developed into agents with therapeutic potential, particularly for topical applications. This chapter describes the use of norepinephrine (injection or immersion) to stimulate peptide release from granular glands in the skin in procedures that do not appear to cause distress to the animals. The peptide components in the secretions are separated using reversed-phase HPLC on octadecylsilyl-silica (C(18)) columns after partial purification on Sep-Pak C(18) cartridges. Peptides with antimicrobial activity are then identified by demonstration of their abilities to inhibit growth of Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria in liquid phase microtiter plate assays. Individual peptides with activity are purified to near homogeneity by further chromatography on butylsilyl-(C(4)) and diphenylmethylsilyl-silica columns and characterized structurally by automated Edman degradation and mass spectrometry.
Collapse
Affiliation(s)
- J Michael Conlon
- Department of Biochemistry, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | | |
Collapse
|
42
|
Dawson RM, Liu CQ. Cathelicidin peptide SMAP-29: comprehensive review of its properties and potential as a novel class of antibiotics. Drug Dev Res 2009. [DOI: 10.1002/ddr.20329] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Conlon JM, Ahmed E, Condamine E. Antimicrobial properties of brevinin-2-related peptide and its analogs: Efficacy against multidrug-resistant Acinetobacter baumannii. Chem Biol Drug Des 2009; 74:488-93. [PMID: 19793185 DOI: 10.1111/j.1747-0285.2009.00882.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Brevinin-2 related peptide (B2RP; GIWDTIKSMG(10)KVFAGKILQN(20)L.NH(2)), first isolated from skin secretions of the mink frog Lithobates septentrionalis, shows broad-spectrum antimicrobial activity but its therapeutic potential is limited by moderate hemolytic activity. The peptide adopts an alpha-helical conformation in a membrane-mimetic solvent but amphipathicity is low. Increasing amphipathicity together with hydrophobicity by the substitutions Lys(16)-->Leu and Lys(16)-->Ala increased hemolytic activity approximately fivefold without increasing antimicrobial potency. The substitution Leu(18)-->Lys increased both cationicity and amphipathicity but produced decreases in both antimicrobial potency and hemolytic activity. In contrast, increasing cationicity of B2RP without changing amphipathicity by the substitution Asp(4)-->Lys resulted in a fourfold increase in potency against Escherichia coli [minimal inhibitory concentration (MIC) = 6 microm) and twofold increases in potency against Staphylococcus aureus (MIC = 12.5 microm) and Candida albicans (MIC = 6 microm) without changing significantly hemolytic activity against human erythrocytes (LC(50) = 95 microm). The emergence of antibiotic-resistant strains of the Gram-negative bacterium Acinetobacter baumannii constitutes a serious risk to public health. B2RP (MIC = 3-6 microm) and [Lys(4)]B2RP (MIC = 1.5-3 microm) potently inhibited the growth of nosocomial isolates of multidrug-resistant Acinetobacter baumannii. Although the analogs [Lys(4), Lys(18)]B2RP and [Lys(4), Ala(16), Lys(18)]B2RP showed reduced potency against Staphylococcus aureus, they retained activity against Acinetobacter baumannii (MIC = 3-6 microm) and had very low hemolytic activity (LC(50) > 200 microm).
Collapse
Affiliation(s)
- J Michael Conlon
- Department of Biochemistry, United Arab Emirates University, Al-Ain, UAE.
| | | | | |
Collapse
|
44
|
|
45
|
Conlon JM, Abdel-Wahab YHA, Flatt PR, Leprince J, Vaudry H, Jouenne T, Condamine E. A glycine-leucine-rich peptide structurally related to the plasticins from skin secretions of the frog Leptodactylus laticeps (Leptodactylidae). Peptides 2009; 30:888-92. [PMID: 19428765 DOI: 10.1016/j.peptides.2009.01.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 01/09/2009] [Indexed: 11/23/2022]
Abstract
A glycine-leucine-rich peptide was isolated from norepinephrine-stimulated skin secretions of the Sante Fe frog Leptodactylus laticeps (Leptodactylidae) whose primary structure (Gly-Leu-Val-Asn-Gly-Leu-Leu-Ser-Ser-Val-Leu-Gly-Gly-Gly-Gln-Gly-Gly-Gly-Gly-Leu-Leu-Gly-Gly-Ile-Leu) contains the (GXXXG)(3) motif found in the plasticins, previously identified only in phyllomedusid frogs (Hylidae). Circular dichroism studies showed that the secondary structure of the peptide, termed plasticin-L1, was markedly solvent-dependent displaying a random coil conformation in water, a beta-sheet structure in methanol, and an alpha-helical conformation in 50% trifluoroethanol-water. A synthetic replicate of the peptide did not inhibit the growth of Escherichia coli or Staphylococcus aureus or lyse human erythrocytes at concentrations up to 500 microM. At relatively high concentrations (>or=1 microM), the peptide produced a significant (P<0.05), although modest (139% of basal rate at 3 microM), increase in the rate of glucose-induced release of insulin from rat clonal BRIN-BD11 beta cells without increasing the rate of release of lactate dehydrogenase. A peptide, termed ocellatin-L2 was also identified in the skin secretion that was identical to the previously described ocellatin-L1 except for the substitution Asn(23)-->Asp. Ocellatin-L2 was devoid of antimicrobial and hemolytic activity but also showed significant activity in stimulating insulin release from BRIN-BD11 cells (181% of basal rate at 3 microM).
Collapse
Affiliation(s)
- J Michael Conlon
- Department of Biochemistry, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.
| | | | | | | | | | | | | |
Collapse
|
46
|
Ajesh K, Sreejith K. Peptide antibiotics: an alternative and effective antimicrobial strategy to circumvent fungal infections. Peptides 2009; 30:999-1006. [PMID: 19428779 DOI: 10.1016/j.peptides.2009.01.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 01/26/2009] [Accepted: 01/26/2009] [Indexed: 10/21/2022]
Abstract
Mycosis, caused by both filamentous fungi and pathogenic yeasts is a major concern nowadays especially in the immunocompromised patient population. The emergence of pathogenic fungi resistant to current therapies in the last few decades has intensified the search for new antifungals like cationic peptides, which are the key components of innate defense mechanism. The review provides an inventory of different peptides from a diverse array of organisms from bacteria to mammals with proven antifungal activity, their therapeutic options and also about those which are in various stages of preclinical development. Literature, on the total and semi-synthetic variants of the parent peptides that exhibit an improved antifungal activity is also reviewed.
Collapse
Affiliation(s)
- K Ajesh
- Department of Biotechnology and Microbiology, Kannur University, Kerala, India
| | | |
Collapse
|
47
|
Conlon JM, Ahmed E, Coquet L, Jouenne T, Leprince J, Vaudry H, King JD. Peptides with potent cytolytic activity from the skin secretions of the North American leopard frogs, Lithobates blairi and Lithobates yavapaiensis. Toxicon 2009; 53:699-705. [PMID: 19254736 DOI: 10.1016/j.toxicon.2009.02.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 02/14/2009] [Accepted: 02/17/2009] [Indexed: 11/25/2022]
Abstract
Six structurally similar and strongly cationic peptides belonging to the brevinin-1 family were isolated from skin secretions of the plains leopard frog Lithobates blairi and the lowland leopard frog Lithobates yavapaiensis on the basis of their antimicrobial activities. Brevinin-1BLc (FLPIIAGIAAKFLPKIFCTISKKC) from L. blairi represented the most potent peptide (MIC=25microM Escherichia coli, MIC=1.5microM Staphylococcus aureus, MIC=3microM Candida albicans, LC(50)=9microM human erythrocytes and LC(50)=6microM HepG2 human hepatoma-derived cells). The appreciably lower antimicrobial potencies of brevinin-1Ya and -1Yc from L. yavapaiensis correlate with the decreases in cationicity produced by the amino acid substitutions Lys(11)-->Asn (brevinin-1Ya) and Pro(14)-->Glu (brevinin-1Yc). In addition, a peptide isolated from the skin secretions of L. yavapaiensis belonging to the ranatuerin-2 family (ranatuerin-2Ya; GLMDTIKGVAKTVAASWLDKLKCKIT GC) inhibited the growth of E. coli (MIC=50microM) and S. aureus (MIC=50microM). In contrast to brevinin-1BLc, ranatuerin-2Ya showed appreciably greater cytolytic activity against HepG2 cells (LC(50)=20microM) than against erythrocytes (LC(50)>100microM).
Collapse
Affiliation(s)
- J Michael Conlon
- Department of Biochemistry, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.
| | | | | | | | | | | | | |
Collapse
|
48
|
Conlon JM, Kolodziejek J, Nowotny N. Antimicrobial peptides from the skins of North American frogs. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1788:1556-63. [PMID: 18983817 DOI: 10.1016/j.bbamem.2008.09.018] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 09/22/2008] [Accepted: 09/26/2008] [Indexed: 11/19/2022]
Abstract
North America is home to anuran species belonging to the families Bufonidae, Eleutherodactylidae, Hylidae, Leiopelmatidae, Ranidae, and Scaphiopodidae but antimicrobial peptides have been identified only in skin secretions and/or skin extracts of frogs belonging to the Leiopelmatidae ("tailed frogs") and Ranidae ("true frogs"). Eight structurally-related cationic alpha-helical peptides with broad-spectrum antibacterial activity, termed ascaphins, have been isolated from specimens of Ascaphus truei (Leiopelmatidae) occupying a coastal range. Characterization of orthologous antimicrobial peptides from Ascaphus specimens occupying an inland range supports the proposal that this population should be regarded as a separate species A. montanus. Ascaphin-8 shows potential for development into a therapeutically valuable anti-infective agent. Peptides belonging to the brevinin-1, esculentin-1, esculentin-2, palustrin-1, palustrin-2, ranacyclin, ranatuerin-1, ranatuerin-2, and temporin families have been isolated from North American ranids. It is proposed that "ranalexins" represent brevinin-1 peptides that have undergone a four amino acid residue internal deletion. Current taxonomic recommendations divide North American frogs from the family Ranidae into two genera: Lithobates and Rana. Cladistic analysis based upon the amino acid sequences of the brevinin-1 peptides provides strong support for this assignment.
Collapse
Affiliation(s)
- J Michael Conlon
- Department of Biochemistry, Faculty of Medicine and Health Sciences, United Arab Emirates University, 17666 Al-Ain, United Arab Emirates.
| | | | | |
Collapse
|