1
|
Carmona LM, Thomas ED, Smith K, Tasic B, Costa RM, Nelson A. Topographical and cell type-specific connectivity of rostral and caudal forelimb corticospinal neuron populations. Cell Rep 2024; 43:113993. [PMID: 38551963 PMCID: PMC11100358 DOI: 10.1016/j.celrep.2024.113993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/07/2024] [Accepted: 03/07/2024] [Indexed: 04/09/2024] Open
Abstract
Corticospinal neurons (CSNs) synapse directly on spinal neurons, a diverse assortment of cells with unique structural and functional properties necessary for body movements. CSNs modulating forelimb behavior fractionate into caudal forelimb area (CFA) and rostral forelimb area (RFA) motor cortical populations. Despite their prominence, the full diversity of spinal neurons targeted by CFA and RFA CSNs is uncharted. Here, we use anatomical and RNA sequencing methods to show that CSNs synapse onto a remarkably selective group of spinal cell types, favoring inhibitory populations that regulate motoneuron activity and gate sensory feedback. CFA and RFA CSNs target similar spinal neuron types, with notable exceptions that suggest that these populations differ in how they influence behavior. Finally, axon collaterals of CFA and RFA CSNs target similar brain regions yet receive highly divergent inputs. These results detail the rules of CSN connectivity throughout the brain and spinal cord for two regions critical for forelimb behavior.
Collapse
Affiliation(s)
- Lina Marcela Carmona
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Eric D Thomas
- Allen Institute for Brain Science, Allen Institute, Seattle, WA, USA
| | - Kimberly Smith
- Allen Institute for Brain Science, Allen Institute, Seattle, WA, USA
| | - Bosiljka Tasic
- Allen Institute for Brain Science, Allen Institute, Seattle, WA, USA
| | - Rui M Costa
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Allen Institute for Brain Science, Allen Institute, Seattle, WA, USA
| | - Anders Nelson
- Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
2
|
Gradwell MA, Ozeri-Engelhard N, Eisdorfer JT, Laflamme OD, Gonzalez M, Upadhyay A, Medlock L, Shrier T, Patel KR, Aoki A, Gandhi M, Abbas-Zadeh G, Oputa O, Thackray JK, Ricci M, George A, Yusuf N, Keating J, Imtiaz Z, Alomary SA, Bohic M, Haas M, Hernandez Y, Prescott SA, Akay T, Abraira VE. Multimodal sensory control of motor performance by glycinergic interneurons of the mouse spinal cord deep dorsal horn. Neuron 2024; 112:1302-1327.e13. [PMID: 38452762 DOI: 10.1016/j.neuron.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/31/2023] [Accepted: 01/26/2024] [Indexed: 03/09/2024]
Abstract
Sensory feedback is integral for contextually appropriate motor output, yet the neural circuits responsible remain elusive. Here, we pinpoint the medial deep dorsal horn of the mouse spinal cord as a convergence point for proprioceptive and cutaneous input. Within this region, we identify a population of tonically active glycinergic inhibitory neurons expressing parvalbumin. Using anatomy and electrophysiology, we demonstrate that deep dorsal horn parvalbumin-expressing interneuron (dPV) activity is shaped by convergent proprioceptive, cutaneous, and descending input. Selectively targeting spinal dPVs, we reveal their widespread ipsilateral inhibition onto pre-motor and motor networks and demonstrate their role in gating sensory-evoked muscle activity using electromyography (EMG) recordings. dPV ablation altered limb kinematics and step-cycle timing during treadmill locomotion and reduced the transitions between sub-movements during spontaneous behavior. These findings reveal a circuit basis by which sensory convergence onto dorsal horn inhibitory neurons modulates motor output to facilitate smooth movement and context-appropriate transitions.
Collapse
Affiliation(s)
- Mark A Gradwell
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Nofar Ozeri-Engelhard
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Neuroscience PhD program, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Jaclyn T Eisdorfer
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Olivier D Laflamme
- Dalhousie PhD program, Dalhousie University, Halifax, NS, Canada; Department of Medical Neuroscience, Atlantic Mobility Action Project, Brain Repair Center, Dalhousie University, Halifax, NS, Canada
| | - Melissa Gonzalez
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Department of Biomedical Engineering, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Aman Upadhyay
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Neuroscience PhD program, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Laura Medlock
- Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Tara Shrier
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Komal R Patel
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Adin Aoki
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Melissa Gandhi
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Gloria Abbas-Zadeh
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Olisemaka Oputa
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Joshua K Thackray
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Human Genetics Institute of New Jersey, Rutgers University, The State University of New Jersey, Piscataway, NJ, USA; Tourette International Collaborative Genetics Study (TIC Genetics)
| | - Matthew Ricci
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Arlene George
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Nusrath Yusuf
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Neuroscience PhD program, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Jessica Keating
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Zarghona Imtiaz
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Simona A Alomary
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Manon Bohic
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Michael Haas
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Yurdiana Hernandez
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Steven A Prescott
- Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Turgay Akay
- Department of Medical Neuroscience, Atlantic Mobility Action Project, Brain Repair Center, Dalhousie University, Halifax, NS, Canada
| | - Victoria E Abraira
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
3
|
Silva-Batista C, Lira J, Coelho DB, de Lima-Pardini AC, Nucci MP, Mattos ECT, Magalhaes FH, Barbosa ER, Teixeira LA, Amaro Junior E, Ugrinowitsch C, Horak FB. Mesencephalic Locomotor Region and Presynaptic Inhibition during Anticipatory Postural Adjustments in People with Parkinson's Disease. Brain Sci 2024; 14:178. [PMID: 38391752 PMCID: PMC10887111 DOI: 10.3390/brainsci14020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
Individuals with Parkinson's disease (PD) and freezing of gait (FOG) have a loss of presynaptic inhibition (PSI) during anticipatory postural adjustments (APAs) for step initiation. The mesencephalic locomotor region (MLR) has connections to the reticulospinal tract that mediates inhibitory interneurons responsible for modulating PSI and APAs. Here, we hypothesized that MLR activity during step initiation would explain the loss of PSI during APAs for step initiation in FOG (freezers). Freezers (n = 34) were assessed in the ON-medication state. We assessed the beta of blood oxygenation level-dependent signal change of areas known to initiate and pace gait (e.g., MLR) during a functional magnetic resonance imaging protocol of an APA task. In addition, we assessed the PSI of the soleus muscle during APA for step initiation, and clinical (e.g., disease duration) and behavioral (e.g., FOG severity and APA amplitude for step initiation) variables. A linear multiple regression model showed that MLR activity (R2 = 0.32, p = 0.0006) and APA amplitude (R2 = 0.13, p = 0.0097) explained together 45% of the loss of PSI during step initiation in freezers. Decreased MLR activity during a simulated APA task is related to a higher loss of PSI during APA for step initiation. Deficits in central and spinal inhibitions during APA may be related to FOG pathophysiology.
Collapse
Affiliation(s)
- Carla Silva-Batista
- Exercise Neuroscience Research Group, University of São Paulo, São Paulo 05508-070, Brazil
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jumes Lira
- Exercise Neuroscience Research Group, University of São Paulo, São Paulo 05508-070, Brazil
- School of Arts, Sciences and Humanities, University of São Paulo, São Paulo 03828-000, Brazil
- School of Physical Education and Sport, University of São Paulo, São Paulo 05508-030, Brazil
| | - Daniel Boari Coelho
- Biomedical Engineering, Federal University of ABC, São Bernardo do Campo 09210-170, Brazil
| | | | | | | | | | - Egberto Reis Barbosa
- Movement Disorders Clinic, Department of Neurology, School of Medicine, University of São Paulo, São Paulo 05508-070, Brazil
| | - Luis Augusto Teixeira
- School of Physical Education and Sport, University of São Paulo, São Paulo 05508-030, Brazil
| | - Edson Amaro Junior
- Department of Radiology, University of São Paulo, São Paulo 05508-090, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo 05508-030, Brazil
| | - Fay B Horak
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
4
|
Mahrous A, Birch D, Heckman CJ, Tysseling V. Muscle Spasms after Spinal Cord Injury Stem from Changes in Motoneuron Excitability and Synaptic Inhibition, Not Synaptic Excitation. J Neurosci 2024; 44:e1695232023. [PMID: 37949656 PMCID: PMC10851678 DOI: 10.1523/jneurosci.1695-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
Muscle spasms are common in chronic spinal cord injury (SCI), posing challenges to rehabilitation and daily activities. Pharmacological management of spasms mostly targets suppression of excitatory inputs, an approach known to hinder motor recovery. To identify better targets, we investigated changes in inhibitory and excitatory synaptic inputs to motoneurons as well as motoneuron excitability in chronic SCI. We induced either a complete or incomplete SCI in adult mice of either sex and divided those with incomplete injury into low or high functional recovery groups. Their sacrocaudal spinal cords were then extracted and used to study plasticity below injury, with tissue from naive animals as a control. Electrical stimulation of the dorsal roots elicited spasm-like activity in preparations of chronic severe SCI but not in the control. To evaluate overall synaptic inhibition activated by sensory stimulation, we measured the rate-dependent depression of spinal root reflexes. We found inhibitory inputs to be impaired in chronic injury models. When synaptic inhibition was blocked pharmacologically, all preparations became clearly spastic, even the control. However, preparations with chronic injuries generated longer spasms than control. We then measured excitatory postsynaptic currents (EPSCs) in motoneurons during sensory-evoked spasms. The data showed no difference in the amplitude of EPSCs or their conductance among animal groups. Nonetheless, we found that motoneuron persistent inward currents activated by the EPSCs were increased in chronic SCI. These findings suggest that changes in motoneuron excitability and synaptic inhibition, rather than excitation, contribute to spasms and are better suited for more effective therapeutic interventions.Significance Statement Neural plasticity following spinal cord injury is crucial for recovery of motor function. Unfortunately, this process is blemished by maladaptive changes that can cause muscle spasms. Pharmacological alleviation of spasms without compromising the recovery of motor function has proven to be challenging. Here, we investigated changes in fundamental spinal mechanisms that can cause spasms post-injury. Our data suggest that the current management strategy for spasms is misdirected toward suppressing excitatory inputs, a mechanism that we found unaltered after injury, which can lead to further motor weakness. Instead, this study shows that more promising approaches might involve restoring synaptic inhibition or modulating motoneuron excitability.
Collapse
Affiliation(s)
| | - Derin Birch
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - C J Heckman
- Departments of Neuroscience
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Vicki Tysseling
- Departments of Neuroscience
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
5
|
Carmona LM, Thomas ET, Smith K, Tasic B, Costa RM, Nelson A. Topographical and cell type-specific connectivity of rostral and caudal forelimb corticospinal neuron populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567623. [PMID: 38014164 PMCID: PMC10680840 DOI: 10.1101/2023.11.17.567623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Corticospinal neurons (CSNs) synapse directly on spinal neurons, a diverse group of neurons with unique structural and functional properties necessary for body movements. CSNs modulating forelimb behavior fractionate into caudal forelimb area (CFA) and rostral forelimb area (RFA) motor cortical populations. Despite their prominence, no studies have mapped the diversity of spinal cell types targeted by CSNs, let alone compare CFA and RFA populations. Here we use anatomical and RNA-sequencing methods to show that CSNs synapse onto a remarkably selective group of spinal cell types, favoring inhibitory populations that regulate motoneuron activity and gate sensory feedback. CFA and RFA CSNs target similar spinal cell types, with notable exceptions that suggest these populations differ in how they influence behavior. Finally, axon collaterals of CFA and RFA CSNs target similar brain regions yet receive surprisingly divergent inputs. These results detail the rules of CSN connectivity throughout the brain and spinal cord for two regions critical for forelimb behavior.
Collapse
|
6
|
Duguay M, Bonizzato M, Delivet-Mongrain H, Fortier-Lebel N, Martinez M. Uncovering and leveraging the return of voluntary motor programs after paralysis using a bi-cortical neuroprosthesis. Prog Neurobiol 2023; 228:102492. [PMID: 37414352 DOI: 10.1016/j.pneurobio.2023.102492] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023]
Abstract
Rehabilitative and neuroprosthetic approaches after spinal cord injury (SCI) aim to reestablish voluntary control of movement. Promoting recovery requires a mechanistic understanding of the return of volition over action, but the relationship between re-emerging cortical commands and the return of locomotion is not well established. We introduced a neuroprosthesis delivering targeted bi-cortical stimulation in a clinically relevant contusive SCI model. In healthy and SCI cats, we controlled hindlimb locomotor output by tuning stimulation timing, duration, amplitude, and site. In intact cats, we unveiled a large repertoire of motor programs. After SCI, the evoked hindlimb lifts were highly stereotyped, yet effective in modulating gait and alleviating bilateral foot drag. Results suggest that the neural substrate underpinning motor recovery had traded-off selectivity for efficacy. Longitudinal tests revealed that the return of locomotion after SCI was correlated with recovery of the descending drive, which advocates for rehabilitation interventions directed at the cortical target.
Collapse
Affiliation(s)
- Maude Duguay
- Département de Neurosciences and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Québec, Canada; CIUSSS du Nord-de-l'Île-de-Montréal, Québec, Canada
| | - Marco Bonizzato
- Département de Neurosciences and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Québec, Canada; CIUSSS du Nord-de-l'Île-de-Montréal, Québec, Canada; Department of Electrical Engineering, Polytechnique Montréal, Québec, Canada
| | - Hugo Delivet-Mongrain
- Département de Neurosciences and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Québec, Canada
| | - Nicolas Fortier-Lebel
- Département de Neurosciences and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Québec, Canada
| | - Marina Martinez
- Département de Neurosciences and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Québec, Canada; CIUSSS du Nord-de-l'Île-de-Montréal, Québec, Canada.
| |
Collapse
|
7
|
Phylogenetic view of the compensatory mechanisms in motor and sensory systems after neuronal injury. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100058. [PMID: 36304591 PMCID: PMC9593282 DOI: 10.1016/j.crneur.2022.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/15/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
Through phylogeny, novel neural circuits are added on top of ancient circuits. Upon injury of a novel circuit which enabled fine control, the ancient circuits can sometimes take over its function for recovery; however, the recovered function is limited according to the capacity of the ancient circuits. In this review, we discuss two examples of functional recovery after neural injury in nonhuman primate models. The first is the recovery of dexterous hand movements following damage to the corticospinal tract. The second is the recovery of visual function after injury to the primary visual cortex (V1). In the former case, the functions of the direct cortico-motoneuronal pathway, which specifically developed in higher primates for the control of fractionated digit movements, can be partly compensated for by other descending motor pathways mediated by rubrospinal, reticulospinal, and propriospinal neurons. However, the extent of recovery depends on the location of the damage and which motor systems take over its function. In the latter case, after damage to V1, which is highly developed in primates, either the direct pathway from the lateral geniculate nucleus to extrastriate visual cortices or that from the midbrain superior colliculus-pulvinar-extrastriate/parietal cortices partly takes over the function of V1. However, the state of visual awareness is no longer the same as in the intact state, which might reflect the limited capacity of the compensatory pathways in visual recognition. Such information is valuable for determining the targets of neuromodulatory therapies and setting treatment goals after brain and spinal cord injuries.
Collapse
|
8
|
Anodal tDCS of contralesional hemisphere modulates ipsilateral control of spinal motor networks targeting the paretic arm post-stroke. Clin Neurophysiol 2022; 136:1-12. [DOI: 10.1016/j.clinph.2021.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/23/2021] [Accepted: 12/19/2021] [Indexed: 11/23/2022]
|
9
|
Del Cerro P, Rodríguez-De-Lope Á, Collazos-Castro JE. The Cortical Motor System in the Domestic Pig: Origin and Termination of the Corticospinal Tract and Cortico-Brainstem Projections. Front Neuroanat 2021; 15:748050. [PMID: 34790101 PMCID: PMC8591036 DOI: 10.3389/fnana.2021.748050] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
The anatomy of the cortical motor system and its relationship to motor repertoire in artiodactyls is for the most part unknown. We studied the origin and termination of the corticospinal tract (CST) and cortico-brainstem projections in domestic pigs. Pyramidal neurons were retrogradely labeled by injecting aminostilbamidine in the spinal segment C1. After identifying the dual origin of the porcine CST in the primary motor cortex (M1) and premotor cortex (PM), the axons descending from those regions to the spinal cord and brainstem were anterogradely labeled by unilateral injections of dextran alexa-594 in M1 and dextran alexa-488 in PM. Numerous corticospinal projections from M1 and PM were detected up to T6 spinal segment and showed a similar pattern of decussation and distribution in the white matter funiculi and the gray matter laminae. They terminated mostly on dendrites of the lateral intermediate laminae and the internal basilar nucleus, and some innervated the ventromedial laminae, but were essentially absent in lateral laminae IX. Corticofugal axons terminated predominantly ipsilaterally in the midbrain and bilaterally in the medulla oblongata. Most corticorubral projections arose from M1, whereas the mesencephalic reticular formation, superior colliculus, lateral reticular nucleus, gigantocellular reticular nucleus, and raphe received abundant axonal contacts from both M1 and PM. Our data suggest that the porcine cortical motor system has some common features with that of primates and humans and may control posture and movement through parallel motor descending pathways. However, less cortical regions project to the spinal cord in pigs, and the CST neither seems to reach the lumbar enlargement nor to have a significant direct innervation of cervical, foreleg motoneurons.
Collapse
Affiliation(s)
- Patricia Del Cerro
- Neural Repair and Biomaterials Laboratory, Hospital Nacional de Parapléjicos, Toledo, Spain.,Ph.D. Program in Neuroscience, Autonoma de Madrid University, Madrid, Spain
| | | | | |
Collapse
|
10
|
Zaaya M, Pulverenti TS, Islam MA, Knikou M. Transspinal stimulation downregulates activity of flexor locomotor networks during walking in humans. J Electromyogr Kinesiol 2020; 52:102420. [PMID: 32334377 DOI: 10.1016/j.jelekin.2020.102420] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/20/2020] [Accepted: 04/04/2020] [Indexed: 10/24/2022] Open
Abstract
The objective of this study was to establish the effects of transspinal stimulation on short-latency tibialis anterior (TA) flexion reflex during walking in healthy humans. Single pulse transspinal stimulation was delivered at a conditioning-test (C-T) interval either after (~20 ms) or simultaneously with the last pulse of the pulse train (0 ms) delivered to the medial arch of the right foot. Transspinal stimulation was delivered at sub- and supra-threshold intensities of the spinally-mediated TA transspinal evoked potential. Stimulation was delivered randomly at different phases of the step cycle, based on the foot switch threshold signal, which was divided into 16 equal bins. The TA flexion reflex facilitation under control conditions occurred at heel contact and then progressively from late stance phase reaching its peak at early and late swing phases. Transspinal stimulation at a negative and suprathreshold 0 ms C-T interval depressed flexion reflex excitability at all phases of the step cycle. The short-latency TA flexion reflex depression was possibly mediated through spinal inhibitory interneurons acting at both pre- and post- motoneuronal sites or by transspinal stimulation affecting directly the activity of the flexor half spinal center. These results reveal direct actions of transspinal stimulation on human spinal locomotor networks.
Collapse
Affiliation(s)
- Morad Zaaya
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA
| | - Timothy S Pulverenti
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA.
| | - Md Anamul Islam
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA
| | - Maria Knikou
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA; PhD Program in Biology and Collaborative Neuroscience Program, Graduate Center of The City University of New York and College of Staten Island, New York, NY, USA
| |
Collapse
|
11
|
Lira JLO, Ugrinowitsch C, Coelho DB, Teixeira LA, de Lima-Pardini AC, Magalhães FH, Barbosa ER, Horak FB, Silva-Batista C. Loss of presynaptic inhibition for step initiation in parkinsonian individuals with freezing of gait. J Physiol 2020; 598:1611-1624. [PMID: 32020612 DOI: 10.1113/jp279068] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/20/2020] [Indexed: 01/26/2023] Open
Abstract
KEY POINTS Individuals with freezing of gait (FoG) due to Parkinson's disease (PD) have small and long anticipatory postural adjustments (APAs) associated with delayed step initiation. Individuals with FoG ('freezers') may require functional reorganization of spinal mechanisms to perform APAs due to supraspinal dysfunction. As presynaptic inhibition (PSI) is centrally modulated to allow execution of supraspinal motor commands, it may be deficient in freezers during APAs. We show that freezers presented PSI in quiet stance (control task), but they presented loss of PSI (i.e. higher ratio of the conditioned H-reflex relative to the test H-reflex) during APAs before step initiation (functional task), whereas non-freezers and healthy control individuals presented PSI in both the tasks. The loss of PSI in freezers was associated with both small APA amplitudes and FoG severity. We hypothesize that loss of PSI during APAs for step initiation in freezers may be due to FoG. ABSTRACT Freezing of gait (FoG) in Parkinson's disease involves deficient anticipatory postural adjustments (APAs), resulting in a cessation of step initiation due to supraspinal dysfunction. Individuals with FoG ('freezers') may require functional reorganization of spinal mechanisms to perform APAs. As presynaptic inhibition (PSI) is centrally modulated to allow execution of supraspinal motor commands, here we hypothesized a loss of PSI in freezers during APA for step initiation, which would be associated with FoG severity. Seventy individuals [27 freezers, 22 non-freezers, and 21 age-matched healthy controls (HC)] performed a 'GO'-commanded step initiation task on a force platform under three conditions: (1) without electrical stimulation, (2) test Hoffman reflex (H-reflex) and (3) conditioned H-reflex. They also performed a control task (quiet stance). In the step initiation task, the H-reflexes were evoked on the soleus muscle when the amplitude of the APA exceeded 10-20% of the mean baseline mediolateral force. PSI was quantified by the ratio of the conditioned H-reflex relative to the test H-reflex in both the tasks. Objective assessment of FoG severity (FoG-ratio) was performed. Freezers presented lower PSI levels during quiet stance than non-freezers and HC (P < 0.05). During step initiation, freezers presented loss of PSI and lower APA amplitudes than non-freezers and HC (P < 0.05). Significant correlations were only found for freezers between loss of PSI and FoG-ratio (r = 0.59, P = 0.0005) and loss of PSI and APA amplitude (r = -0.35, P < 0.036). Our findings suggest that loss of PSI for step initiation in freezers may be due to FoG.
Collapse
Affiliation(s)
| | - Carlos Ugrinowitsch
- Laboratory of Strength Training, School of Physical Education and Sport, University of São Paulo, SP, Brazil
| | - Daniel Boari Coelho
- Biomedical Engineering, Federal University of ABC, São Bernardo do Campo, SP, Brazil.,Human Motor Systems Laboratory, School of Physical Education and Sport, University of São Paulo, SP, Brazil
| | - Luis Augusto Teixeira
- Human Motor Systems Laboratory, School of Physical Education and Sport, University of São Paulo, SP, Brazil
| | | | - Fernando Henrique Magalhães
- Exercise Neuroscience Research Group, School of Arts, Sciences and Humanities, University of São Paulo, SP, Brazil
| | - Egberto Reis Barbosa
- Movement Disorders Clinic, Department of Neurology, School of Medicine of the University of São Paulo, SP, Brazil
| | - Fay B Horak
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Carla Silva-Batista
- Exercise Neuroscience Research Group, School of Arts, Sciences and Humanities, University of São Paulo, SP, Brazil
| |
Collapse
|
12
|
Simultaneous Assessment of Homonymous and Heteronymous Monosynaptic Reflex Excitability in the Adult Rat. eNeuro 2018; 5:eN-MNT-0227-18. [PMID: 30406182 PMCID: PMC6220576 DOI: 10.1523/eneuro.0227-18.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/09/2018] [Accepted: 09/16/2018] [Indexed: 11/21/2022] Open
Abstract
In order to successfully perform motor tasks such as locomotion, the central nervous system must coordinate contractions of antagonistic and synergistic muscles across multiple joints. This coordination is largely dependent upon the function of proprioceptive afferents (PAs), which make monosynaptic connections with homonymous motoneurons. Homonymous pathways have been well studied in both health and disease but their collateral fibers projecting to heteronymous, synergistic muscles receive relatively less attention. This is surprising given that PA collaterals have significant effects on the excitability of heteronymous motoneurons, and that their synaptic terminal density is activity dependent. It is likely that the relative lack of literature is due to the lack of a preparation which allows synergistic heteronymous pathways to be assessed in vivo. Here, we describe a method to simultaneously evoke homonymous and heteronymous (synergistic) monosynaptic reflexes (MSRs) and study their modulation by descending pathways in adult rats. Through stimulation of the medial plantar nerve, we were able to produce an H reflex in the intrinsic foot (IF) muscles of the hind paw with a latency of 10.52 ± 3.8 ms. Increasing the stimulus intensity evoked a robust signal with a monosynaptic latency (11.32 ± 0.35 ms), recorded in the ipsilateral gastrocnemius (Gs). Our subsequent analyses suggest that Gs motoneurons were activated via heteronymous afferent collaterals from the medial plantar nerve. These reflexes could be evoked bilaterally and were modulated by conditioning stimuli to the cortex (Cx) and reticular formation. Interestingly, cortical stimulation was equally efficient at modulating both ipsilateral and contralateral reflexes, indicating that cortical modulation of lumbar sensory afferents lacks the laterality demonstrated by studies of cortical muscle activation. This technique represents a novel, relatively simple way to assess heteronymous afferent pathways in normal motor control as well as in models of motor disorders where adaptive and maladaptive plasticity of PAs and descending systems affects functional outcomes.
Collapse
|
13
|
Temporal Profile and Limb-specificity of Phasic Pain-Evoked Changes in Motor Excitability. Neuroscience 2018; 386:240-255. [DOI: 10.1016/j.neuroscience.2018.06.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/20/2018] [Accepted: 06/24/2018] [Indexed: 12/17/2022]
|
14
|
Niemann N, Wiegel P, Kurz A, Rothwell JC, Leukel C. Assessing TMS-induced D and I waves with spinal H-reflexes. J Neurophysiol 2018; 119:933-943. [DOI: 10.1152/jn.00671.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) of motor cortex produces a series of descending volleys known as D (direct) and I (indirect) waves. In the present study, we questioned whether spinal H-reflexes can be used to dissect D waves and early and late I waves from TMS. We therefore probed H-reflex facilitation at arrival times of D and I waves at the spinal level and thereby changed TMS parameters that have previously been shown to have selective effects on evoked D and different I waves. We changed TMS intensity and current direction and applied a double-pulse paradigm known as short-interval intracortical inhibition (SICI). Experiments were conducted in flexor carpi radialis (FCR) in the arm and soleus (SOL) in the leg. There were two major findings: 1) in FCR, H-reflex facilitation showed characteristic modulations with altered TMS parameters that correspond to the changes of evoked D and I waves; and 2) H-reflexes in SOL did not, possibly because of increased interference from other spinal circuits. Therefore, the most significant outcome of this study is that in FCR, H-reflexes combined with TMS seem to be a useful technique to dissect TMS-induced D and I waves. NEW & NOTEWORTHY Questions that relate to corticospinal function in pathophysiology and movement control demand sophisticated techniques to provide information about corticospinal mechanisms. We introduce a noninvasive electrophysiological technique that may be useful in describing such mechanisms in more detail by dissecting D and I waves from transcranial magnetic stimulation (TMS). Based on the combination of spinal H-reflexes and TMS in the flexor carpi radialis muscle, the technique was shown to measure selective effects on D and I waves from changing TMS parameters.
Collapse
Affiliation(s)
- Niclas Niemann
- Department of Sport Science, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Patrick Wiegel
- Department of Sport Science, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Alexander Kurz
- Department of Sport Science, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
| | - John C. Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London, London, United Kingdom
| | - Christian Leukel
- Department of Sport Science, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany
| |
Collapse
|
15
|
YANAGISAWA N. Functions and dysfunctions of the basal ganglia in humans. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2018; 94:275-304. [PMID: 30078828 PMCID: PMC6117491 DOI: 10.2183/pjab.94.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/26/2018] [Indexed: 06/01/2023]
Abstract
Involuntary movements and parkinsonism have been interesting and important topics in neurology since the last century. The development of anatomical and physiological studies of the neural circuitry of motor systems has encouraged the study of movement disorders by means of pathophysiology and brain imaging.Multichannel electromyography from affected muscles has generated objective and analytical data on chorea, ballism, athetosis, and dystonia. Studies using floor reaction forces revealed the pathophysiology of freezing of gait in parkinsonism. Akinesia and bradykinesia are attributable to dysfunctions in the basal ganglia, frontal lobe, and parieto-occipital visual association cortex.Reciprocal innervation is an essential mechanism of smooth voluntary movement. Spinal reflexes on reciprocal innervation has been investigated in awake humans, and the pathophysiology of spasticity and Parkinson's disease were revealed as a result. Clinical applications for the treatment and evaluation of status have been developed.For future studies, detailed neural mechanisms underlying the development of motor disorders in basal ganglia diseases and recovery by interventions including surgery and neurorehabilitation are important.
Collapse
Affiliation(s)
- Nobuo YANAGISAWA
- President, All Japan Labour Welfare Foundation, Japan
- President Emeritus, Kanto Rosai Hospital, Japan
- Professor Emeritus, Shinshu University, Japan
| |
Collapse
|
16
|
Jacobs B, Garcia ME, Shea-Shumsky NB, Tennison ME, Schall M, Saviano MS, Tummino TA, Bull AJ, Driscoll LL, Raghanti MA, Lewandowski AH, Wicinski B, Ki Chui H, Bertelsen MF, Walsh T, Bhagwandin A, Spocter MA, Hof PR, Sherwood CC, Manger PR. Comparative morphology of gigantopyramidal neurons in primary motor cortex across mammals. J Comp Neurol 2017; 526:496-536. [PMID: 29088505 DOI: 10.1002/cne.24349] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/19/2017] [Accepted: 10/24/2017] [Indexed: 12/11/2022]
Abstract
Gigantopyramidal neurons, referred to as Betz cells in primates, are characterized by large somata and extensive basilar dendrites. Although there have been morphological descriptions and drawings of gigantopyramidal neurons in a limited number of species, quantitative investigations have typically been limited to measures of soma size. The current study thus employed two separate analytical approaches: a morphological investigation using the Golgi technique to provide qualitative and quantitative somatodendritic measures of gigantopyramidal neurons across 19 mammalian species from 7 orders; and unbiased stereology to compare the soma volume of layer V pyramidal and gigantopyramidal neurons in primary motor cortex between 11 carnivore and 9 primate species. Of the 617 neurons traced in the morphological analysis, 181 were gigantopyramidal neurons, with deep (primarily layer V) pyramidal (n = 203) and superficial (primarily layer III) pyramidal (n = 233) neurons quantified for comparative purposes. Qualitatively, dendritic morphology varied considerably across species, with some (sub)orders (e.g., artiodactyls, perissodactyls, feliforms) exhibiting bifurcating, V-shaped apical dendrites. Basilar dendrites exhibited idiosyncratic geometry across and within taxonomic groups. Quantitatively, most dendritic measures were significantly greater in gigantopyramidal neurons than in superficial and deep pyramidal neurons. Cluster analyses revealed that most taxonomic groups could be discriminated based on somatodendritic morphology for both superficial and gigantopyramidal neurons. Finally, in agreement with Brodmann, gigantopyramidal neurons in both the morphological and stereological analyses were larger in feliforms (especially in the Panthera species) than in other (sub)orders, possibly due to specializations in muscle fiber composition and musculoskeletal systems.
Collapse
Affiliation(s)
- Bob Jacobs
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Colorado College, Colorado Springs, Colorado
| | - Madeleine E Garcia
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Colorado College, Colorado Springs, Colorado
| | - Noah B Shea-Shumsky
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Colorado College, Colorado Springs, Colorado
| | - Mackenzie E Tennison
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Colorado College, Colorado Springs, Colorado
| | - Matthew Schall
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Colorado College, Colorado Springs, Colorado
| | - Mark S Saviano
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Colorado College, Colorado Springs, Colorado
| | - Tia A Tummino
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Colorado College, Colorado Springs, Colorado
| | - Anthony J Bull
- Human Biology and Kinesiology, Colorado College, Colorado Springs, Colorado
| | - Lori L Driscoll
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Colorado College, Colorado Springs, Colorado
| | - Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, Ohio
| | | | - Bridget Wicinski
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hong Ki Chui
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Colorado College, Colorado Springs, Colorado
| | - Mads F Bertelsen
- Center for Zoo and Wild Animal Health, Copenhagen Zoo, Fredericksberg, Denmark
| | - Timothy Walsh
- Smithsonian National Zoological Park, Washington, District of Columbia
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Muhammad A Spocter
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Anatomy, Des Moines University, Des Moines, Iowa.,Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Patrick R Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
17
|
Reflex Circuits and Their Modulation in Motor Control: A Historical Perspective and Current View. J Indian Inst Sci 2017. [DOI: 10.1007/s41745-017-0052-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Plantier V, Brocard F. [Calpain as a new therapeutic target for treating spasticity after a spinal cord injury]. Med Sci (Paris) 2017; 33:629-636. [PMID: 28990565 DOI: 10.1051/medsci/20173306020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
After a spinal cord injury (SCI), patients develop spasticity, a motor disorder characterized by hyperreflexia and stiffness of muscles. Spasticity results from alterations in motoneurons with an upregulation of their persistent sodium current (I NaP), simultaneously with a disinhibition caused by a reduction of expression of chloride (Cl-) co-transporters KCC2. Until recently the origin of alterations was unknown. After reviewing pathophysiology of spasticity, the manuscript relates our recent work showing a tight relationship between the calpain-dependent proteolysis of voltage-gated sodium channels, the upregulation of I NaP and spasticity following SCI. We also discuss KCC2 as a substrate of calpains which may contribute to the disinhibition of motoneurons below the lesion. This led us to consider the proteolytic cleavage of both sodium channels and KCC2 as the upstream mechanism contributing to the development of spasticity after SCI.
Collapse
Affiliation(s)
- Vanessa Plantier
- Équipe P3M, Institut de Neurosciences de la Timone, UMR7289, Aix Marseille Université et Centre National de la Recherche Scientifique (CNRS), Marseille, France
| | - Frédéric Brocard
- Équipe P3M, Institut de Neurosciences de la Timone, UMR7289, Aix Marseille Université et Centre National de la Recherche Scientifique (CNRS), Marseille, France
| |
Collapse
|
19
|
Silva-Batista C, Mattos ECT, Corcos DM, Wilson JM, Heckman CJ, Kanegusuku H, Piemonte MEP, Túlio de Mello M, Forjaz C, Roschel H, Tricoli V, Ugrinowitsch C. Resistance training with instability is more effective than resistance training in improving spinal inhibitory mechanisms in Parkinson's disease. J Appl Physiol (1985) 2016; 122:1-10. [PMID: 27834670 DOI: 10.1152/japplphysiol.00557.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/11/2016] [Accepted: 11/06/2016] [Indexed: 11/22/2022] Open
Abstract
This study assessed 1) the effects of 12 wk of resistance training (RT) and resistance training with instability (RTI) on presynaptic inhibition (PSI) and disynaptic reciprocal inhibition (DRI) of patients with Parkinson's disease (PD); 2) the effectiveness of RT and RTI in moving PSI and DRI values of patients toward values of age-matched healthy controls (HC; Z-score analysis); and 3) associations between PSI and DRI changes and clinical outcomes changes previously published. Thirteen patients in RT group, 13 in RTI group, and 11 in a nonexercising control group completed the trial. While RT and RTI groups performed resistance exercises twice a week for 12 wk, only the RTI group used unstable devices. The soleus H reflex was used to evaluate resting PSI and DRI before and after the experimental protocol. The HC (n = 31) was assessed at pretest only. There were significant group × time interactions for PSI (P < 0.0001) and DRI (P < 0.0001). RTI was more effective than RT in increasing the levels of PSI (P = 0.0154) and DRI (P < 0.0001) at posttraining and in moving PSI [confidence interval (CI) 0.1-0.5] and DRI (CI 0.6-1.1) levels to those observed in HC. There was association between DRI and quality of life changes (r = -0.69, P = 0.008) and a strong trend toward association between PSI and postural instability changes (r = 0.60, P = 0.051) after RTI. RTI increased PSI and DRI levels more than RT, reaching the average values of the HC. Thus RTI may cause plastic changes in PSI and DRI pathways that are associated with some PD clinical outcomes. NEW & NOTEWORTHY Patients with Parkinson's disease (PD) have motor dysfunction. Spinal inhibitory mechanisms are important for modulating both supraspinal motor commands and sensory feedback at the spinal level. Resistance training with instability was more effective than resistance training in increasing the levels of presynaptic inhibition and disynaptic reciprocal inhibition of lower limb at rest of the patients with PD, reaching the average values of the healthy controls.
Collapse
Affiliation(s)
- Carla Silva-Batista
- Laboratory of Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo at São Paulo, São Paulo, Brazil;
| | - Eugenia Casella Tavares Mattos
- Laboratory of Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo at São Paulo, São Paulo, Brazil
| | - Daniel M Corcos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois.,Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois
| | - Jessica M Wilson
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois
| | - Charles J Heckman
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois.,Department of Physiology, Northwestern University, Chicago, Illinois
| | - Hélcio Kanegusuku
- Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of São Paulo at São Paulo, São Paulo, Brazil
| | | | - Marco Túlio de Mello
- Department of Psychobiology, Center for Psychobiology and Exercise Studies University Federal de São Paulo, São Paulo, Brazil
| | - Cláudia Forjaz
- Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of São Paulo at São Paulo, São Paulo, Brazil
| | - Hamilton Roschel
- Laboratory of Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo at São Paulo, São Paulo, Brazil
| | - Valmor Tricoli
- Laboratory of Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo at São Paulo, São Paulo, Brazil
| | - Carlos Ugrinowitsch
- Laboratory of Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo at São Paulo, São Paulo, Brazil
| |
Collapse
|
20
|
|
21
|
Abstract
Proper execution of voluntary movement requires a sensorimotor transformation based on the initial limb state. For example, successfully reaching to a stable target requires the recruitment of different muscle groups depending on limb position at movement initiation. To test whether this transformation could occur at the spinal level, we stimulated the cervical spinal cord of anesthetized monkeys while systematically changing initial posture and examined the modulation of the twitch response induced in the upper limb muscles. In three monkeys, a multichannel microelectrode array was implanted into the C6 segment of the spinal cord and electromyographic electrodes were implanted in 12 limb muscles (five hand, four elbow, and three shoulder muscles). The magnitude and onset latency of the evoked response in each electrode-muscle pair were examined by systematically changing the hand position through nine positions in a horizontal plane with the monkey prone. Among 330 electrode-muscle pairs examined, 61% of pairs exhibited significant modulation of either magnitude or latency of twitch responses across different hand/arm configurations (posture dependency). We found that posture dependency occurred preferentially in the distal rather than proximal muscles and was not affected by the location of the electrode within the stimulated spinal segment. Importantly, this posture dependency was not affected by spinalization at the C2 level. These results suggest that excitability in the cervical spinal cord is affected by initial arm posture through spinal reflex pathways. This posture dependency of spinal motor output could affect voluntary arm movement by adjusting descending motor commands relative to the initial arm posture.
Collapse
|
22
|
Mackey AS, Uttaro D, McDonough MP, Krivis LI, Knikou M. Convergence of flexor reflex and corticospinal inputs on tibialis anterior network in humans. Clin Neurophysiol 2015; 127:706-715. [PMID: 26122072 DOI: 10.1016/j.clinph.2015.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/04/2015] [Accepted: 06/10/2015] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Integration between descending and ascending inputs at supraspinal and spinal levels is a key characteristic of neural control of movement. In this study, we characterized convergence of the flexor reflex and corticospinal inputs on the tibialis anterior (TA) network in healthy human subjects. Specifically, we characterized the modulation profiles of the spinal TA flexor reflex following subthreshold and suprathreshold transcranial magnetic stimulation (TMS). We also characterized the modulation profiles of the TA motor evoked potentials (MEPs) following medial arch foot stimulation at sensory and above reflex threshold. METHODS TA flexor reflexes were evoked following stimulation of the medial arch of the foot with a 30 ms pulse train at innocuous intensities. TA MEPs were evoked following TMS of the leg motor cortex area. RESULTS TMS at 0.7 and at 1.2 MEP resting threshold increased the TA flexor reflex when TMS was delivered 40-100 ms after foot stimulation, and decreased the TA flexor reflex when TMS was delivered 25-110 ms before foot stimulation. Foot stimulation at sensory and above flexor reflex threshold induced a similar time-dependent modulation in resting TA MEPs, that were facilitated when foot stimulation was delivered 40-100 ms before TMS. The flexor reflex and MEPs recorded from the medial hamstring muscle were modulated in a similar manner to that observed for the TA flexor reflex and MEP. CONCLUSION Cutaneomuscular afferents from the distal foot can increase the output of the leg motor cortex area. Descending motor volleys that directly or indirectly depolarize flexor motoneurons increase the output of the spinal FRA interneuronal network. The parallel facilitation of flexor MEPs and flexor reflexes is likely cortical in origin. SIGNIFICANCE Afferent mediated facilitation of corticospinal excitability can be utilized to strengthen motor cortex output in neurological disorders.
Collapse
Affiliation(s)
- Ann S Mackey
- Graduate Center/Department of Physical Therapy, City University of New York, NY 10016, USA
| | - Denise Uttaro
- Graduate Center/Department of Physical Therapy, City University of New York, NY 10016, USA
| | - Maureen P McDonough
- Graduate Center/Department of Physical Therapy, City University of New York, NY 10016, USA
| | - Lisa I Krivis
- Graduate Center/Department of Physical Therapy, City University of New York, NY 10016, USA
| | - Maria Knikou
- Graduate Center/Department of Physical Therapy, City University of New York, NY 10016, USA.
| |
Collapse
|
23
|
Hanna-Boutros B, Sangari S, Giboin LS, El Mendili MM, Lackmy-Vallée A, Marchand-Pauvert V, Knikou M. Corticospinal and reciprocal inhibition actions on human soleus motoneuron activity during standing and walking. Physiol Rep 2015; 3:3/2/e12276. [PMID: 25825912 PMCID: PMC4393188 DOI: 10.14814/phy2.12276] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Reciprocal Ia inhibition constitutes a key segmental neuronal pathway for coordination of antagonist muscles. In this study, we investigated the soleus H-reflex and reciprocal inhibition exerted from flexor group Ia afferents on soleus motoneurons during standing and walking in 15 healthy subjects following transcranial magnetic stimulation (TMS). The effects of separate TMS or deep peroneal nerve (DPN) stimulation and the effects of combined (TMS + DPN) stimuli on the soleus H-reflex were assessed during standing and at mid- and late stance phases of walking. Subthreshold TMS induced short-latency facilitation on the soleus H-reflex that was present during standing and at midstance but not at late stance of walking. Reciprocal inhibition was increased during standing and at late stance but not at the midstance phase of walking. The effects of combined TMS and DPN stimuli on the soleus H-reflex significantly changed between tasks, resulting in an extra facilitation of the soleus H-reflex during standing and not during walking. Our findings indicate that corticospinal inputs and Ia inhibitory interneurons interact at the spinal level in a task-dependent manner, and that corticospinal modulation of reciprocal Ia inhibition is stronger during standing than during walking.
Collapse
Affiliation(s)
- Berthe Hanna-Boutros
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7371, UMR_S 1146, LIB, Paris, France CNRS, UMR 7371, LIB, Paris, France INSERM, UMR_S 1146, LIB, Paris, France
| | - Sina Sangari
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7371, UMR_S 1146, LIB, Paris, France CNRS, UMR 7371, LIB, Paris, France INSERM, UMR_S 1146, LIB, Paris, France
| | - Louis-Solal Giboin
- Sensorimotor Performance Laboratory, Konstanz University, Konstanz, Germany
| | - Mohamed-Mounir El Mendili
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7371, UMR_S 1146, LIB, Paris, France CNRS, UMR 7371, LIB, Paris, France INSERM, UMR_S 1146, LIB, Paris, France
| | - Alexandra Lackmy-Vallée
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7371, UMR_S 1146, LIB, Paris, France CNRS, UMR 7371, LIB, Paris, France INSERM, UMR_S 1146, LIB, Paris, France
| | - Véronique Marchand-Pauvert
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7371, UMR_S 1146, LIB, Paris, France CNRS, UMR 7371, LIB, Paris, France INSERM, UMR_S 1146, LIB, Paris, France
| | - Maria Knikou
- The Graduate Center, City University of New York, New York, New York Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
24
|
Bourane S, Grossmann KS, Britz O, Dalet A, Del Barrio MG, Stam FJ, Garcia-Campmany L, Koch S, Goulding M. Identification of a spinal circuit for light touch and fine motor control. Cell 2015; 160:503-15. [PMID: 25635458 PMCID: PMC4431637 DOI: 10.1016/j.cell.2015.01.011] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/02/2014] [Accepted: 12/24/2014] [Indexed: 10/24/2022]
Abstract
Sensory circuits in the dorsal spinal cord integrate and transmit multiple cutaneous sensory modalities including the sense of light touch. Here, we identify a population of excitatory interneurons (INs) in the dorsal horn that are important for transmitting innocuous light touch sensation. These neurons express the ROR alpha (RORα) nuclear orphan receptor and are selectively innervated by cutaneous low threshold mechanoreceptors (LTMs). Targeted removal of RORα INs in the dorsal spinal cord leads to a marked reduction in behavioral responsiveness to light touch without affecting responses to noxious and itch stimuli. RORα IN-deficient mice also display a selective deficit in corrective foot movements. This phenotype, together with our demonstration that the RORα INs are innervated by corticospinal and vestibulospinal projection neurons, argues that the RORα INs direct corrective reflex movements by integrating touch information with descending motor commands from the cortex and cerebellum.
Collapse
Affiliation(s)
- Steeve Bourane
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Katja S Grossmann
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Olivier Britz
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Antoine Dalet
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Marta Garcia Del Barrio
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Floor J Stam
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Lidia Garcia-Campmany
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Stephanie Koch
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Martyn Goulding
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
25
|
Nardone R, Höller Y, Thomschewski A, Brigo F, Orioli A, Höller P, Golaszewski S, Trinka E. rTMS modulates reciprocal inhibition in patients with traumatic spinal cord injury. Spinal Cord 2014; 52:831-5. [PMID: 25112970 DOI: 10.1038/sc.2014.136] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/20/2014] [Accepted: 07/13/2014] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Randomized, double-blind, crossover, sham-controlled trial. OBJECTIVES Repetitive transcranial magnetic stimulation (rTMS) over the primary motor cortex (M1) leads to a significant reduction of spasticity in subjects with spinal cord injury (SCI), but the physiological basis of this effect is still not well understood. The purpose of this study was to evaluate the disynaptic reciprocal Ia inhibition of soleus motoneurons in SCI patients. SETTING Department of Neurology, Merano, Italy and TMS Laboratory, Paracelsus Medical University, Salzburg, Austria. METHODS Nine subjects with incomplete cervical or thoracic SCI received 5 days of daily sessions of real or sham rTMS applied over the contralateral M1. We compared the reciprocal inhibition, the Modified Ashworth Scale and the Spinal Cord Injury Assessment Tool for Spasticity at baseline, after the last session and 1 week later in the real rTMS and sham stimulation groups. RESULTS We found that real rTMS significantly reduced lower limb spasticity and restored the impaired excitability in the disynaptic reciprocal inhibitory pathway. CONCLUSIONS In a small proof-of-concept study, rTMS strengthened descending projections between the motor cortex and inhibitory spinal interneuronal circuits. This reversed a defect in reciprocal inhibition after SCI, and reduced leg spasticity.
Collapse
Affiliation(s)
- R Nardone
- 1] Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria [2] Department of Neurology, Franz Tappeiner Hospital, Merano, Italy [3] Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria
| | - Y Höller
- 1] Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria [2] Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria
| | - A Thomschewski
- 1] Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria [2] Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria
| | - F Brigo
- 1] Department of Neurology, Franz Tappeiner Hospital, Merano, Italy [2] Department of Neurological, Neuropsychological, Morphological and Movement Sciences. Section of Clinical Neurology, University of Verona, Verona, Italy
| | - A Orioli
- Department of Neurology, Franz Tappeiner Hospital, Merano, Italy
| | - P Höller
- 1] Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria [2] Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria
| | - S Golaszewski
- 1] Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria [2] Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria
| | - E Trinka
- 1] Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria [2] Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
26
|
|
27
|
Cortical presynaptic control of dorsal horn C-afferents in the rat. PLoS One 2013; 8:e69063. [PMID: 23935924 PMCID: PMC3728294 DOI: 10.1371/journal.pone.0069063] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 06/10/2013] [Indexed: 12/01/2022] Open
Abstract
Lamina 5 sensorimotor cortex pyramidal neurons project to the spinal cord, participating in the modulation of several modalities of information transmission. A well-studied mechanism by which the corticospinal projection modulates sensory information is primary afferent depolarization, which has been characterized in fast muscular and cutaneous, but not in slow-conducting nociceptive skin afferents. Here we investigated whether the inhibition of nociceptive sensory information, produced by activation of the sensorimotor cortex, involves a direct presynaptic modulation of C primary afferents. In anaesthetized male Wistar rats, we analyzed the effects of sensorimotor cortex activation on post tetanic potentiation (PTP) and the paired pulse ratio (PPR) of dorsal horn field potentials evoked by C–fiber stimulation in the sural (SU) and sciatic (SC) nerves. We also explored the time course of the excitability changes in nociceptive afferents produced by cortical stimulation. We observed that the development of PTP was completely blocked when C-fiber tetanic stimulation was paired with cortex stimulation. In addition, sensorimotor cortex activation by topical administration of bicuculline (BIC) produced a reduction in the amplitude of C–fiber responses, as well as an increase in the PPR. Furthermore, increases in the intraspinal excitability of slow-conducting fiber terminals, produced by sensorimotor cortex stimulation, were indicative of primary afferent depolarization. Topical administration of BIC in the spinal cord blocked the inhibition of C–fiber neuronal responses produced by cortical stimulation. Dorsal horn neurons responding to sensorimotor cortex stimulation also exhibited a peripheral receptive field and responded to stimulation of fast cutaneous myelinated fibers. Our results suggest that corticospinal inhibition of nociceptive responses is due in part to a modulation of the excitability of primary C–fibers by means of GABAergic inhibitory interneurons.
Collapse
|
28
|
Timmann D, Kaulich T, Föhre W, Kutz DF, Gerwig M, Kolb FP. Comparison of the classically conditioned withdrawal reflex in cerebellar patients and healthy control subjects during stance: I. electrophysiological characteristics. THE CEREBELLUM 2012; 12:108-26. [PMID: 22836373 DOI: 10.1007/s12311-012-0400-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The aim of this study was to demonstrate the involvement of the human cerebellum in the classically conditioned lower limb withdrawal reflex in standing subjects. Electromyographic activity was recorded from the main muscle groups of both legs of eight patients with cerebellar disease (CBL) and eight control subjects (CTRL). The unconditioned stimulus (US) consisted of electrical stimulation of the tibial nerve at the medial malleolus. The conditioning stimulus (CS) was an auditory signal given via headphones. Experiments started with 70 paired conditioning stimulus-unconditioned stimulus(CSUS) trials followed by 50 US-alone trials. The general reaction consisted of lifting and flexing the stimulated (stepping) leg with accompanying activation of the contralateral (supporting) leg. In CTRL, the ipsilateral (side of stimulation) flexor and contralateral extensor muscles were activated characteristically. In CBL, the magnitudes of ipsilateral flexor and contralateral extensor muscle activation were reduced comparably. In CTRL, the conditioning process increased the incidence of conditioned responses (CR), following a typical learning curve, while CBL showed a clearly lower CR incidence with a marginal increase, albeit, at a shorter latency. Conditioning processes also modified temporal parameters by shortening unconditioned response (UR) onset latencies and UR times to peak and, more importantly in CBL, also the sequence of activation of muscles, which became similar to that of CTRL. The expression of this reflex in standing subjects showed characteristic differences in the groups tested with the underlying associative processes not being restricted exclusively to the CR but also modifying parameters of the innate UR.
Collapse
Affiliation(s)
- D Timmann
- Department of Neurology, University of Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Jessop T, DePaola A, Casaletto L, Englard C, Knikou M. Short-term plasticity of human spinal inhibitory circuits after isometric and isotonic ankle training. Eur J Appl Physiol 2012; 113:273-84. [DOI: 10.1007/s00421-012-2438-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 05/29/2012] [Indexed: 12/18/2022]
|
30
|
Plasticity of corticospinal neural control after locomotor training in human spinal cord injury. Neural Plast 2012; 2012:254948. [PMID: 22701805 PMCID: PMC3373155 DOI: 10.1155/2012/254948] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/09/2012] [Accepted: 04/10/2012] [Indexed: 12/18/2022] Open
Abstract
Spinal lesions substantially impair ambulation, occur generally in young and otherwise healthy individuals, and result in devastating effects on quality of life. Restoration of locomotion after damage to the spinal cord is challenging because axons of the damaged neurons do not regenerate spontaneously. Body-weight-supported treadmill training (BWSTT) is a therapeutic approach in which a person with a spinal cord injury (SCI) steps on a motorized treadmill while some body weight is removed through an upper body harness. BWSTT improves temporal gait parameters, muscle activation patterns, and clinical outcome measures in persons with SCI. These changes are likely the result of reorganization that occurs simultaneously in supraspinal and spinal cord neural circuits. This paper will focus on the cortical control of human locomotion and motor output, spinal reflex circuits, and spinal interneuronal circuits and how corticospinal control is reorganized after locomotor training in people with SCI. Based on neurophysiological studies, it is apparent that corticospinal plasticity is involved in restoration of locomotion after training. However, the neural mechanisms underlying restoration of lost voluntary motor function are not well understood and translational neuroscience research is needed so patient-orientated rehabilitation protocols to be developed.
Collapse
|
31
|
Abstract
From an evolutionary perspective, it is clear that basic motor functions such as locomotion and posture are largely controlled by neural circuitries residing in the spinal cord and brain-stem. The control of voluntary movements such as skillful reaching and grasping is generally considered to be governed by neural circuitries in the motor cortex that connect directly to motoneurons via the corticomotoneuronal (CM) pathway. The CM pathway may act together with several brain-stem systems that also act directly with motoneurons. This simple view was challenged by work in the cat, which lacks the direct CM system, showing that the motor commands for reaching and grasping could be mediated via spinal interneurons with input from the motor-cortex and brain-stem systems. It was further demonstrated that the spinal interneurons mediating the descending commands for reaching and grasping constitute separate and distinct populations from those involved in locomotion and posture. The aim of this review is to describe populations of spinal interneurons that are involved in the control of skilled reaching and grasping in the cat, monkey, and human.
Collapse
Affiliation(s)
- Bror Alstermark
- Department of Integrative Medical Biology, Section of Physiology, Umeå University, S-901 87 Umeå, Sweden.
| | | |
Collapse
|
32
|
Knikou M, Mummidisetty CK. Reduced reciprocal inhibition during assisted stepping in human spinal cord injury. Exp Neurol 2011; 231:104-12. [PMID: 21684274 DOI: 10.1016/j.expneurol.2011.05.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 05/20/2011] [Accepted: 05/26/2011] [Indexed: 10/18/2022]
Abstract
The aim of this study was to establish the modulation pattern of the reciprocal inhibition exerted from tibialis anterior (TA) group I afferents onto soleus motoneurons during body weight support (BWS) assisted stepping in people with spinal cord injury (SCI). During assisted stepping, the soleus H-reflex was conditioned by percutaneous stimulation of the ipsilateral common peroneal nerve at one fold TA M-wave motor threshold with a single pulse delivered at a short conditioning-test interval. To counteract movement of recording and stimulating electrodes, a supramaximal stimulus at 80-100 ms after the test H-reflex was delivered. Stimuli were randomly dispersed across the step cycle which was divided into 16 equal bins. The conditioned soleus H-reflex was significantly facilitated throughout the stance phase, while during swing no significant changes on the conditioned H-reflex were observed when compared to the unconditioned soleus H-reflex recorded during stepping. Spontaneous clonic activity in triceps surae muscle occurred in multiple phases of the step cycle at a mean frequency of 7 Hz for steps with and without stimulation. This suggests that electrical excitation of TA and soleus group Ia afferents did not contribute to manifestation of ankle clonus. Absent reciprocal inhibition is likely responsible for lack of soleus H-reflex depression in swing phase observed in these patients. The pronounced reduced reciprocal inhibition in stance phase may contribute to impaired levels of co-contraction of antagonistic ankle muscles. Based on these findings, we suggest that rehabilitation should selectively target to transform reciprocal facilitation to inhibition through computer controlled reflex conditioning protocols.
Collapse
Affiliation(s)
- Maria Knikou
- The Graduate Center, City University of New York/College of Staten Island, Staten Island, NY 10314, USA.
| | | |
Collapse
|
33
|
|
34
|
|
35
|
|
36
|
|
37
|
|
38
|
Rojas-Piloni G, Martínez-Lorenzana G, Condés-Lara M, Rodríguez-Jiménez J. Direct sensorimotor corticospinal modulation of dorsal horn neuronal C-fiber responses in the rat. Brain Res 2010; 1351:104-114. [DOI: 10.1016/j.brainres.2010.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 05/12/2010] [Accepted: 06/03/2010] [Indexed: 11/27/2022]
|
39
|
Kaulich T, Föhre W, Kutz DF, Gerwig M, Timmann D, Kolb FP. Differences in unconditioned and conditioned responses of the human withdrawal reflex during stance: muscle responses and biomechanical data. Brain Res 2010; 1326:81-95. [PMID: 20188078 DOI: 10.1016/j.brainres.2010.02.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 02/16/2010] [Accepted: 02/17/2010] [Indexed: 11/24/2022]
Abstract
The aim of this study was to characterize differences between unconditioned and classically conditioned lower limb withdrawal reflexes in young subjects during standing. Electromyographic activity in the main muscle groups and biomechanical signals from a strain-gauge-equipped platform on which subjects stood were recorded from 17 healthy subjects during unconditioned stimulus (US)-alone trials and during auditory conditioning stimuli (CS) and US trials. In US-alone trials the leg muscle activation sequence was characteristic: ipsilateral, distal muscles were activated prior to proximal muscles; contralaterally the sequence was reversed. In CSUS trials latencies were shorter. Subjects unloaded the stimulated leg and shifted body weight to the supporting leg. In US-alone and in CSUS trials leg forces on each side were inversely related and asymmetric, due to preparation for unloading, whilst conditioned responses (CR), representing the unloading preparation, were symmetric. The trajectory of the center of vertical pressure during US-alone trials moved initially forward (a preparatory balance reaction) and to the stimulation side, followed by a large lateral shift to the side of the supporting limb. During CSUS trials the forwards shift was absent but the CR (early lateral shift) represented a preponed preparatory unloading. Electrophysiological and biomechanical responses of the classically conditioned lower limb withdrawal reflex in standing subjects changed significantly in CSUS trials compared to US-alone trials with higher sensitivity in the biomechanics. These findings will serve as a basis for a subsequent study on a group of patients with cerebellar diseases in whom the success of establishing procedural processes is known to be impaired.
Collapse
Affiliation(s)
- Thomas Kaulich
- Institute of Physiology, University of Munich, Munich, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Lungu O, Frigon A, Piché M, Rainville P, Rossignol S, Doyon J. Changes in spinal reflex excitability associated with motor sequence learning. J Neurophysiol 2010; 103:2675-83. [PMID: 20237314 DOI: 10.1152/jn.00006.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is ample evidence that motor sequence learning is mediated by changes in brain activity. Yet the question of whether this form of learning elicits changes detectable at the spinal cord level has not been addressed. To date, studies in humans have revealed that spinal reflex activity may be altered during the acquisition of various motor skills, but a link between motor sequence learning and changes in spinal excitability has not been demonstrated. To address this issue, we studied the modulation of H-reflex amplitude evoked in the flexor carpi radialis muscle of 14 healthy individuals between blocks of movements that involved the implicit acquisition of a sequence versus other movements that did not require learning. Each participant performed the task in three conditions: "sequence"-externally triggered, repeating and sequential movements, "random"-similar movements, but performed in an arbitrary order, and "simple"- involving alternating movements in a left-right or up-down direction only. When controlling for background muscular activity, H-reflex amplitude was significantly more reduced in the sequence (43.8 +/- 1.47%. mean +/- SE) compared with the random (38.2 +/- 1.60%) and simple (31.5 +/- 1.82%) conditions, while the M-response was not different across conditions. Furthermore, H-reflex changes were observed from the beginning of the learning process up to when subjects reached asymptotic performance on the motor task. Changes also persisted for >60 s after motor activity ceased. Such findings suggest that the excitability in some spinal reflex circuits is altered during the implicit learning process of a new motor sequence.
Collapse
Affiliation(s)
- Ovidiu Lungu
- Unité de Neuroimagerie Fonctionelle, Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada.
| | | | | | | | | | | |
Collapse
|
41
|
|
42
|
|
43
|
Do innate motor programs simplify voluntary motor control? Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00051426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
|
45
|
|
46
|
|
47
|
On the conceptual integration of ethology and neurophysiology. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00051402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
48
|
|
49
|
Adaptation and mechanical impedance regulation in the control of movements. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00051384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
50
|
|