1
|
Morishita R, Yoshimura R, Sakamoto H, Kuramoto H. Localization of substance P (SP)-immunoreactivity in the myenteric plexus of the rat esophagus. Histochem Cell Biol 2023; 159:7-21. [PMID: 35507035 DOI: 10.1007/s00418-022-02104-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2022] [Indexed: 02/07/2023]
Abstract
The present immunohistochemical study was performed to examine the number, distribution, and chemical coding of intrinsic substance P (SP) neurons and nerve fibers within the esophagus and discuss their functional roles. Many SP neurons and nerve fibers were found in the myenteric plexus, and the SP neurons gradually decreased from the oral side toward the aboral side of the esophagus. Double-immunolabeling showed that most SP neurons were cholinergic (positive for choline acetyltransferase), and few were nitrergic (positive for nitric oxide synthase). Some cholinergic SP nerve terminals surrounded cell bodies of several myenteric neurons. In the muscularis mucosa and lower esophageal sphincter, and around blood vessels, numerous SP nerve endings were present, and many of them were cholinergic. Also, SP nerve endings were found on only a few motor endplates of the striated muscles, and most of them were calcitonin gene-related peptide (CGRP)-positive. Retrograde tracing using Fast Blue (FB) showed that numerous sensory neurons in the dorsal root ganglia (DRGs) and nodose ganglion (NG) projected to the esophagus, and most FB-labeled SP neurons were CGRP-positive. These results suggest that the intrinsic SP neurons in the rat esophagus may play roles as, at least, motor neurons, interneurons, and vasomotor neurons, which are involved in local regulation of smooth muscle motility, neuronal transmission, and blood circulation, respectively. Moreover, SP nerve endings on only a minority of motor endplates may be extrinsic, derived from DRGs or NG, and possibly detect chemical circumstances within motor endplates to modulate esophageal motility.
Collapse
Affiliation(s)
- Ryo Morishita
- Cell Function Division, Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
| | - Ryoichi Yoshimura
- Cell Function Division, Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
| | - Hiroshi Sakamoto
- Department of Physical Therapy, Health Science University, Yamanashi, Japan
| | - Hirofumi Kuramoto
- Cell Function Division, Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan.
| |
Collapse
|
2
|
Rytel L, Szymanska K, Gonkowski I, Wojtkiewicz J. Neurochemical characterization of intramural nerve fibres in the porcine oesophagus. Anat Histol Embryol 2018; 47:517-526. [PMID: 30105873 DOI: 10.1111/ahe.12391] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 06/14/2018] [Accepted: 06/27/2018] [Indexed: 12/15/2022]
Abstract
The gastrointestinal (GI) tract is innervated by nerve processes derived from the intramural enteric neurons and neurons localized outside the digestive tract. This study analysed the neurochemical characterization of nerves in the wall of the porcine oesophagus using single immunofluorescence technique. Immunoreactivity to vesicular acetylcholine transporter (VAChT), neuropeptide Y (NPY), vasoactive intestinal polypeptide (VIP), somatostatin (SOM), galanin (GAL), neuronal isoform of nitric oxide synthase (nNOS), substance P (SP), leucine enkephalin (LENK), calcitonin gene-related peptide (CGRP) or dopamine beta-hydroxylase (DBH) was investigated in intramuscular and intramucosal nerves of the cervical, thoracic and abdominal oesophagus. The results indicate that all of the substances studied were present in the oesophageal nerves. The density of particular populations of fibres depended on the segment of the oesophagus. The most numerous were fibres immunoreactive to VIP in the longitudinal and circular muscle layers of the abdominal oesophagus: The number of these fibres amounted to 16.4 ± 0.8 and 18.1 ± 3.1, respectively. In turn, the least numerous were CGRP-positive fibres, which were present only in the circular muscle layer of the cervical oesophagus and mucosal layer of the abdominal oesophagus in the number of 0.3 ± 0. The obtained results show that nerves in the porcine oesophageal wall are very diverse in their neurochemical coding, and differences between particular parts of the oesophagus suggest that organization of the innervation clearly depends on the fragment of this organ.
Collapse
Affiliation(s)
- Liliana Rytel
- Faculty of Veterinary Medicine, Department of Internal Disease with Clinic, University of Warmia and Mazury, Olsztyn, Poland
| | - Kamila Szymanska
- Faculty of Veterinary Medicine, Department of Clinical Physiology, University of Warmia and Mazury, Olsztyn, Poland
| | - Ignacy Gonkowski
- Department of Pathophysiology, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Joanna Wojtkiewicz
- Department of Pathophysiology, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
3
|
|
4
|
|
5
|
Uchida K, Kamikawa Y. Muscularis mucosae - the forgotten sibling. J Smooth Muscle Res 2007; 43:157-77. [DOI: 10.1540/jsmr.43.157] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kohsuke Uchida
- Department of Pharmacology, Dokkyo Medical University School of Medicine
| | - Yuichiro Kamikawa
- Department of Pharmacology, Dokkyo Medical University School of Medicine
| |
Collapse
|
6
|
Neuhuber WL, Raab M, Berthoud HR, Wörl J. Innervation of the mammalian esophagus. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2006. [PMID: 16573241 DOI: 10.1007/978-3-540-32948-0_1] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Understanding the innervation of the esophagus is a prerequisite for successful treatment of a variety of disorders, e.g., dysphagia, achalasia, gastroesophageal reflux disease (GERD) and non-cardiac chest pain. Although, at first glance, functions of the esophagus are relatively simple, their neuronal control is considerably complex. Vagal motor neurons of the nucleus ambiguus and preganglionic neurons of the dorsal motor nucleus innervate striated and smooth muscle, respectively. Myenteric neurons represent the interface between the dorsal motor nucleus and smooth muscle but they are also involved in striated muscle innervation. Intraganglionic laminar endings (IGLEs) represent mechanosensory vagal afferent terminals. They also establish intricate connections with enteric neurons. Afferent information is implemented by the swallowing central pattern generator in the brainstem, which generates and coordinates deglutitive activity in both striated and smooth esophageal muscle and orchestrates esophageal sphincters as well as gastric adaptive relaxation. Disturbed excitation/inhibition balance in the lower esophageal sphincter results in motility disorders, e.g., achalasia and GERD. Loss of mechanosensory afferents disrupts adaptation of deglutitive motor programs to bolus variables, eventually leading to megaesophagus. Both spinal and vagal afferents appear to contribute to painful sensations, e.g., non-cardiac chest pain. Extrinsic and intrinsic neurons may be involved in intramural reflexes using acetylcholine, nitric oxide, substance P, CGRP and glutamate as main transmitters. In addition, other molecules, e.g., ATP, GABA and probably also inflammatory cytokines, may modulate these neuronal functions.
Collapse
|
7
|
Kuramoto H, Oomori Y, Murabayashi H, Kadowaki M, Karaki SI, Kuwahara A. Localization of neurokinin 1 receptor (NK1R) immunoreactivity in rat esophagus. J Comp Neurol 2004; 478:11-21. [PMID: 15334646 DOI: 10.1002/cne.20169] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The aim of the present immunohistochemical study was to investigate the localization of neurokinin 1 receptor (NK1R) in rat esophagus and examine the relationship between NK1Rs and intrinsic cholinergic, nitrergic, or substance P (SP) neurons. NK1R immunoreactivity (IR) was observed on the nerve cell bodies in the myenteric ganglia throughout the esophagus, but not on striated muscles and smooth muscle cells of the muscularis mucosae. The frequency of occurrence of NK1R neurons was highest in the cervical esophagus and lowest in the lower thoracic esophagus. Considerable immunoreactivity was seen on the nerve cell surfaces and was also present in the cytoplasm of cell somas and in the initial part of the axons, but not in any other nerve fibers or terminals. Dogiel type I-like morphology was observed in some of the NK1R neurons; however, the majority exhibited polymorphic morphology. Double immunolabeling indicated that a majority (77%) of the NK1R neurons were immunoreactive for choline acetyltransferase (ChAT), while a minority (23%) were immunoreactive for nitric oxide synthase (NOS)-IR. Most of the NK1R neurons (92%) were innervated by the SP nerve fibers. Triple immunolabeling indicated that 70% of the NK1R neurons were associated with intrinsic SP nerve fibers (without CGRP-IR), 59% were associated with extrinsic SP nerve fibers (with CGRP-IR), and 35% were associated with both intrinsic and extrinsic SP nerve fibers. These results suggest that SP/tachykinin released from the SP nerve fibers of intrinsic and/or extrinsic origin activates the predominantly intrinsic cholinergic neurons via NK1Rs to influence neuronal transmission or motility in rat esophagus.
Collapse
Affiliation(s)
- Hirofumi Kuramoto
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan.
| | | | | | | | | | | |
Collapse
|
8
|
Ayer-LeLievre C, Seiger ÅK. Substance P-like immunoreactivity in developing cranial parasympathetic neurons of the rat. Int J Dev Neurosci 2003; 3:267-77. [DOI: 10.1016/0736-5748(85)90031-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/1984] [Indexed: 10/27/2022] Open
Affiliation(s)
| | - ÅKe Seiger
- Department of Histology; Karolinska Institutet; Stockholm Sweden
| |
Collapse
|
9
|
Abstract
BACKGROUND & AIMS Tachykinins mediate nonadrenergic, noncholinergic excitation in the gastrointestinal tract, but their role in esophageal peristalsis remains unclear. METHODS We used muscle strips from the distal third of human esophagus, obtained from patients undergoing esophagectomy for cancer, to investigate the contribution of tachykinins to nerve-mediated contractions. Isometric tension responses to agonists or electrical field stimulation were recorded in circular and longitudinal muscle strips. RESULTS Tachykinins produced concentration-dependent increases in tension in circular and longitudinal muscle strips, with the following order of potency: beta-Ala(8)-neurokinin (NK) A (4-10) > NKB > substance P, suggesting NK(2) receptor involvement. The NK(2) receptor antagonist, SR48968 (1 micromol/L), inhibited responses to tachykinins in both muscles. Nerve activation produced on- and off-contractions in circular muscle and a duration-contraction in longitudinal muscle. Atropine (10 micromol/L)-insensitive nerve-evoked contractions were identified for the 3 types of responses. SR48968 produced concentration-dependent inhibition of atropine-insensitive on- and off-contractions but had no effect on the duration-contraction. At low stimulus frequency (1 Hz), on-contractions showed greater sensitivity to SR48968 than off-contractions. CONCLUSIONS Nerve-mediated contractions in the human esophagus have a significant atropine-insensitive component. Tachykinins acting on NK(2) receptors can account for some, but not all, of this response, suggesting that other excitatory mechanisms also contribute.
Collapse
Affiliation(s)
- P S Krysiak
- Department of Physiology, University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
10
|
Kerr KP. Effects of tachykinin receptor agonists and antagonists on the guinea-pig isolated oesophagus. Clin Exp Pharmacol Physiol 2000; 27:934-8. [PMID: 11071313 DOI: 10.1046/j.1440-1681.2000.03364.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Vagal nerve stimulation of the guinea-pig isolated oesophagus produced a triphasic tetrodotoxin (TTX)-sensitive contractile response. The third phase, which was resistant to ganglion blocking drugs, was selectively abolished by capsaicin, suggesting the involvement of one or more neuropeptides released from afferent neurons. Receptors on cholinergic neurons were subsequently activated because the response was atropine sensitive. Contractile responses resulting from exogenous substance P were abolished by atropine and TTX and enhanced by physostigmine. These findings suggest that the third phase may be mediated by the action of a substance P-like neuropeptide released from sensory nerve endings that subsequently activated cholinergic neurons. 2. The tachykinin receptors in the body of the guinea-pig oesophagus were characterized by determining the relative agonist potencies of natural tachykinins as well as tachykinin receptor-selective analogues. Antagonist affinities were also determined. The results indicated the presence of both NK2 and NK3 receptors. In addition, the effects of a cocktail of peptidase inhibitors (captopril, thiorphan and amastatin) on responses to various tachykinins and synthetic analogues were determined. The results indicate that one or more peptidases are present in this preparation. 3. Experiments using various tachykinin receptor antagonists were performed to determine whether the activation of tachykinin receptors played a role in the mediation of the third phase of the response to vagal nerve stimulation. While this response was unaffected by NK1 and NK2 receptor-selective antagonists, it was only partially inhibited (23%) by the NK3 receptor antagonist SR 142801. Thus, in the guinea-pig oesophagus, it appears that NK3 receptors play only a minor role in mediating a contractile response when afferent neurons are excited by vagal nerve stimulation.
Collapse
Affiliation(s)
- K P Kerr
- Department of Pharmaceutical Biology and Pharmacology, Victorian College of Pharmacy, Monash University, Parkville, Australia.
| |
Collapse
|
11
|
MORIKAWA SHUNICHI, KOMURO TERUMASA. Ultrastructure of intramural ganglia in the striated muscle portions of the guinea pig oesophagus. J Anat 1999; 195 ( Pt 1):111-20. [PMID: 10473298 PMCID: PMC1467970 DOI: 10.1046/j.1469-7580.1999.19510111.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ultrastructure of the myenteric plexus located in the striated muscle portion of the guinea pig oesophagus was examined and compared with that of the plexus associated with the smooth muscle portion of the rest of the digestive tract. The oesophageal ganglia had essentially the same architecture as those of the smooth muscle portion, such as a compact neuropil without the intervention of connective tissue and blood vessels. Some features, however, were particular to the striated muscle part of the oesophagus. It was clearly demonstrated that myelinated fibres, probably sensory terminals of vagal origin, join the myenteric ganglia. Synapses and terminal varicosities are sparsely distributed within the ganglia and fewer morphological types of axon varicosities could be distinguished compared with other regions. Glial cells are well developed in the oesophageal myenteric ganglia. These cells outnumber the ganglion cells, having a higher ratio than in the lower digestive tract, and form numerous cytoplasmic lamellar processes. The lamellar processes, located at the surface of the ganglia, considerably reduce the area of neuronal membrane which directly contacts the basal lamina. The role of these lamellar processes in the oesophageal ganglia is discussed.
Collapse
Affiliation(s)
- SHUNICHI MORIKAWA
- Department of Basic Human Sciences, School of Human Sciences, Waseda University, Japan
| | - TERUMASA KOMURO
- Department of Basic Human Sciences, School of Human Sciences, Waseda University, Japan
- Correspondence to Dr Terumasa Komuro, Department of Basic Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359, Japan. Tel.: +81-429-49-8111; fax: +81-429-48-4314; e-mail:
| |
Collapse
|
12
|
Barthó L, Lénárd L, Patacchini R, Halmai V, Wilhelm M, Holzer P, Maggi CA. Tachykinin receptors are involved in the "local efferent" motor response to capsaicin in the guinea-pig small intestine and oesophagus. Neuroscience 1999; 90:221-8. [PMID: 10188948 DOI: 10.1016/s0306-4522(98)00459-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The sensory neuron stimulant drug capsaicin stimulates primary afferent nerve endings in the guinea-pig small intestine, which in turn activate myenteric cholinergic neurons by an unknown mechanism. The tachykinins substance P and neurokinin A are present in primary afferent neurons. This study was performed to assess the possible involvement of endogenous tachykinins acting via neurokinin-1, neurokinin-2 and neurokinin-3 receptors in the contractile effect of capsaicin in the isolated guinea-pig ileum and oesophagus by using the receptor-specific antagonists GR 82334 (3 microM) for neurokinin-1 receptors, MEN 10627 (3 microM; ileum) or MEN 11420 (1 microM; oesophagus) for neurokinin-2 receptors and SR 142801 (0.1 microM) for neurokinin-3 receptors. In the ileum, the peak contraction evoked by capsaicin (2 microM) was not reduced when tachykinin neurokinin-1, neurokinin-2 or neurokinin-3 receptors were blocked separately, whereas an inhibition of neurokinin-3 receptors diminished the area under the curve of the capsaicin response. A combined blockade of neurokinin-1 and neurokinin-3 receptors significantly depressed the effect of capsaicin; the amplitude of the contractile response was 53.3+/-3.7% of the maximal longitudinal spasm in control preparations, whereas in the presence of GR 82334 plus SR 142801 it reached only 27.6+/-5% (P<0.001, Kruskal-Wallis test; n=9 and 10, respectively). Also, the area under the curve of the contractile response to capsaicin was more than 85% lower in the group of preparations treated with GR 82334 plus SR 142801 than in the control group (P<0.001). Including a neurokinin-2 blocker in the combination did not produce any further inhibition. A concomitant tachyphylaxis to substance P (natural neurokinin-1 receptor stimulant) and the neurokinin-3 receptor agonist senktide (5 and 1 microM, respectively) also reduced the contractile effect of capsaicin. In the oesophagus, capsaicin (1 microM) induced biphasic contractions which were strongly inhibited by atropine (1 microM) or capsaicin pretreatment (1 microM for 10 min). Here again, a blockade of tachykinin neurokinin-1, neurokinin-2 or neurokinin-3 receptors separately failed to inhibit the response to capsaicin, whereas a combined blockade of any two tachykinin receptors caused a partial inhibition. The reduction of the contractile effect of capsaicin was strongest when all three tachykinin receptors were blocked. In seven control preparations, peaks for the first and second phases of contraction reached 35.3+/-3.7% and 20+/-3.2% of maximal longitudinal spasm; the corresponding values in the presence of a combination of GR 82334, MEN 11420 and SR 142801 were 7.5+/-0.8% and 9.1+/-2.2%, respectively (n=6, P<0.001 and 0.05, respectively). Tetrodotoxin (0.5 microM) practically abolished the contractile effect of capsaicin in both tissues studied. It is concluded that an interplay of neuronal tachykinin neurokinin-1 and neurokinin-3 receptors (ileum) and neurokinin-1, neurokinin-2 and neurokinin-3 receptors (oesophagus) is involved in the contractile action of capsaicin, probably in mediating excitation of myenteric neurons by tachykinins released from primary afferents. In both tissues, there also seems to be a non-tachykininergic component of the capsaicin-induced contraction.
Collapse
Affiliation(s)
- L Barthó
- Department of Pharmacology and Pharmacotherapy, University Medical School of Pécs, Hungary
| | | | | | | | | | | | | |
Collapse
|
13
|
Blackshaw LA, Dent J. Lower oesophageal sphincter responses to noxious oesophageal chemical stimuli in the ferret: involvement of tachykinin receptors. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1997; 66:189-200. [PMID: 9406124 DOI: 10.1016/s0165-1838(97)00083-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Repeated oesophageal acidification is a definitive feature of gastro-oesophageal reflux disease, which in turn is caused by relaxation of the lower oesophageal sphincter (LOS). This study in anaesthetised ferrets investigates the reflex pathways involved in effects of oesophageal acidification on motor function of the LOS, with particular focus on the role of tachykinins. LOS pressure was monitored with a perfused micromanometric sleeve assembly. Oesophageal acidification reduced LOS pressure by 48 +/- 5% until washout with saline. This reduction became larger with repeated tests, and was unaffected in amplitude by acute bilateral vagotomy, although the response became slower in onset. Intra-oesophageal capsaicin (0.5% solution) caused a 68 +/- 17% decrease in LOS pressure which remained unchanged with repeated tests. The NK-1 receptor antagonist CP96,345 (1-5 mg/kg intravenous (i.v.) blocked the post-vagotomy LOS responses to both intra-luminal acid and capsaicin. Close intra-arterial (i.a.) injections of capsaicin (1-100 micrograms) gut induced LOS relaxation which was neither vagally nor NK-1 receptor-mediated. Substance P or the selective NK-1 receptor agonist [Sar9, Met(O2)11] substance P (25-500 ng close i.a.) caused a biphasic LOS response, consisting of initial brief contraction followed by prolonged, dose-dependent relaxation. Tetrodotoxin (10 micrograms/kg close i.a.) changed the biphasic response to substance P to excitation only. The neurokinin-1 (NK-1) receptor antagonist CP96,345 (0.3-10 mg/kg i.v.) dose-dependently reduced the inhibitory response to substance P. The excitatory phase of the response to substance P was larger and prolonged after guanethidine (5 mg/kg, i.v.), or propranolol (1 mg/kg, i.v.). L-NAME (100 mg/kg i.v.) reduced the inhibitory phase. The selective NK-2 receptor agonist [beta-Ala8] neurokinin A(4-10) caused LOS excitation only. These data indicate that intra-oesophageal acid causes substance P release from extrinsic afferent nerve endings which activates local inhibitory pathways to the LOS via NK-1 receptors.
Collapse
Affiliation(s)
- L A Blackshaw
- Department of Gastrointestinal Medicine, Royal Adelaide Hospital, North Terrace, Australia.
| | | |
Collapse
|
14
|
Holzer P, Holzer-Petsche U. Tachykinins in the gut. Part I. Expression, release and motor function. Pharmacol Ther 1997; 73:173-217. [PMID: 9175155 DOI: 10.1016/s0163-7258(96)00195-7] [Citation(s) in RCA: 249] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The preprotachykinin-A gene-derived peptides substance P and neurokinin (NK) A are expressed in distinct neural pathways of the mammalian gut. When released from intrinsic enteric or extrinsic primary afferent neurons, tachykinins have the potential to influence both nerve and muscle by way of interaction with three different types of tachykinin receptor, termed NK1, NK2 and NK3 receptors. Most prominent among the effects of tachykinins is their excitatory action on gastrointestinal motor activity, which is seen in virtually all regions and layers of the mammalian gut. This action depends not only on a direct activation of the muscle through NK1 and/or NK2 receptors, but also on stimulation of excitatory enteric motor pathways through NK3 and/or NK1 receptors. In addition, tachykinins can inhibit motor activity by stimulating either inhibitory neuronal pathways or interrupting excitatory relays. A synopsis of the available data indicates that endogenous substance P and NKA interact with other enteric transmitters in the physiological control of gastrointestinal motor activity. Derangement of the regulatory roles of tachykinins may be a factor in the gastrointestinal dysmotility associated with infection, inflammation, stress and pain. In a therapeutic perspective, it would seem conceivable, therefore, that tachykinin agonists and antagonists are adjuncts to the treatment of motor disorders that involve pathological disturbances of the gastrointestinal tachykinin system.
Collapse
MESH Headings
- Animals
- Esophagus/metabolism
- Gastric Mucosa/metabolism
- Gastrointestinal Diseases/etiology
- Gastrointestinal Diseases/metabolism
- Gastrointestinal Motility/physiology
- Humans
- Intestinal Mucosa/metabolism
- Nerve Fibers/metabolism
- Neurokinin A/genetics
- Neurokinin A/metabolism
- Neurokinin A/physiology
- Neurokinin-1 Receptor Antagonists
- Neurons, Afferent/cytology
- Neurons, Afferent/metabolism
- Receptors, Neurokinin-1/agonists
- Receptors, Neurokinin-1/metabolism
- Receptors, Neurokinin-2/agonists
- Receptors, Neurokinin-2/antagonists & inhibitors
- Receptors, Neurokinin-2/metabolism
- Receptors, Neurokinin-3/agonists
- Receptors, Neurokinin-3/antagonists & inhibitors
- Receptors, Neurokinin-3/metabolism
- Signal Transduction/physiology
- Substance P/genetics
- Substance P/metabolism
- Substance P/physiology
Collapse
Affiliation(s)
- P Holzer
- Department of Experimental and Clinical Pharmacology, University of Graz, Austria
| | | |
Collapse
|
15
|
Kerr KP, Mitchelson F, Coupar IM. Vagal nerve stimulation of the guinea-pig oesophagus. ACTA PHYSIOLOGICA SCANDINAVICA 1995; 154:213-20. [PMID: 7572217 DOI: 10.1111/j.1748-1716.1995.tb09903.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Vagal nerve stimulation of the isolated guinea-pig oesophagus resulted in a triphasic contractile response which was abolished by tetrodotoxin. The mechanisms for each of the three responses were investigated. The first response was abolished by the neuromuscular blocking drug, tubocurarine, and was unaffected by atropine. The second response to vagal nerve stimulation was abolished by the ganglion blocking drug, hexamethonium, and by tubocurarine at a higher concentration than that required to block the first response. The second response was also abolished by atropine and was enhanced by physostigmine. It was concluded that this response was due to preganglionic stimulation of smooth muscle. omega-Conotoxin GVIA selectively inhibited the third response. This response was resistant to the neuromuscular and ganglion blocking drugs yet was abolished by atropine and was enhanced by physostigmine. This implicates the involvement of cholinergic neurones activated independently of nicotinic ganglionic receptors. The third response was also selectively abolished by capsaicin and enhanced by thiorphan. Contractile responses resulting from exogenous substance P were abolished by atropine and tetrodotoxin and enhanced by physostigmine. These findings suggest that the third response may be mediated by the action of a substance P-like neuropeptide released from sensory nerve endings which subsequently activate cholinergic neurones.
Collapse
Affiliation(s)
- K P Kerr
- School of Pharmacology, Victorian College of Pharmacy, Monash University, Australia
| | | | | |
Collapse
|
16
|
Abstract
The distribution, colocalisation, and interconnections of nitrinergic and peptidergic neurons and nerves in the human oesophagus were examined. Cryosections of surgically resected tissues from eight subjects were studied with indirect immunofluorescence for the presence of 11 neuropeptides and neuron specific enolase. After immunohistochemistry, nitric oxide synthase was shown on the same sections with the beta nicotinamide adenine dinucleotide phosphate (NADPH) diaphorase histochemical reaction. The histochemical findings were verified immunohistochemically on other sections with an antiserum against nitric oxide synthase. Most myenteric neurons (55%) were nitrinergic. Most (96%) received terminations positive for vasoactive intestinal polypeptide (VIP), calcitonin gene related peptide (CGRP) (80%), and galanin (59%). The neuronal somata of 14% also contained VIP, while 10% had galanin. Of the NADPH-diaphorase containing fibers seen in the muscle layers, many had closely associated VIP and galanin, but only rarely CGRP and substance P. Thus, despite abundant representation of both peptidergic and nitrinergic systems in oesophageal smooth muscle, only VIP and galanin colocalised to any significant extent with the nitrinergic elements. These findings provide morphological support for the role of nitric oxide as the non-adrenergic non-cholinergic inhibitory mediator in the human oesophagus and for its possible interactive role with the peptidergic system.
Collapse
Affiliation(s)
- C Singaram
- Division of Gastroenterology, William S Middleton VA Hospital, Madison, WI
| | | | | | | | | |
Collapse
|
17
|
Kuramoto H, Kuwano R. Immunohistochemical demonstration of calbindin-containing nerve endings in the rat esophagus. Cell Tissue Res 1994; 278:57-64. [PMID: 7954704 DOI: 10.1007/bf00305778] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Immunoreactivity for calbindin was found in nerve endings with irregular laminar shapes in the rat esophagus. In the myenteric ganglia, laminar endings of a range of sizes formed a complex network and appeared to lie at the surface of the ganglion. The myenteric ganglia that contained nerve endings were most abundant in the upper portion of the esophagus, their number decreasing orally to anally. Calbindin-immunoreactive nerve cell bodies were scattered throughout the esophagus. Laminar terminals were found in the connective tissue of the lamina propria immediately beneath the epithelium and in the muscularis mucosae. Occasional nerve branches formed a network of aborizing endings that surrounded part of the submucosal arterioles. Immunoreactive nerve endings in the mucosa and submucosa were present only in the upper part of the cervical esophagus. Unilateral vagotomy caused a remarkable decrease in the number of the myenteric ganglia containing the calbindin-immunoreactive laminar endings after 15 days or survival; in some of ganglia, the laminar structures disappeared and nerve endings showing weak immunoreactivity had an indistinct appearance, so that the outline of the ganglia became obscure. In operated rats at 24 days, the number of innervated ganglia was about half that in normal rats. However, there was no change in the morphology and the occurrence of the immunoreactive laminar structures in the mucosa and submucosa after denervation. The results show that many of the laminar endings that are immunoreactive for calbindin in the myenteric ganglia are derived from the vagus nerve. Thus, the calbindin-immunoreactive nerve endings with laminar expansions that are found in the rat esophageal wall could be sensory receptors.
Collapse
Affiliation(s)
- H Kuramoto
- Department of Anatomy, Yamanashi Medical University, Japan
| | | |
Collapse
|
18
|
Clerc N, Mazzia C. Morphological relationships of choleragenoid horseradish peroxidase-labeled spinal primary afferents with myenteric ganglia and mucosal associated lymphoid tissue in the cat esophagogastric junction. J Comp Neurol 1994; 347:171-86. [PMID: 7814662 DOI: 10.1002/cne.903470203] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The goal of the present study was to gain insight into the environmental factors influencing the activity of primary spinal afferent fibers in the different layers of the esophagogastric junction of the cat and, thus, to analyze the relationships of these afferents with various cellular components. Spinal primary afferent fibers were selectively labeled by anterogradely transported choleragenoid horseradish peroxidase conjugate (B-HRP). B-HRP was injected into the thoracic dorsal root ganglion at the T8-T13 levels. 6-Hydroxydopamine-induced sympathectomy was performed prior to B-HRP injection in order to prevent otherwise unavoidable labeling of sympathetic fibers in the gut wall. Numerous labeled fibers ran between, around, and within the myenteric ganglia. Others crossed the muscle layers directly and entered the mucosa, where some ran near granulocytes and around or through solitary lymphoid follicles. Labeled fibers were observed in the squamous esophageal epithelium but not in the fundic glandular epithelium. The fibers in the myenteric area are probably connected to the muscular tension receptors that have been detected by electrophysiologic techniques. This assumption is based on the observation that only a few fibers appear to terminate in muscle layers and on the fact that the myenteric area is very narrow and subject to powerful forces. Fibers in the myenteric ganglia could be involved in local efferent functions. Fibers in the mucosa could act as nociceptors and might be involved in local immunological responses.
Collapse
Affiliation(s)
- N Clerc
- Laboratoire de Neurobiologie, CNRS, Marseille, France
| | | |
Collapse
|
19
|
Huber O, Bertrand C, Bunnett NW, Pellegrini CA, Nadel JA, Debas HT, Geppetti P. Tachykinins contract the circular muscle of the human esophageal body in vitro via NK2 receptors. Gastroenterology 1993; 105:981-7. [PMID: 7691676 DOI: 10.1016/0016-5085(93)90940-e] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND The action of tachykinins in the circular muscle of the human esophageal body is not known. The present study aimed to determine the response to tachykinins and the receptor type mediating this response. METHODS Specimen were obtained from organ donors or patients undergoing esophagectomy for cancer, and isometric tension in response to tachykinins was measured. RESULTS Substance P (SP), neurokinin A (NKA), and neurokinin B (NKB) evoked a concentration-dependent contraction with the following order of potency: NKA > NKB > SP. The neutral endopeptidase inhibitor, phosphoramidon, increased only the response to SP. [beta Ala8]NKA(4-10), a selective agonist of the NK2 receptor, produced a concentration-dependent contraction, whereas [Sar9,Met(O2)11]SP and [MePhe7]NKB, selective agonists of NK1 and NK3 receptors, respectively, had no effect. Contraction evoked by NKA was inhibited by the nonpeptide NK2 antagonist SR 48968 but not by the nonpeptide NK1 receptor antagonist CP-96,345, tetrodotoxin, or atropine. SR 48968 did not affect the response to carbachol. CONCLUSIONS Tachykinins contract the circular muscle of human esophageal body by activation of NK2 receptors without involvement of neural mechanisms. Response to SP is modulated by a phosphoramidon-sensitive enzymatic activity.
Collapse
Affiliation(s)
- O Huber
- Department of Surgery, University of California, San Francisco
| | | | | | | | | | | | | |
Collapse
|
20
|
Denac M, Bebié P, Scharrer E. Effect of various neurotransmitters and electrical field stimulation on smooth muscle preparations from the esophagus of horses. ZENTRALBLATT FUR VETERINARMEDIZIN. REIHE A 1993; 40:501-8. [PMID: 7901954 DOI: 10.1111/j.1439-0442.1993.tb00658.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effects of various neurotransmitters and electrical field stimulation on muscle strips from the distal equine esophagus were studied. Acetylcholine (ACH) caused concentration dependent (1.1-55 x 10(-6) mol/l) contractions of the longitudinal and circular muscle strips from the distal esophagus as well as from the lower esophageal sphincter (LES). Atropine (10(-5) mol/l) blocked these contractions. Noradrenaline (NA) induced concentration related (1.1-55 x 10(-6) mol/l) contractions of the muscle strips from the LES. This excitatory effect of noradrenaline was antagonized by the alpha 1-receptor antagonist prazosin. Tetrodotoxin (5 x 10(-6) mol/l) did not affect the contractile response of the muscle strips to noradrenaline (55 x 10(-6) mol/l). Noradrenaline (1.1-55 x 10(-6) mol/l) had no excitatory effect on the circular and the longitudinal muscle strips from the esophagus. Furthermore, noradrenaline induced a concentration dependent (1.1-55 x 10(-6) mol/l) relaxation of the longitudinal muscle strips from the esophagus. The relaxing effect of NA was antagonized by the beta-receptor antagonist propranolol (10(-5) mol/l). Histamine (10(-7)-10(-6) mol/l) elicited a contraction in 4 out of 18 muscle preparations from the LES. The histamine induced contractions were partly antagonized by the H1-receptor antagonist clemastine (10(-4) mol/l) and fully abolished by the H2-receptor antagonist clemastine (10(-4) mol/l). Electrical field stimulation (EFS, 5 Hz, 2 ms; 500 mA; 10 Hz, 2 ms; 500 mA) produced tetrodotoxin sensitive contractions in all three types of muscle strips. Atropine (10(-5) mol/l) fully suppressed these contractions in most preparations.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Denac
- Institute of Veterinary Physiology, University of Zürich, Switzerland
| | | | | |
Collapse
|
21
|
Yamazaki K, Moriya H, Ichihara N, Mitsushio H, Inagaki S, Kikuchi T. Substance P-immunoreactive astrocytes in gracile sensory nervous tract of spinal cord in gracile axonal dystrophy mutant mouse. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1993; 20:1-20. [PMID: 7504492 DOI: 10.1007/bf03160066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In the gracile axonal dystrophy (GAD) mutant mouse, the dying-back type axonal dystrophy of the primary afferent neurons in the gracile tract of the spinal cord was marked by severe gliosis characterized by the hypertrophy and proliferation of the fibrous astrocytes. Immunocytochemical observation for substance P (SP) revealed that SP-positive cells increased in the lesioned sites, primarily in the gracile nucleus of the medulla and subsequently in the gracile fasciculus of the spinal cord. The combined immunostaining of both SP and glial fibrillary acidic protein (GFAP) indicated that a strong correspondence exists between GFAP-positive networks and SP-positive grains, suggesting that SP was accumulated in the cytoplasm of astrocytes. The networks of SP-positive astrocytes spread all over the gracile tract and were densest at the subpial membrane. Similar lesions and SP activity were detected along the marginal zone of the lateral and ventral funiculi. Using an electron microscope, in addition to SP-positive axonal terminals in the gracile nucleus, most SP-positive cells in the gracile tract were identified as reactive astrocytes whose processes surrounded myelinated and nonmyelinated axons, and extended their foot processes to the blood vessels. By in situ hybridization histochemistry of SP mRNA, we confirmed the synthesis of SP in the astrocytes. Although the functional significance of SP within astrocytes is not established here, these results imply that the astrocytes may play a role as a gliotransmitter through which the progress of axonal degeneration in the spinal cord was modified.
Collapse
Affiliation(s)
- K Yamazaki
- Division of Animal Models for Human Disease, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Studies were performed to define the peptidergic nature of intramural nerves in the human esophagus. Cryosections of uninvolved surgically resected tissues from 14 individuals were studied by immunofluorescence for the localization of 10 neuropeptides. Myenteric neurons showed bombesin-, calcitonin gene-related peptide-, galanin-, substance P-, vasoactive intestinal polypeptide-, leucine-enkephalin-, methionine-enkephalin-, neuropeptide Y-, and somatostatin-like immunoreactivity. Submucous neurons had all the above except neuropeptide Y, methionine-enkephalin, leucine-enkephalin, and bombesin. Both groups of neurons received nerve terminations positive for calcitonin gene-related peptide, galanin, neuropeptide Y, substance P, and vasoactive intestinal polypeptide. Myenteric neurons additionally received terminations positive for neuropeptide Y, methionine-enkephalin, and somatostatin. All muscle layers had varicose fibers that reacted for calcitonin gene-related peptide, galanin, neuropeptide Y, and substance P. Longitudinal and circular muscle received few nerves reactive for leucine-enkephalin, whereas methionine-enkephalin was localized in a few nerve endings in the circular muscle. Somatostatin- and bombesin-reactive nerves occurred in longitudinal muscle. No cholecystokinin-reactive nerves were found. This study extends the results of previous studies and shows the previously undescribed presence of calcitonin gene-related peptide- and galanin-reactive nerves in the human esophagus and identifies neuropeptides that may serve as motor, sensory, and modulatory neurotransmitters of esophageal nerves.
Collapse
Affiliation(s)
- C Singaram
- Charles A. Dana Research Institute, Harvard-Thorndike Laboratory, Beth Israel Hospital, Boston, Massachusetts
| | | | | | | |
Collapse
|
23
|
Rothstein RD, Johnson E, Ouyang A. Distribution and density of substance P receptors in the feline gastrointestinal tract using autoradiography. Gastroenterology 1991; 100:1576-81. [PMID: 1708347 DOI: 10.1016/0016-5085(91)90655-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Autoradiography was used to localize and quantify substance P receptors in the feline gastrointestinal tract. The specific binding of 125I-Bolton Hunter substance P was determined in the esophagus, lower esophageal sphincter, antrum, pylorus, duodenum, jejunum, ileum, ileocecal sphincter, and colon. Competitive binding studies indicated that substance P binding sites or NK-1 receptor sites were demonstrated. The concentration of NK-1 receptors was greatest in the distal half of the gastrointestinal tract, with the highest concentrations in the proximal colon. The circular muscle layer contained the greatest amount of substance P binding. The location and density of binding sites for substance P may be important in understanding the relative importance of both the pharmacological responses to this neuropeptide and the immunohistochemical evidence of the peptide at different sites in the intestine.
Collapse
Affiliation(s)
- R D Rothstein
- Department of Medicine, University of Pennsylvania, Philadelphia
| | | | | |
Collapse
|
24
|
Zaidi M, Moonga BS, Bevis PJ, Alam AS, Legon S, Wimalawansa S, MacIntyre I, Breimer LH. Expression and function of the calcitonin gene products. VITAMINS AND HORMONES 1991; 46:87-164. [PMID: 1746162 DOI: 10.1016/s0083-6729(08)60683-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- M Zaidi
- Department of Cellular and Molecular Sciences, St. George's Hospital Medical School, London, England
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Sandler AD, Maher JW, Weinstock JV, Schmidt CD, Schlegel JF, Jew JY, Williams TH. Tachykinins in the canine gastroesophageal junction. Am J Surg 1991; 161:165-70. [PMID: 1702940 DOI: 10.1016/0002-9610(91)90379-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Lower esophageal sphincter (LES) effects produced by the mammalian tachykinins were evaluated in anesthetized dogs. The distribution and content of substance P (SP) and neurokinin A (NKA) in the region of the canine gastroesophageal junction was also studied. SP and NKA stimulated a linear dose-dependent contraction of the LES after intra-arterial administration. Neurokinin B (NKB) failed to stimulate an increase in LES pressure (LESP). SP was characterized by an immediate but short-lived contraction followed by a period of relaxation. NKA stimulated a potent LES contraction that was slow in onset but long-lasting. On an equimolar basis, both SP and NKA were approximately 100 times more potent LES stimulants than bethanechol or phenylephrine. Pretreatment with atropine (muscarinic blockade) or tetrodotoxin (neural blockade) inhibited the effect produced by SP. NKA appeared to stimulate LES contraction independent of neural or cholinergic mechanisms. Radioimmunoassay revealed a regional variation in tachykinin content in the gastroesophageal junction. Ganglia, cell bodies, nerve fascicles, and neurites stained specifically for both SP and NKA. The variable effects, potencies, and mechanisms of action observed in this study suggest the presence of specific tachykinin receptor subtypes in the gastroesophageal junction. Both SP and NKA were found to have a broad neural distribution in this region. These findings suggest that the tachykinins may play an important role in neuroregulation of LES smooth muscle.
Collapse
Affiliation(s)
- A D Sandler
- Department of Surgery, University of Iowa Hospitals and Clinics, Iowa City 52242
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
We review recent studies on the central neural control of esophageal motility, emphasizing the anatomy and chemical coding of esophageal pathways in the spinal cord and medulla. Sympathetic innervation of the proximal esophagus is derived primarily from cervical and upper thoracic paravertebral ganglia, whereas that of the lower esophageal sphincter and proximal stomach is derived from the celiac ganglion. In addition to noradrenaline, many sympathetic fibers in the esophagus contain neuropeptide Y (NPY), and both noradrenaline and NPY appear to decrease blood flow and motility. Preganglionic neurons innervating the cervical and upper thoracic ganglia are located at lower cervical and upper thoracic spinal levels. The preganglionic innervation of the celiac ganglion arises from lower thoracic spinal levels. Both acetylcholine (ACh) and enkephalin (ENK) have been localized in sympathetic preganglionic neurons, and it has been suggested that ENK acts to pre-synaptically inhibit ganglionic transmission. Spinal afferents from the esophagus are few, but have been described in lower cervical and thoracic dorsal root ganglia. A significant percentage contain calcitonin gene-related peptide (CGRP) and substance P (SP). The central distribution of spinal afferents, as well as their subsequent processing within the spinal cord, have not been addressed. Medullary afferents arise from the nodose ganglion and terminate peripherally both in myenteric ganglia, where they have been postulated to act as tension receptors, and, to a lesser extent, in more superficial layers. Centrally, these afferents appear to end in a discrete part of the nucleus of the solitary tract (NTS) termed the central subnucleus. The transmitter specificity of the majority of these afferents remains unknown. The central subnucleus, in turn, sends a dense and topographically discrete projection to esophageal motor neurons in the rostral portion of the nucleus ambiguous (NA). Both somatostatin-(SS) and ENK-related peptides have been localized in this pathway. Finally, motor neurons from the rostral NA innervate striated portions of the esophagus. In addition to ACh, these esophageal motor neurons contain CGRP, galanin (GAL), N-acetylaspartylglutamate (NAAG), and brain natriuretic peptide (BNP). The physiological effect of these peptides on esophageal motility remains unclear. Medullary control of smooth muscle portions of the esophagus have not been thoroughly investigated.
Collapse
Affiliation(s)
- E T Cunningham
- Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205
| | | |
Collapse
|
27
|
Zaidi M, Moonga BS, Bevis PJ, Bascal ZA, Breimer LH. The calcitonin gene peptides: biology and clinical relevance. Crit Rev Clin Lab Sci 1990; 28:109-74. [PMID: 1963534 DOI: 10.3109/10408369009105900] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The calcitonin/CGRP multigene complex encodes a family of peptides: calcitonin, its C-terminal flanking peptide, katacalcin, and a third novel peptide, calcitonin gene-related peptide (CGRP). The 32-amino acid peptide calcitonin inhibits the osteoclast, thereby conserving skeletal mass during periods of potential calcium lack, such as pregnancy, growth, and lactation. This hormonal role is emphasized by observations that lower circulating calcitonin levels are associated with bone loss and that calcitonin replacement prevents further bone loss. Structurally, CGRP resembles calcitonin and has been implicated in neuromodulation and in the physiological regulation of blood flow. Here we review the molecular genetics, structure, and function of the calcitonin-gene peptides as analyzed in the laboratory and focus on more recent clinical studies relating to disorders and therapeutics.
Collapse
Affiliation(s)
- M Zaidi
- Department of Cellular and Molecular Sciences, St. George's Hospital Medical School, University of London, England
| | | | | | | | | |
Collapse
|
28
|
Maggio JE, Mantyh PW. Gut Tachykinins. Compr Physiol 1989. [DOI: 10.1002/cphy.cp060227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Parkman HP, Reynolds JC, Elfman KS, Ogorek CP. Calcitonin gene-related peptide: a sensory and motor neurotransmitter in the feline lower esophageal sphincter. REGULATORY PEPTIDES 1989; 25:131-46. [PMID: 2470120 DOI: 10.1016/0167-0115(89)90255-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
UNLABELLED The effect of calcitonin gene-related peptide (CGRP) on the feline lower esophageal sphincter (LES) was determined and correlated with its anatomic distribution as determined by immunohistochemistry. Intraluminal pressures of the esophagus and LES were recorded in anesthetized cats. In separate cats, gastroesophageal junctions were removed after locating the LES manometrically and stained for CGRP-like immunoreactivity (LI) and substance P-LI (SP-LI) by indirect immunohistochemistry. CGRP-LI in the LES was most prominent in large nerve fascicles between the circular and longitudinal muscle layers and only rarely seen in nerve fibers within the circular muscle. The myenteric plexus contained numerous CGRP-LI nerve fibers but cell bodies were not seen. Many CGRP-LI nerve fibers in the myenteric plexus and occasional varicose nerves in the circular muscle demonstrated colocalization with SP-LI. Colocalization of CGRP-LI with SP-LI was also seen in the perivascular nerves of the submucosal and intramural blood vessels and in varicose fibers in the lamina propria of the gastric fundic mucosa. In the esophagus, CGRP-LI nerves extended through the muscularis mucosa and penetrated the squamous epithelium to the lumen. CGRP, given intra-arterially caused a dose-dependent fall in basal LES pressure, with a threshold dose of 10(-8) g/kg (2.63 pmol/kg). At the maximal effective dose, 5 x 10(-6) g/kg (1.31 x 10(3) pmol/kg), CGRP produced 61.0 +/- 6.0% decrease in basal LES pressure. At this dose, mean systemic blood pressure fell by 40.9 +/- 7.8%. The LES relaxation induced by a submaximal dose of CGRP (10(-6) g/kg, 262.7 pmol/kg), 50.3 +/- 3.2% relaxation was partially inhibited by tetrodotoxin (26.9 +/- 10.8% relaxation, P less than 0.025). The inhibitory effect of CGRP was not affected by cervical vagotomy, hexamethonium, atropine, propranolol, or naloxone. The LES contractile response to the D90 of SP (5 x 10(-8) g/kg, 37.1 pmol/kg) was not altered by CGRP 10(-8) or 10(-6) g/kg and the CGRP relaxation effect was not altered by the threshold dose of substance P (5 X 10(-9) g/kg, 3.71 pmol/kg). CONCLUSIONS (1) CGRP-LI is present at the feline LES and is primarily seen in large nerve fascicles which pass from the intermuscular plane and through the circular muscle layer to the submucosa and in mucosal nerves. (2) CGRP colocalizes with SP-LI in some varicose nerve fibers of the circular muscle of the esophagus, LES and fundus, in perivascular nerves of the submucosal and intramucosal blood vessels, and in nerves of the lamina propria of the gastric fundus. (3) The luminal penetration of CGRP-LI nerves in the squamous mucosa of the esophagus suggests a sensory func
Collapse
Affiliation(s)
- H P Parkman
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104-4283
| | | | | | | |
Collapse
|
30
|
Christensen J, Williams TH, Jew J, O'Dorisio TM. Distribution of immunoreactive substance P in opossum esophagus. Dig Dis Sci 1989; 34:513-20. [PMID: 2467784 DOI: 10.1007/bf01536326] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We localized immunoreactive substance P and measured its content throughout the opossum esophagus. Substance P-like immunoreactive nerve fibers were more abundant in muscularis mucosae than in the longitudinal smooth muscle layer and more abundant in the latter than in the circular smooth muscle layer. The distribution of substance P-like immunoreactive nerve fibers in the circular muscle layer of the esophagogastric junction was comparable to that of the esophageal body. Immunoreactive fibers were also found on and in arteries, submucosal glands, and epithelium, but none were seen in striated muscle. Both the myenteric and submucous plexuses contained substance P-like immunoreactive nerve cell bodies and processes. In the muscularis propria, the content of substance P-like immunoreactive peptide (pg/mg protein, means +/- 1 SE) in the smooth muscle region of the esophageal body (5.9 +/- 0.6) exceeded that in the striated muscle region (2.5 +/- 0.2) and at the esophagogastric junction (1.8 +/- 0.5), but the latter two values were similar (P less than 0.05). Mucosal content of substance P in the region of the esophagogastric junction (1.2 +/- 0.1) differed from that of the smooth muscle region of the esophageal body (9.2 +/- 2.6) but not (P greater than 0.05) from that of the striated-muscle region (5.9 +/- 1.0). The broad distribution and diversity of immunoreactive structures suggest that substance P may have both sensory and motor functions in the esophagus.
Collapse
Affiliation(s)
- J Christensen
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City 52242
| | | | | | | |
Collapse
|
31
|
Denac M, Scharrer E. Effect of bombesin and substance P on the smooth muscle of the chicken crop. Vet Res Commun 1988; 12:447-52. [PMID: 2464867 DOI: 10.1007/bf01075473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The effect of bombesin and of substance P was investigated in smooth muscle strips of the chicken crop. Bombesin in picomolar concentration (0.1 x 10(-12) - 5 X 10(-12) mol/l) caused a concentration-related contraction of the muscle strips. Substance P in nanomolar concentration (0.1 x 10(-9) - 10 x 10(-9) mol/l) was effective in the same manner. Tetrodotoxin (2 x 10(-7) mol/l) did not influence the contraction responses to either bombesin or substance P. The excitatory effect of bombesin and of substance P did not follow activation of cholinergic receptors since their effect on the crop smooth muscle was not antagonized by atropine (10(-4) mol/l) or by hexamethonium (10(-4) mol/l). Strips stored for 24 hours in the Tyrode's solution at 4 degrees C without a supply of oxygen maintained their full sensitivity to bombesin and to substance P. These results are consistent with a direct action of bombesin and substance P on the crop smooth muscle.
Collapse
Affiliation(s)
- M Denac
- Institute of Veterinary Physiology, University of Zürich, Switzerland
| | | |
Collapse
|
32
|
Aggestrup S, Uddman R, Jensen SL, Håkanson R, Sundler F, Schaffalitzky de Muckadell O, Emson P. Regulatory peptides in lower esophageal sphincter of pig and man. Dig Dis Sci 1986; 31:1370-5. [PMID: 2433113 DOI: 10.1007/bf01299816] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Smooth muscle specimens from the lower esophageal sphincter (LES) region of pig and man were analyzed for vasoactive intestinal peptides (VIP), substance P (SP), enkephalin, neuropeptide Y (NPY), gastrin/cholecystokinin (CCK), neurotensin, and somatostatin using immunocytochemistry and radioimmunoassay. VIP-, SP-, enkephalin-, and NPY-immunoreactive nerve fibers were observed in the LES of both species, whereas nerve fibers containing gastrin/CCK, neurotensin, and somatostatin could not be demonstrated. The peptide-containing nerve fibers occurred in the intramural ganglia and in the smooth muscle layers. There was a rich supply of VIP- and NPY-immunoreactive fibers, whereas the supply of SP- and enkephalin-immunoreactive nerve fibers were moderate in number in both species examined. The concentration of VIP, SP, enkephalin, and NPY was comparable in the two species. The present study shows that the pattern of peptidergic innervation of the LES is similar in pig and man. It is proposed that neuronal VIP, SP, enkephalin, and NPY may serve to modulate the motor activity of the LES and that the pig is a suitable experimental animal for the study of regulatory peptides and LES functions.
Collapse
|
33
|
Barthó L, Holzer P. Search for a physiological role of substance P in gastrointestinal motility. Neuroscience 1985; 16:1-32. [PMID: 2423912 DOI: 10.1016/0306-4522(85)90043-0] [Citation(s) in RCA: 254] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
34
|
Aggestrup S. Effect of regulatory polypeptides on the substance P stimulated lower esophageal sphincter pressure in pigs. REGULATORY PEPTIDES 1985; 12:1-7. [PMID: 2416011 DOI: 10.1016/0167-0115(85)90181-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The effect of graded doses of vasoactive intestinal polypeptide (VIP), enkephalin, neuropeptide Y (NPY), gastrin-17, pentagastrin, cholecystokinin (CCK)-4, CCK-8, neurotensin, somatostatin, and thyrotropin-releasing hormone (TRH) on the substance P (SP)-stimulated lower esophageal sphincter pressure (LESP) in anaesthetized pigs was studied by direct infusion of the peptides into the arterial supply of the lower esophageal sphincter (LES). Infusion of SP in a dose of 20 pmol/kg per min for 3 min significantly increased the LESP (P less than 0.01). Simultaneous VIP infusion at 5--40 pmol/kg per min showed a dose-dependent inhibition of the effect of SP on the LESP. None of the other peptides had any effect on the LESP during simultaneous infusion of SP. Pharmacological blockade by atropine (250 mu/kg) or guanethidine (1 mg/kg) had no effect on the SP-stimulated LESP. In conclusion, the SP-induced stimulation of the LESP is abolished by VIP, and both peptides seem to play a role in the complex regulation of the LESP.
Collapse
|
35
|
Aggestrup S, Uddman R, Jensen SL, Sundler F, Schaffalitzky de Muckadell O, Holst JJ, Håkanson R, Ekman R, Sørensen HR. Regulatory peptides in the lower esophageal sphincter of man. REGULATORY PEPTIDES 1985; 10:167-78. [PMID: 2581286 DOI: 10.1016/0167-0115(85)90011-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Smooth muscle specimens were taken from the lower esophageal sphincter of patients suffering from achalasia or hiatus hernia with gastro-esophageal reflux. The specimens were analysed for neurohormonal peptides using immunochemistry and immunocytochemistry. Control specimens were obtained from patients subjected to esophageal resection because of esophageal cancer. The concentration of vasoactive intestinal polypeptide (VIP) was higher and the VIP nerve supply greater in patients with hiatus hernia than in control patients. The VIP nerve supply and the content of this peptide was lower in patients with achalasia than in controls. The same tendency was observed for substance P and enkephalin although the changes in their concentrations were not statistically significant. Enkephalin fibers were few, both in specimens from control patients and from patients with hiatus hernia; they could not be detected in specimens from patients with achalasia. Never fibers containing somatostatin or gastrin/cholecystokinin could not be detected in any of the groups and somatostatin and gastrin/cholecystokinin could not be measured in extracts of the lower esophageal sphincter. We propose that changes in the concentration of neuropeptides may at least contribute to manifestations of achalasia and of decreased lower esophageal sphincter pressure and gastro-esophageal reflux.
Collapse
|
36
|
Rodrigo J, Polak JM, Fernandez L, Ghatei MA, Mulderry P, Bloom SR. Calcitonin gene-related peptide immunoreactive sensory and motor nerves of the rat, cat, and monkey esophagus. Gastroenterology 1985; 88:444-51. [PMID: 3871192 DOI: 10.1016/0016-5085(85)90505-0] [Citation(s) in RCA: 149] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In the mammalian esophagus calcitonin gene-related peptide (CGRP)-immunoreactive nerves form abundant subepithelial plexuses and penetrate the mucosa. The levels of extractable CGRP in separated epithelial layers are 15.8 +/- 2.4 pmol/g wet wt of tissue (n = 8, mean +/- SEM). Treatment of neonatal rats with capsaicin and ablation of the central portion of the feline nodose ganglion led to a marked reduction in the numbers of CGRP-immunoreactive nerve fibers. The loss of CGRP nerves demonstrated by immunocytochemistry was accompanied by a parallel reduction in the tissue content of CGRP, as measured by radioimmunoassay (1.5 +/- 0.5 pmol/g in capsaicin-treated animals compared with 9.4 +/- 1.9 pmol/g in vehicle-treated controls; p less than 0.0025). These findings indicate the sensory nature of the CGRP-immunoreactive nerves. Substance P-immunoreactive nerve fibers innervated in particular the blood vessels of the lamina propria; very few penetrated the esophageal epithelium and these were only partially depleted after removal of the central portion of the nodose ganglion. The esophageal muscle contained nerves immunoreactive for substance P and, in particular, for CGRP which was also found in the motor end plates of the striated muscle. No changes in the CGRP-containing motor end plates were observed either after treatment of neonatal rats with capsaicin or ablation of cell bodies from the central portion of the nodose ganglion. These nerve fibers may originate from rostral areas of the nucleus ambiguus, where CGRP-immunoreactive motor neurons have previously been described. Thus, our findings reveal dual components, motor and sensory, of the CGRP-containing innervation of the esophagus.
Collapse
|
37
|
Kamikawa Y, Shimo Y. Contractile responses to substance P and related peptides of the isolated muscularis mucosae of the guinea-pig oesophagus. Br J Pharmacol 1984; 81:143-9. [PMID: 6200168 PMCID: PMC1986962 DOI: 10.1111/j.1476-5381.1984.tb10754.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The site of action of substance P and related tachykinins with respect to isotonic contractions was examined on the isolated muscularis mucosae attached to the submucous plexus of the guinea-pig oesophagus. Substance P (greater than 30 nM) produced a concentration-dependent contraction of the muscularis mucosae (EC50 1.9 +/- 0.5 microM, n = 10). The contractions were rapid in onset (2 min or less), sustained, reversible by washing and the preparation did not show tachyphylaxis. Eledoisin and physalaemin produced similar sustained contraction of the muscularis mucosae. The order of sensitivity was eledoisin greater than substance P greater than physalaemin. Contractions induced by 1 microM of each tachykinin were not significantly modified by incubation of the tissue with substance P or eledoisin (10 microM for 30 min). The contractile responses to tachykinins were unaffected by tetrodotoxin (0.3 microM), atropine (0.3 microM), phentolamine (1 microM), chlorpheniramine (1 microM), methysergide (1 microM), baclofen (100 microM) and verapamil (10 microM), but were abolished by the incubation of the tissue with calcium-free, EGTA (0.1 mM)-containing Tyrode solution. A substance P antagonist, [D-Pro2, D-Trp7,9]-substance P (greater than 0.1 microM), produced a transient contraction of the muscularis mucosae and the smooth muscle regained its original tone within 6 to 10 min. Contractions to the tachykinins were now inhibited by the antagonist (0.1-10 microM) in a concentration-dependent manner, the order of sensitivity being physalaemin greater than substance P = eledoisin. The cholinergically mediated electrically (0.1 Hz, 0.5 ms, supramaximal voltage)-induced twitch contractions of the muscularis mucosae were not significantly modified by substance P (0.01-0.3 microM). 7 The present results indicate that substance P and related tachykinins contract the isolated muscularis mucosae of the guinea-pig oesophagus by a direct action on the smooth muscle, probably by stimulating SP-E receptors.
Collapse
|