1
|
Abstract
Our intent in this review was to consider the relationship between the biophysical properties of motoneurons and the mechanisms by which they transduce the synaptic inputs they receive into changes in their firing rates. Our emphasis has been on experimental results obtained over the past twenty years, which have shown that motoneurons are just as complex and interesting as other central neurons. This work has shown that motoneurons are endowed with a rich complement of active dendritic conductances, and flexible control of both somatic and dendritic channels by endogenous neuromodulators. Although this new information requires some revision of the simple view of motoneuron input-output properties that was prevalent in the early 1980's (see sections 2.3 and 2.10), the basic aspects of synaptic transduction by motoneurons can still be captured by a relatively simple input-output model (see section 2.3, equations 1-3). It remains valid to describe motoneuron recruitment as a product of the total synaptic current delivered to the soma, the effective input resistance of the motoneuron and the somatic voltage threshold for spike initiation (equations 1 and 2). However, because of the presence of active channels activated in the subthreshold range, both the delivery of synaptic current and the effective input resistance depend upon membrane potential. In addition, activation of metabotropic receptors by achetylcholine, glutamate, noradrenaline, serotonin, substance P and thyrotropin releasing factor (TRH) can alter the properties of various voltage- and calcium-sensitive channels and thereby affect synaptic current delivery and input resistance. Once motoneurons are activated, their steady-state rate of repetitive discharge is linearly related to the amount of injected or synaptic current reaching the soma (equation 3). However, the slope of this relation, the minimum discharge rate and the threshold current for repetitive discharge are all subject to neuromodulatory control. There are still a number of unresolved issues concerning the control of motoneuron discharge by synaptic inputs. Under dynamic conditions, when synaptic input is rapidly changing, time- and activity-dependent changes in the state of ionic channels will alter both synaptic current delivery to the spike-generating conductances and the relation between synaptic current and discharge rate. There is at present no general quantitative expression for motoneuron input-output properties under dynamic conditions. Even under steady-state conditions, the biophysical mechanisms underlying the transfer of synaptic current from the dendrites to the soma are not well understood, due to the paucity of direct recordings from motoneuron dendrites. It seems likely that resolving these important issues will keep motoneuron afficiandoes well occupied during the next twenty years.
Collapse
Affiliation(s)
- R K Powers
- Department of Physiology & Biophysics, University of Washington School of Medicine, Box 357290, Seattle, Washington 98195-7290, USA
| | | |
Collapse
|
2
|
Abstract
Movement, the fundamental component of behavior and the principal extrinsic action of the brain, is produced when skeletal muscles contract and relax in response to patterns of action potentials generated by motoneurons. The processes that determine the firing behavior of motoneurons are therefore important in understanding the transformation of neural activity to motor behavior. Here, we review recent studies on the control of motoneuronal excitability, focusing on synaptic and cellular properties. We first present a background description of motoneurons: their development, anatomical organization, and membrane properties, both passive and active. We then describe the general anatomical organization of synaptic input to motoneurons, followed by a description of the major transmitter systems that affect motoneuronal excitability, including ligands, receptor distribution, pre- and postsynaptic actions, signal transduction, and functional role. Glutamate is the main excitatory, and GABA and glycine are the main inhibitory transmitters acting through ionotropic receptors. These amino acids signal the principal motor commands from peripheral, spinal, and supraspinal structures. Amines, such as serotonin and norepinephrine, and neuropeptides, as well as the glutamate and GABA acting at metabotropic receptors, modulate motoneuronal excitability through pre- and postsynaptic actions. Acting principally via second messenger systems, their actions converge on common effectors, e.g., leak K(+) current, cationic inward current, hyperpolarization-activated inward current, Ca(2+) channels, or presynaptic release processes. Together, these numerous inputs mediate and modify incoming motor commands, ultimately generating the coordinated firing patterns that underlie muscle contractions during motor behavior.
Collapse
Affiliation(s)
- J C Rekling
- Department of Neurobiology, University of California, Los Angeles, California 90095-1763, USA
| | | | | | | | | |
Collapse
|
3
|
Alvarez FJ, Taylor-Blake B, Fyffe RE, De Blas AL, Light AR. Distribution of immunoreactivity for the beta 2 and beta 3 subunits of the GABAA receptor in the mammalian spinal cord. J Comp Neurol 1996; 365:392-412. [PMID: 8822178 DOI: 10.1002/(sici)1096-9861(19960212)365:3<392::aid-cne5>3.0.co;2-#] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The localization of GABAA receptors in cat and rat spinal cord was analyzed using two monoclonal antibodies specific for an epitope shared by the beta 2 and beta 3 subunits of the receptor. beta 2/beta 3-subunit immunoreactivity was the most intense in inner lamina II, lamina III, and lamina X, and it was the least intense in lamina IX. In laminae I-III, generally, the staining had a rather diffuse appearance, but the surfaces of small cell bodies in these laminae were outlined clearly by discrete labeling, as were many cell bodies and dendrites in deeper laminae. Rhizotomy experiments and ultrastructural observations indicated that beta 2/beta 3-subunit immunoreactivity in the dorsal horn was largely localized in intrinsic neuropil elements rather than in the terminals of primary afferent fibers, even though labeling overlapped with the terminal fields of different types of primary afferents and was also detected on the membranes of dorsal root ganglion neurons. With few exceptions (most notably, a highly immunoreactive group of dorsolaterally located cells in the cat lumbar ventral horn), motoneurons expressed low levels of beta 2/beta 3-subunit immunoreactivity. Labeling of neuronal membranes was fairly continuous, but focal accumulations of beta 2/beta 3-subunit immunoreactivity were also detected using immunofluorescence. Focal "hot spots" correlated ultrastructurally with the presence of synaptic junctions. Dual-color immunofluorescence revealed that focal accumulations of beta 2/beta 3-subunit immunoreactivity were frequently apposed by glutamic acid decarboxylase (GAD)-immunoreactive terminals. However, the density of continuous-membrane beta 2/beta 3 immunolabeling and GAD terminal density were not correlated in many individual neurons. The results suggest the existence of "classical" (synaptic) and "nonclassical" (paracrine) actions mediated via spinal cord GABAA receptors. The study also revealed the relative paucity of beta 2/beta 3-subunit immunoreactivity postsynaptic to certain GABAergic terminals, particularly those presynaptic to motoneurons or primary afferent terminals.
Collapse
Affiliation(s)
- F J Alvarez
- Department of Anatomy, Wright State University, Dayton, Ohio 45435, USA
| | | | | | | | | |
Collapse
|
4
|
Chen XY, Wolpaw JR. Triceps surae motoneuron morphology in the rat: a quantitative light microscopic study. J Comp Neurol 1994; 343:143-57. [PMID: 8027432 DOI: 10.1002/cne.903430111] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The rat is now the model of choice for many studies of motor function. However, little quantitative information on the structure of rat motoneurons is available. In conjunction with efforts to define the physiologic and anatomic substrates of operantly conditioned plasticity in the spinal cord, 13 physiologically identified triceps surae motoneurons in the rat lumbar spinal cord were labeled intracellularly with horseradish peroxidase and completely reconstructed and measured with a computer-based neuron-tracing system. Somata were all located in the ventral horn of lumbar segments 4-5, had an average diameter of 35 microns, and had 6-12 dendrites. Dendrites ramified throughout the ventral horn and also penetrated the white matter. Their spread was greater in the rostrocaudal and dorsoventral directions (1.53 +/- 0.24 mm and 1.35 +/- 0.23 mm, respectively) than in the mediolateral direction (0.85 +/- 0.14 mm). Regardless of soma location, dendritic fields usually extended throughout the ipsilateral coronal cross-section of the ventral horn. As a result, the ventral or lateral extent of the field was correlated strongly with the soma's distance from the ventral or lateral border, respectively, of the ventral horn. Furthermore, although soma locations in the coronal plane varied widely, the centers of the dendritic fields tended to cluster near the center of the ventral horn. Dendrites constituted 96.2-98.4% (mean +/- SD = 97.3 +/- 0.7%) of the total neuronal surface area. Each of the 104 dendrites studied had an average of 13 branch points and 27 segments. First-order segment diameters ranged from 1.4 to 11.7 microns (mean +/- SD = 5.3 +/- 2.1 microns). Total dendritic length, surface area, volume, number of dendritic segments, and maximum segment order were correlated strongly with diameter of the first-order segment. Proceeding distally between branch points, the mean decrease in dendritic diameter (i.e., tapering) +/- the standard deviation was 22 +/- 8% of the proximal diameter. The average ratio +/- the standard deviation of the sum of the average diameters of each daughter segment raised to the 1.5 power to the average diameter of the parent segment raised to the 1.5 power (i.e., Rall's ratio; Rall, 1959) was 0.87 +/- 0.08. In comparison with cat alpha-motoneurons, rat motoneurons had smaller soma diameters, fewer dendrites, smaller total surface areas, and shorter total dendritic lengths. However, the number of terminations per dendrite was similar in the two species, so that rat motoneurons had more terminations per unit dendritic length.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- X Y Chen
- Wadsworth Center for Laboratories and Research, New York State Department of Health, Albany 12201
| | | |
Collapse
|
5
|
Brännström T. Quantitative synaptology of functionally different types of cat medial gastrocnemius alpha-motoneurons. J Comp Neurol 1993; 330:439-54. [PMID: 8468413 DOI: 10.1002/cne.903300311] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The aim of this ultrastructural investigation was to study quantitatively the synaptology of the cell bodies and dendrites of cat medial gastrocnemius (MG) alpha-motoneurons of functionally different types. In electrophysiologically classified and intracellularly HRP-labelled MG alpha-motoneurons of the FF (fast twitch, fatigable), FR (fast twitch, fatigue resistant) and S (slow twitch, very fatigue resistant) types, the synaptic covering of the soma as well as that of dendritic segments located within 100 microns and at 300, 700, and 1,000 microns distance, respectively from the soma, was analyzed. The synaptic boutons were classified into the L-(apposition length > 4 microns) and S-types (< 4 microns) with spherical synaptic vesicles, and the F-type with flat or pleomorphic synaptic vesicles. The length of apposition towards the motoneuron membrane was measured for each bouton profile. Approximately 1,000 boutons contacted the soma and a similar number of boutons contacted the proximal dendrites within 50 microns from the soma. The number of dendritic boutons was larger at the 300 microns distance than at the 100 and 700 microns distances. The three types of motoneurons showed similar values for percentage synaptic covering and synaptic packing density in the proximal dendrites, while in the most distal dendritic regions the S motoneurons had more than 50% higher values for percentage covering, packing density and total number of boutons. The S motoneurons also exhibited a larger preponderance of F-type boutons on the soma. The ratio between the F- and S-types of boutons decreased somatofugally along the dendrites in the type FF and FR motoneurons, while in the S motoneurons it remained fairly constant.
Collapse
Affiliation(s)
- T Brännström
- Department of Anatomy, University of Umeå, Sweden
| |
Collapse
|
6
|
Brännström T, Havton L, Kellerth JO. Restorative effects of reinnervation on the size and dendritic arborization patterns of axotomized cat spinal alpha-motoneurons. J Comp Neurol 1992; 318:452-61. [PMID: 1578012 DOI: 10.1002/cne.903180409] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In a preceding paper [Brännström, et al. (1992) J. Comp. Neurol. 318:439-451] a marked reduction in dendritic size was observed in cat spinal motoneurons following permanent axotomy. The aim of the present study was to analyse the possible restorative effects of peripheral reinnervation on the size and dendritic branching patterns of cat spinal motoneurons which had been deprived of neuromuscular contact for an extended period of time. In adult cats the medial gastrocnemius (MG) nerve was transected and ligated. After 6 weeks the nerve was allowed to reinnervate its muscle through a nerve graft. With approximately 6 weeks needed for muscle reinnervation [Foehring, et al. (1986) J. Neurophysiol. 55:947-965], the MG motoneurons were devoid of neuromuscular contact for altogether about 12 weeks. Two years later reinnervated MG alpha-motoneurons were intracellularly labelled with horseradish peroxidase to allow quantitative analyses of the cell bodies and dendritic trees. Comparisons were made with previous data from normal and permanently axotomized MG motoneurons. The reinnervated motoneurons exhibited positive correlations between dendritic stem diameter, on one hand, and combined length, volume, membrane area, and number of end branches of the whole dendrite, on the other. By using the regression equations for these correlations, the total dendritic size of whole reinnervated motoneurons could be estimated. Such calculations showed that in comparison with the reduction in dendritic size found at 12 weeks after permanent axotomy (Brännström et al., see above), peripheral reinnervation caused the dendritic volume and membrane area to return to normal values. However, the values for combined dendritic length and number of dendritic end branches were still reduced by more than 25% as compared to the normal situation. The results indicate that following reinnervation of the target muscle, the axotomized motoneurons did not recover their original number of dendritic branches. The normalization of dendritic membrane area and volume was instead accomplished by two other mechanisms, namely an increase in dendritic diameters and an increased number of dendrites per neuron.
Collapse
Affiliation(s)
- T Brännström
- Department of Anatomy, University of Umeå, Sweden
| | | | | |
Collapse
|
7
|
Brännström T, Havton L, Kellerth JO. Changes in size and dendritic arborization patterns of adult cat spinal alpha-motoneurons following permanent axotomy. J Comp Neurol 1992; 318:439-51. [PMID: 1578011 DOI: 10.1002/cne.903180408] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This study was performed to analyse quantitatively the changes in dimensions and dendritic branching patterns of adult cat spinal alpha-motoneurons following permanent axotomy, i.e., in a situation in which the transected motoraxons are prevented from reinnervating their peripheral target muscle. After transection and ligation of the medial gastrocnemius nerve of adult cats, homonymous alpha-motoneurons were intracellularly labelled with horseradish peroxidase and subjected to quantitative light microscopic analyses. The cell bodies and proximal dendrites were studied at 3, 6, and 12 weeks after the axotomy. An initial increase in cell body size at 3 weeks was followed by a gradual return towards normal values. The mean diameter of the stem dendrites was decreased at all time periods studied, and the combined diameter of the stem dendrites was reduced at 12 weeks after the axotomy. Entire dendritic trees were reconstructed at 12 weeks postoperatively, and the regression equations describing the correlations between dendritic stem diameter, on one hand, and the size of the entire dendrite, on the other, were used to calculate the total dendritic length, volume, and membrane area of whole axotomized motoneurons. The dendritic branching patterns were also analysed. In comparison with normal medial gastrocnemius alpha-motoneurons, the dendritic membrane area and volume of the axotomized cells had decreased by 36% and 29%, respectively, at 12 weeks after the axotomy. This reduction in dendritic size was due to a loss of preterminal and terminal dendritic segments. Abnormal dendritic elongations were observed in 2 of 16 completely reconstructed dendrites.
Collapse
Affiliation(s)
- T Brännström
- Department of Anatomy, University of Umeå, Sweden
| | | | | |
Collapse
|
8
|
Rose PK, Neuber-Hess M. Morphology and frequency of axon terminals on the somata, proximal dendrites, and distal dendrites of dorsal neck motoneurons in the cat. J Comp Neurol 1991; 307:259-80. [PMID: 1856325 DOI: 10.1002/cne.903070208] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The purpose of the present study was to compare the frequency of different classes of axon terminals on selected regions of the somatodendritic surface of dorsal neck motoneurons. Single motoneurons supplying neck extensor muscles were antidromically identified and intracellularly stained with horseradish peroxidase. By using light microscopic reconstructions as a guide, axon terminals on the somata, proximal dendrites (within 250 microns of the soma), and distal dendrites (more than 540 microns from the soma) were examined at the electron microscopic level. Axon terminals were divided into several classes based on the shape, density, and distribution of their synaptic vesicles. The proportion of axon terminals belonging to each axon terminal class was similar on the somata and proximal dendrites. However, there were major shifts in the relative frequency of most classes of axon terminals on the distal dendrites. The most common classes of axon terminals on the somata and proximal dendrites contained clumps of either spherical or pleomorphic vesicles. These types of axon terminals accounted for more than 60% of the axon terminals on these regions. In contrast, only 11% of the axon terminals found on distal dendrites belonged to these types of axon terminals. The most commonly encountered axon terminal on distal dendrites contained a dense collection of uniformly distributed spherical vesicles. These types of axon terminals accounted for 40% of all terminals on the distal dendrites, but only 5-7% of the axon terminals on the somata and proximal dendrites. Total synaptic density on each of the three regions examined was similar. However, the percentage of membrane in contract with axon terminals was approximately four times smaller on distal dendrites than somata or proximal dendrites. Axon terminals (regardless of type) were usually larger on somata and proximal dendrites than distal dendrites. These results indicate that there are major differences in the types and arrangement of axon terminals on the proximal and distal regions of dorsal neck motoneurons and suggest that afferents from different sources may preferentially contact proximal or distal regions of the dendritic trees of these cells.
Collapse
Affiliation(s)
- P K Rose
- Department of Physiology, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
9
|
Ulfhake B, Cullheim S. Postnatal development of cat hind limb motoneurons. III: Changes in size of motoneurons supplying the triceps surae muscle. J Comp Neurol 1988; 278:103-20. [PMID: 3209749 DOI: 10.1002/cne.902780107] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The postnatal changes of neuronal dimensions were studied in cat triceps surae motoneurons intracellularly labeled with horseradish peroxidase. Systematic correlations were observed in the analysis of single dendrites at each studied stage, from birth to 44-46 days post natum (d.p.n.) age, between size parameters intrinsic to the dendrites as the diameter of a 1st-order dendrite, the combined dendritic length, the dendritic membrane area, and the degree of branching. Some variability among samples was evident in each studied age group. The correlations were, however, sufficiently close to permit indirect estimations of both combined dendritic length and dendritic membrane area for larger samples of neurons from data on dendritic stem caliber. The total postnatal increase in dendritic membrane area was, on the average, 400%, i.e., from close to 100 X 10(3) microns2 to about 500 X 10(3) microns2. The corresponding increase in soma area amounted to 100%. Analysis revealed that there was a time lag between the increase in somatic and dendritic size. Thus, adult somatic dimensions were attained at age 44-46 d.p.n.; however, at this stage, the mean total dendritic membrane area was only about half of the adult value. The postnatal increase in size appeared to vary among neurons, yielding a wider neuronal size spectrum in the adult cat than that observed in kittens. The measured increase in size corresponded to a calculated average addition of dendritic membrane area of 3700 microns2/day from birth to 22-24 d.p.n. and from that stage to 44-46 d.p.n. of 2700 microns2 per day. Likewise, the increase in combined dendritic length could initially be as large as 1 mm/day down to 0.4 mm/day between 22-24 and 44-46 d.p.n., with a mean growth during the first 44-46 d.p.n. of 0.5 to 0.6 mm/day. The ratios of daughters to parent branch diameters (sigmadd1.5: dp1.5) and the dendritic trunk parameter (sigma d1.5) recorded along the proximodistal dendritic path distance revealed transient changes that might impact on the electrotonic properties of the dendrites during postnatal development. Computations from the measured changes in dendritic branch lengths and calibers indicated that if membrane and internal resistivity remain unaltered during postnatal development, the dendritic domain is electrotonically more compact in the newborn kitten than in the adult cat.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- B Ulfhake
- Department of Anatomy, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|