1
|
Zhang Y, Wernly B, Cao X, Mustafa SJ, Tang Y, Zhou Z. Adenosine and adenosine receptor-mediated action in coronary microcirculation. Basic Res Cardiol 2021; 116:22. [PMID: 33755785 PMCID: PMC7987637 DOI: 10.1007/s00395-021-00859-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/08/2021] [Indexed: 12/20/2022]
Abstract
Adenosine is an ubiquitous extracellular signaling molecule and plays a fundamental role in the regulation of coronary microcirculation through activation of adenosine receptors (ARs). Adenosine is regulated by various enzymes and nucleoside transporters for its balance between intra- and extracellular compartments. Adenosine-mediated coronary microvascular tone and reactive hyperemia are through receptors mainly involving A2AR activation on both endothelial and smooth muscle cells, but also involving interaction among other ARs. Activation of ARs further stimulates downstream targets of H2O2, KATP, KV and KCa2+ channels leading to coronary vasodilation. An altered adenosine-ARs signaling in coronary microcirculation has been observed in several cardiovascular diseases including hypertension, diabetes, atherosclerosis and ischemic heart disease. Adenosine as a metabolite and its receptors have been studied for its both therapeutic and diagnostic abilities. The present review summarizes important aspects of adenosine metabolism and AR-mediated actions in the coronary microcirculation.
Collapse
Affiliation(s)
- Ying Zhang
- The International Collaborative Centre On Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bernhard Wernly
- Department of Anaesthesiology, Perioperative Medicine and Intensive Care Medicine, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Xin Cao
- The International Collaborative Centre On Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - S Jamal Mustafa
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, USA
| | - Yong Tang
- The International Collaborative Centre On Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 17176, Stockholm, Sweden.
| |
Collapse
|
2
|
Agunloye OM, Oboh G, Bello GT, Oyagbemi AA. Caffeic and chlorogenic acids modulate altered activity of key enzymes linked to hypertension in cyclosporine-induced hypertensive rats. J Basic Clin Physiol Pharmacol 2020; 32:169-177. [PMID: 33001849 DOI: 10.1515/jbcpp-2019-0360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/29/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES This study aimed to explore the protective mechanism of caffeic acid (CAA) and chlorogenic acid (CHA) on cyclosporine (CSA) induced hypertensive rats. METHODS Effect of CAA and CHA on diastolic blood pressure (DBP), mean arterial pressure (MAP), angiotensin-converting enzyme (ACE), e-nucleotide triphosphate dephosphorylase (e-NTPDase), 5' nucleotidase and adenosine deaminase (ADA) activity in CSA-induced hypertensive rats were determined. RESULTS CAA and CHA administration stabilized hypertensive effect caused by CSA administration. Also, altered activity of ACE (lung), e-NTPDase, 5' nucleotidase, ADA as well as elevated malondiadehyde (MDA) level was restored in all the treated hypertensive rats in comparison with the untreated hypertensive rats. CONCLUSION Hence, these observed results could underlie some of the mechanisms through which CAA and CHA could offer antihypertensive effect.
Collapse
Affiliation(s)
- Odunayo M Agunloye
- Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Ganiyu Oboh
- Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Gbemisola T Bello
- Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Ademola A Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
3
|
Abstract
The heart is uniquely responsible for providing its own blood supply through the coronary circulation. Regulation of coronary blood flow is quite complex and, after over 100 years of dedicated research, is understood to be dictated through multiple mechanisms that include extravascular compressive forces (tissue pressure), coronary perfusion pressure, myogenic, local metabolic, endothelial as well as neural and hormonal influences. While each of these determinants can have profound influence over myocardial perfusion, largely through effects on end-effector ion channels, these mechanisms collectively modulate coronary vascular resistance and act to ensure that the myocardial requirements for oxygen and substrates are adequately provided by the coronary circulation. The purpose of this series of Comprehensive Physiology is to highlight current knowledge regarding the physiologic regulation of coronary blood flow, with emphasis on functional anatomy and the interplay between the physical and biological determinants of myocardial oxygen delivery. © 2017 American Physiological Society. Compr Physiol 7:321-382, 2017.
Collapse
Affiliation(s)
- Adam G Goodwill
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Gregory M Dick
- California Medical Innovations Institute, 872 Towne Center Drive, Pomona, CA
| | - Alexander M Kiel
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Drive, Lafayette, IN
| | - Johnathan D Tune
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
4
|
Molecular structural investigation of adenosine using spectroscopic and quantum computational calculations. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.04.096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Bruning RS, Sturek M. Benefits of exercise training on coronary blood flow in coronary artery disease patients. Prog Cardiovasc Dis 2014; 57:443-53. [PMID: 25446554 DOI: 10.1016/j.pcad.2014.10.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Every 34 seconds an American experiences a myocardial infarction or cardiac death. Approximately 80% of these coronary artery disease (CAD)-related deaths are attributable to modifiable behaviors, such as a lack of physical exercise training (ET). Regular ET decreases CAD morbidity and mortality through systemic and cardiac-specific adaptations. ET increases myocardial oxygen demand acting as a stimulus to increase coronary blood flow and thus myocardial oxygen supply, which reduces myocardial infarction and angina. ET augments coronary blood flow through direct actions on the vasculature that improve endothelial and coronary smooth muscle function, enhancing coronary vasodilation. Additionally, ET promotes collateralization, thereby, increasing blood flow to ischemic myocardium and also treats macrovascular CAD by attenuating the progression of coronary atherosclerosis and restenosis, potentially through stabilization of atherosclerotic lesions. In summary, ET can be used as a relatively safe and inexpensive way to prevent and treat CAD.
Collapse
Affiliation(s)
- Rebecca S Bruning
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202-5120
| | - Michael Sturek
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202-5120.
| |
Collapse
|
6
|
Zhou X, Teng B, Tilley S, Ledent C, Mustafa SJ. Metabolic hyperemia requires ATP-sensitive K+ channels and H2O2 but not adenosine in isolated mouse hearts. Am J Physiol Heart Circ Physiol 2014; 307:H1046-55. [PMID: 25108010 DOI: 10.1152/ajpheart.00421.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We have previously demonstrated that adenosine-mediated H2O2 production and opening of ATP-sensitive K(+) (KATP) channels contributes to coronary reactive hyperemia. The present study aimed to investigate the roles of adenosine, H2O2, and KATP channels in coronary metabolic hyperemia (MH). Experiments were conducted on isolated Langendorff-perfused mouse hearts using combined pharmacological approaches with adenosine receptor (AR) knockout mice. MH was induced by electrical pacing at graded frequencies. Coronary flow increased linearly from 14.4 ± 1.2 to 20.6 ± 1.2 ml·min(-1)·g(-1) with an increase in heart rate from 400 to 650 beats/min in wild-type mice. Neither non-selective blockade of ARs by 8-(p-sulfophenyl)theophylline (8-SPT; 50 μM) nor selective A2AAR blockade by SCH-58261 (1 μM) or deletion affected MH, although resting flow and left ventricular developed pressure were reduced. Combined A2AAR and A2BAR blockade or deletion showed similar effects as 8-SPT. Inhibition of nitric oxide synthesis by N-nitro-l-arginine methyl ester (100 μM) or combined 8-SPT administration failed to reduce MH, although resting flows were reduced (by ∼20%). However, glibenclamide (KATP channel blocker, 5 μM) decreased not only resting flow (by ∼45%) and left ventricular developed pressure (by ∼36%) but also markedly reduced MH by ∼94%, resulting in cardiac contractile dysfunction. Scavenging of H2O2 by catalase (2,500 U/min) also decreased resting flow (by ∼16%) and MH (by ∼24%) but to a lesser extent than glibenclamide. Our results suggest that while adenosine modulates coronary flow under both resting and ischemic conditions, it is not required for MH. However, H2O2 and KATP channels are important local control mechanisms responsible for both coronary ischemic and metabolic vasodilation.
Collapse
Affiliation(s)
- Xueping Zhou
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University, Morgantown, West Virginia
| | - Bunyen Teng
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University, Morgantown, West Virginia
| | - Stephen Tilley
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina; and
| | | | - S Jamal Mustafa
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University, Morgantown, West Virginia;
| |
Collapse
|
7
|
|
8
|
Laughlin MH, Davis MJ, Secher NH, van Lieshout JJ, Arce-Esquivel AA, Simmons GH, Bender SB, Padilla J, Bache RJ, Merkus D, Duncker DJ. Peripheral circulation. Compr Physiol 2013; 2:321-447. [PMID: 23728977 DOI: 10.1002/cphy.c100048] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Blood flow (BF) increases with increasing exercise intensity in skeletal, respiratory, and cardiac muscle. In humans during maximal exercise intensities, 85% to 90% of total cardiac output is distributed to skeletal and cardiac muscle. During exercise BF increases modestly and heterogeneously to brain and decreases in gastrointestinal, reproductive, and renal tissues and shows little to no change in skin. If the duration of exercise is sufficient to increase body/core temperature, skin BF is also increased in humans. Because blood pressure changes little during exercise, changes in distribution of BF with incremental exercise result from changes in vascular conductance. These changes in distribution of BF throughout the body contribute to decreases in mixed venous oxygen content, serve to supply adequate oxygen to the active skeletal muscles, and support metabolism of other tissues while maintaining homeostasis. This review discusses the response of the peripheral circulation of humans to acute and chronic dynamic exercise and mechanisms responsible for these responses. This is accomplished in the context of leading the reader on a tour through the peripheral circulation during dynamic exercise. During this tour, we consider what is known about how each vascular bed controls BF during exercise and how these control mechanisms are modified by chronic physical activity/exercise training. The tour ends by comparing responses of the systemic circulation to those of the pulmonary circulation relative to the effects of exercise on the regional distribution of BF and mechanisms responsible for control of resistance/conductance in the systemic and pulmonary circulations.
Collapse
Affiliation(s)
- M Harold Laughlin
- Department of Medical Pharmacology and Physiology, and the Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Cardiovascular adenosine receptors: Expression, actions and interactions. Pharmacol Ther 2013; 140:92-111. [DOI: 10.1016/j.pharmthera.2013.06.002] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 05/28/2013] [Indexed: 12/26/2022]
|
10
|
Duncker DJ, Bache RJ, Merkus D. Regulation of coronary resistance vessel tone in response to exercise. J Mol Cell Cardiol 2012; 52:802-13. [DOI: 10.1016/j.yjmcc.2011.10.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/18/2011] [Accepted: 10/08/2011] [Indexed: 10/16/2022]
|
11
|
Sanjani MS, Teng B, Krahn T, Tilley S, Ledent C, Mustafa SJ. Contributions of A2A and A2B adenosine receptors in coronary flow responses in relation to the KATP channel using A2B and A2A/2B double-knockout mice. Am J Physiol Heart Circ Physiol 2011; 301:H2322-33. [PMID: 21949117 DOI: 10.1152/ajpheart.00052.2011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Adenosine plays a role in physiological and pathological conditions, and A(2) adenosine receptor (AR) expression is modified in many cardiovascular disorders. In this study, we elucidated the role of the A(2B)AR and its relationship to the A(2A)AR in coronary flow (CF) changes using A(2B) single-knockout (KO) and A(2A/2B) double-KO (DKO) mice in a Langendorff setup. We used two approaches: 1) selective and nonselective AR agonists and antagonists and 2) A(2A)KO and A(2B)KO and A(2A/2B)DKO mice. BAY 60-6583 (a selective A(2B) agonist) had no effect on CF in A(2B)KO mice, whereas it significantly increased CF in wild-type (WT) mice (maximum of 23.3 ± 9 ml·min(-1)·g(-1)). 5'-N-ethylcarboxamido adenosine (NECA; a nonselective AR agonist) increased CF in A(2B)KO mice (maximum of 34.6 ± 4.7 ml·min(-1)·g(-1)) to a significantly higher degree compared with WT mice (maximum of 23.1 ± 2.1 ml·min(-1)·g(-1)). Also, CGS-21680 (a selective A(2A) agonist) increased CF in A(2B)KO mice (maximum of 29 ± 1.9 ml·min(-1)·g(-1)) to a significantly higher degree compared with WT mice (maximum of 25.1 ± 2.3 ml·min(-1)·g(-1)). SCH-58261 (an A(2A)-selective antagonist) inhibited the NECA-induced increase in CF to a significantly higher degree in A(2B)KO mice (19.3 ± 1.6 vs. 0.5 ± 0.4 ml·min(-1)·g(-1)) compared with WT mice (19 ± 3.5 vs. 3.6 ± 0.5 ml·min(-1)·g(-1)). NECA did not induce any increase in CF in A(2A/2B)DKO mice, whereas a significant increase was observed in WT mice (maximum of 23.1 ± 2.1 ml·min(-1)·g(-1)). Furthermore, the mitochondrial ATP-sensitive K(+) (K(ATP)) channel blocker 5-hydroxydecanoate had no effect on the NECA-induced increase in CF in WT mice, whereas the NECA-induced increase in CF in WT (17.6 ± 2 ml·min(-1)·g(-1)), A(2A)KO (12.5 ± 2.3 ml·min(-1)·g(-1)), and A(2B)KO (16.2 ± 0.8 ml·min(-1)·g(-1)) mice was significantly blunted by the K(ATP) channel blocker glibenclamide (to 0.7 ± 0.7, 2.3 ± 1.1, and 0.9 ± 0.4 ml·min(-1)·g(-1), respectively). Also, the CGS-21680-induced (22 ± 2.3 ml·min(-1)·g(-1)) and BAY 60-6583-induced (16.4 ± 1.60 ml·min(-1)·g(-1)) increase in CF in WT mice was significantly blunted by glibenclamide (to 1.2 ± 0.4 and 1.8 ± 1.2 ml·min(-1)·g(-1), respectively). In conclusion, this is the first evidence supporting the compensatory upregulation of A(2A)ARs in A(2B)KO mice and demonstrates that both A(2A)ARs and A(2B)ARs induce CF changes through K(ATP) channels. These results identify AR-mediated CF responses that may lead to better therapeutic approaches for the treatment of cardiovascular disorders.
Collapse
Affiliation(s)
- Maryam Sharifi Sanjani
- Department of Physiology and Pharmacology, Center for Cardiovascular Respiratory Sciences, West Virginia University, Morgantown, USA
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
In the concentration range that is normally achieved in humans, e.g., after the drinking of coffee or in patients treated with theophylline, the cardiovascular effects of methylxanthines are primarily due to antagonism of adenosine A(1) and A(2) receptors. Inhibition of phosphodiesterases or mobilization of intracellular calcium requires much higher concentrations. In conscious humans, acute exposure to caffeine results in an increase in blood pressure by an increased total peripheral resistance, and a slight decrease in heart rate. This overall hemodynamic response is composed of direct effects of caffeine on vascular tone, on myocardial contractility and conduction, and on the sympathetic nervous system. Caffeine is the most widely consumed methylxanthine, mainly derived from coffee intake. Regular coffee consumption can affect various traditional cardiovascular risk factors, including a slight increase in blood pressure, an increase in plasma cholesterol and homocysteine levels, and a reduced incidence of type 2 diabetes mellitus. Although most prospective studies have not reported an association between coffee consumption and coronary heart disease, these findings do not exclude that the acute hemodynamic and neurohumoral effects of coffee consumption could have an adverse effect in selected patient groups who are more vulnerable for these effects, based on their genetic profile or medication use.
Collapse
Affiliation(s)
- Niels P Riksen
- Department of Pharmacology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | |
Collapse
|
13
|
Headrick JP, Peart JN, Reichelt ME, Haseler LJ. Adenosine and its receptors in the heart: regulation, retaliation and adaptation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:1413-28. [PMID: 21094127 DOI: 10.1016/j.bbamem.2010.11.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 11/05/2010] [Accepted: 11/07/2010] [Indexed: 10/18/2022]
Abstract
The purine nucleoside adenosine is an important regulator within the cardiovascular system, and throughout the body. Released in response to perturbations in energy state, among other stimuli, local adenosine interacts with 4 adenosine receptor sub-types on constituent cardiac and vascular cells: A(1), A(2A), A(2B), and A(3)ARs. These G-protein coupled receptors mediate varied responses, from modulation of coronary flow, heart rate and contraction, to cardioprotection, inflammatory regulation, and control of cell growth and tissue remodeling. Research also unveils an increasingly complex interplay between members of the adenosine receptor family, and with other receptor groups. Given generally favorable effects of adenosine receptor activity (e.g. improving the balance between myocardial energy utilization and supply, limiting injury and adverse remodeling, suppressing inflammation), the adenosine receptor system is an attractive target for therapeutic manipulation. Cardiovascular adenosine receptor-based therapies are already in place, and trials of new treatments underway. Although the complex interplay between adenosine receptors and other receptors, and their wide distribution and functions, pose challenges to implementation of site/target specific cardiovascular therapy, the potential of adenosinergic pharmacotherapy can be more fully realized with greater understanding of the roles of adenosine receptors under physiological and pathological conditions. This review addresses some of the major known and proposed actions of adenosine and adenosine receptors in the heart and vessels, focusing on the ability of the adenosine receptor system to regulate cell function, retaliate against injurious stressors, and mediate longer-term adaptive responses.
Collapse
Affiliation(s)
- John P Headrick
- Griffith Health Institute, Griffith University, Southport QLD, Australia.
| | | | | | | |
Collapse
|
14
|
Heinonen IH, Kemppainen J, Kaskinoro K, Peltonen JE, Borra R, Lindroos M, Oikonen V, Nuutila P, Knuuti J, Boushel R, Kalliokoski KK. Regulation of human skeletal muscle perfusion and its heterogeneity during exercise in moderate hypoxia. Am J Physiol Regul Integr Comp Physiol 2010; 299:R72-9. [PMID: 20427728 DOI: 10.1152/ajpregu.00056.2010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although many effects of both acute and chronic hypoxia on the circulation are well characterized, the distribution and regulation of blood flow (BF) heterogeneity in skeletal muscle during systemic hypoxia is not well understood in humans. We measured muscle BF within the thigh muscles of nine healthy young men using positron emission tomography during one-leg dynamic knee extension exercise in normoxia and moderate physiological systemic hypoxia (14% O(2) corresponding to approximately 3,400 m of altitude) without and with local adenosine receptor inhibition with femoral artery infusion of aminophylline. Systemic hypoxia reduced oxygen extraction of the limb but increased muscle BF, and this flow increment was confined solely to the exercising quadriceps femoris muscle. Exercising muscle BF heterogeneity was reduced from rest (P = 0.055) but was not affected by hypoxia. Adenosine receptor inhibition had no effect on capillary BF during exercise in either normoxia or hypoxia. Finally, one-leg exercise increased muscle BF heterogeneity both in the resting posterior hamstring part of the exercising leg and in the resting contralateral leg, whereas mean BF was unchanged. In conclusion, the results show that increased BF during one-leg exercise in moderate hypoxia is confined only to the contracting muscles, and the working muscle hyperemia appears not to be directly mediated by adenosine. Increased flow heterogeneity in noncontracting muscles likely reflects sympathetic nervous constraints to curtail BF increments in areas other than working skeletal muscles, but this effect is not potentiated in moderate systemic hypoxia during small muscle mass exercise.
Collapse
Affiliation(s)
- Ilkka H Heinonen
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Erupaka K, Bruce EN, Bruce MC. Prediction of Extravascular Burden of Carbon Monoxide (CO) in the Human Heart. Ann Biomed Eng 2009; 38:403-38. [DOI: 10.1007/s10439-009-9814-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 09/26/2009] [Indexed: 11/30/2022]
|
16
|
Zhang C, Rogers PA, Merkus D, Muller‐Delp JM, Tiefenbacher CP, Potter B, Knudson JD, Rocic P, Chilian WM. Regulation of Coronary Microvascular Resistance in Health and Disease. Compr Physiol 2008. [DOI: 10.1002/cphy.cp020412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Heinonen I, Nesterov SV, Liukko K, Kemppainen J, Någren K, Luotolahti M, Virsu P, Oikonen V, Nuutila P, Kujala UM, Kainulainen H, Boushel R, Knuuti J, Kalliokoski KK. Myocardial blood flow and adenosine A2A receptor density in endurance athletes and untrained men. J Physiol 2008; 586:5193-202. [PMID: 18772204 DOI: 10.1113/jphysiol.2008.158113] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Previous human studies have shown divergent results concerning the effects of exercise training on myocardial blood flow (MBF) at rest or during adenosine-induced hyperaemia in humans. We studied whether these responses are related to alterations in adenosine A2A receptor (A2AR) density in the left-ventricular (LV) myocardium, size and work output of the athlete's heart, or to fitness level. MBF at baseline and during intravenous adenosine infusion, and A2AR density at baseline were measured using positron emission tomography, and by a novel A(2A)R tracer in 10 healthy male endurance athletes (ET) and 10 healthy untrained (UT) men. Structural LV parameters were measured with echocardiography. LV mass index was 71% higher in ET than UT (193 +/- 18 g m(-2) versus 114 +/- 13 g m(-2), respectively). MBF per gram of tissue was significantly lower in the ET than UT at baseline, but this was only partly explained by reduced LV work load since MBF corrected for LV work was higher in ET than UT, as well as total MBF. The MBF during adenosine-induced hyperaemia was reduced in ET compared to UT, and the fitter the athlete was, the lower was adenosine-induced MBF. A2AR density was not different between the groups and was not coupled to resting or adenosine-mediated MBF. The novel findings of the present study show that the adaptations in the heart of highly trained endurance athletes lead to relative myocardial 'overperfusion' at rest. On the other hand hyperaemic perfusion is reduced, but is not explained by A2AR density.
Collapse
Affiliation(s)
- Ilkka Heinonen
- Turku PET Centre, Departments of Clinical Physiology and Nuclear Medicine, University of Turku, Turku, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Exercise is the most important physiological stimulus for increased myocardial oxygen demand. The requirement of exercising muscle for increased blood flow necessitates an increase in cardiac output that results in increases in the three main determinants of myocardial oxygen demand: heart rate, myocardial contractility, and ventricular work. The approximately sixfold increase in oxygen demands of the left ventricle during heavy exercise is met principally by augmenting coronary blood flow (∼5-fold), as hemoglobin concentration and oxygen extraction (which is already 70–80% at rest) increase only modestly in most species. In contrast, in the right ventricle, oxygen extraction is lower at rest and increases substantially during exercise, similar to skeletal muscle, suggesting fundamental differences in blood flow regulation between these two cardiac chambers. The increase in heart rate also increases the relative time spent in systole, thereby increasing the net extravascular compressive forces acting on the microvasculature within the wall of the left ventricle, in particular in its subendocardial layers. Hence, appropriate adjustment of coronary vascular resistance is critical for the cardiac response to exercise. Coronary resistance vessel tone results from the culmination of myriad vasodilator and vasoconstrictors influences, including neurohormones and endothelial and myocardial factors. Unraveling of the integrative mechanisms controlling coronary vasodilation in response to exercise has been difficult, in part due to the redundancies in coronary vasomotor control and differences between animal species. Exercise training is associated with adaptations in the coronary microvasculature including increased arteriolar densities and/or diameters, which provide a morphometric basis for the observed increase in peak coronary blood flow rates in exercise-trained animals. In larger animals trained by treadmill exercise, the formation of new capillaries maintains capillary density at a level commensurate with the degree of exercise-induced physiological myocardial hypertrophy. Nevertheless, training alters the distribution of coronary vascular resistance so that more capillaries are recruited, resulting in an increase in the permeability-surface area product without a change in capillary numerical density. Maintenance of α- and ß-adrenergic tone in the presence of lower circulating catecholamine levels appears to be due to increased receptor responsiveness to adrenergic stimulation. Exercise training also alters local control of coronary resistance vessels. Thus arterioles exhibit increased myogenic tone, likely due to a calcium-dependent protein kinase C signaling-mediated alteration in voltage-gated calcium channel activity in response to stretch. Conversely, training augments endothelium-dependent vasodilation throughout the coronary microcirculation. This enhanced responsiveness appears to result principally from an increased expression of nitric oxide (NO) synthase. Finally, physical conditioning decreases extravascular compressive forces at rest and at comparable levels of exercise, mainly because of a decrease in heart rate. Impedance to coronary inflow due to an epicardial coronary artery stenosis results in marked redistribution of myocardial blood flow during exercise away from the subendocardium towards the subepicardium. However, in contrast to the traditional view that myocardial ischemia causes maximal microvascular dilation, more recent studies have shown that the coronary microvessels retain some degree of vasodilator reserve during exercise-induced ischemia and remain responsive to vasoconstrictor stimuli. These observations have required reassessment of the principal sites of resistance to blood flow in the microcirculation. A significant fraction of resistance is located in small arteries that are outside the metabolic control of the myocardium but are sensitive to shear and nitrovasodilators. The coronary collateral system embodies a dynamic network of interarterial vessels that can undergo both long- and short-term adjustments that can modulate blood flow to the dependent myocardium. Long-term adjustments including recruitment and growth of collateral vessels in response to arterial occlusion are time dependent and determine the maximum blood flow rates available to the collateral-dependent vascular bed during exercise. Rapid short-term adjustments result from active vasomotor activity of the collateral vessels. Mature coronary collateral vessels are responsive to vasodilators such as nitroglycerin and atrial natriuretic peptide, and to vasoconstrictors such as vasopressin, angiotensin II, and the platelet products serotonin and thromboxane A2. During exercise, ß-adrenergic activity and endothelium-derived NO and prostanoids exert vasodilator influences on coronary collateral vessels. Importantly, alterations in collateral vasomotor tone, e.g., by exogenous vasopressin, inhibition of endogenous NO or prostanoid production, or increasing local adenosine production can modify collateral conductance, thereby influencing the blood supply to the dependent myocardium. In addition, vasomotor activity in the resistance vessels of the collateral perfused vascular bed can influence the volume and distribution of blood flow within the collateral zone. Finally, there is evidence that vasomotor control of resistance vessels in the normally perfused regions of collateralized hearts is altered, indicating that the vascular adaptations in hearts with a flow-limiting coronary obstruction occur at a global as well as a regional level. Exercise training does not stimulate growth of coronary collateral vessels in the normal heart. However, if exercise produces ischemia, which would be absent or minimal under resting conditions, there is evidence that collateral growth can be enhanced. In addition to ischemia, the pressure gradient between vascular beds, which is a determinant of the flow rate and therefore the shear stress on the collateral vessel endothelium, may also be important in stimulating growth of collateral vessels.
Collapse
|
19
|
Sato A, Terata K, Miura H, Toyama K, Loberiza FR, Hatoum OA, Saito T, Sakuma I, Gutterman DD. Mechanism of vasodilation to adenosine in coronary arterioles from patients with heart disease. Am J Physiol Heart Circ Physiol 2005; 288:H1633-40. [PMID: 15772334 DOI: 10.1152/ajpheart.00575.2004] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adenosine is a key myocardial metabolite that elicits coronary vasodilation in a variety of pathophysiological conditions. We examined the mechanism of adenosine-induced vasodilation in coronary arterioles from patients with heart disease. Human coronary arterioles (HCAs) were dissected from pieces of the atrial appendage obtained at the time of cardiac surgery and cannulated for the measurement of internal diameter with videomicroscopy. Adenosine-induced vasodilation was not inhibited by endothelial denudation, but A(2) receptor antagonism with 3,7-dimethyl-1-propargylxanthine and adenylate cyclase (AC) inhibition with SQ22536 significantly attenuated the dilation. In contrast, A(1) receptor antagonism with 8-cyclopentyl-1,3-dipropylxanthine significantly augmented the sensitivity to adenosine. Moreover, dilation to A(2a) receptor activation with 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamido-adenosine hydrochloride was reduced by the A(1) receptor agonist (2S)-N(6)-(2-endo-norbornyl)adenosine. The nonspecific calcium-activated potassium (K(Ca)) channel blocker tetrabutylammonium attenuated adenosine-induced dilation, as did the intermediate-conductance K(Ca) blocker clotrimazole. Neither the large-conductance K(Ca) blocker iberiotoxin nor small-conductance K(Ca) blocker apamin altered the dilation. In conclusion, adenosine endothelium independently dilates HCAs from patients with heart disease through a receptor-mediated mechanism that involves the activation of intermediate-conductance K(Ca) channels via an AC signaling pathway. The roles of A(1) and A(2) receptor subtypes are opposing, with the former being inhibitory to AC-mediated dilator actions of the latter. These observations identify unique fundamental physiological characteristics of the human coronary circulation and may help to target the use of novel adenosine analogs for vasodilation in perfusion imaging or suggest new strategies for myocardial preconditioning.
Collapse
Affiliation(s)
- Atsushi Sato
- Dept. of Medicine, Cardiovascular Center, and Veterans Administration Medical Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
At rest the myocardium extracts approximately 75% of the oxygen delivered by coronary blood flow. Thus there is little extraction reserve when myocardial oxygen consumption is augmented severalfold during exercise. There are local metabolic feedback and sympathetic feedforward control mechanisms that match coronary blood flow to myocardial oxygen consumption. Despite intensive research the local feedback control mechanism remains unknown. Physiological local metabolic control is not due to adenosine, ATP-dependent K(+) channels, nitric oxide, prostaglandins, or inhibition of endothelin. Adenosine and ATP-dependent K(+) channels are involved in pathophysiological ischemic or hypoxic coronary dilation and myocardial protection during ischemia. Sympathetic beta-adrenoceptor-mediated feedforward arteriolar vasodilation contributes approximately 25% of the increase in coronary blood flow during exercise. Sympathetic alpha-adrenoceptor-mediated vasoconstriction in medium and large coronary arteries during exercise helps maintain blood flow to the vulnerable subendocardium when cardiac contractility, heart rate, and myocardial oxygen consumption are high. In conclusion, several potential mediators of local metabolic control of the coronary circulation have been evaluated without success. More research is needed.
Collapse
Affiliation(s)
- Johnathan D Tune
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195-7290, USA
| | | | | |
Collapse
|
21
|
Merkus D, Haitsma DB, Fung TY, Assen YJ, Verdouw PD, Duncker DJ. Coronary blood flow regulation in exercising swine involves parallel rather than redundant vasodilator pathways. Am J Physiol Heart Circ Physiol 2003; 285:H424-33. [PMID: 12637354 DOI: 10.1152/ajpheart.00916.2002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In dogs, only combined blockade of vasodilator pathways [via adenosine receptors, nitric oxide synthase (NOS) and ATP-sensitive K+ (KATP) channels] results in impairment of metabolic vasodilation, which suggests a redundancy design of coronary flow regulation. Conversely, in swine and humans, blocking KATP channels, adenosine receptors, or NOS each impairs coronary blood flow (CBF) at rest and during exercise. Consequently, we hypothesized that these vasodilators act in parallel rather than in redundancy to regulate CBF in swine. Swine exercised on a treadmill (0-5 km/h), during control and after blockade of KATP channels (with glibenclamide), adenosine receptors [with 8-phenyltheophylline (8-PT)], and/or NOS [with Nomega-nitro-l-arginine (l-NNA)]. l-NNA, 8-PT, and glibenclamide each reduced myocardial O2 delivery and coronary venous O2 tension. These effects of l-NNA, 8-PT, and glibenclamide were not modified by simultaneous blockade of the other vasodilators. Combined blockade of KATP channels and adenosine receptors with or without NOS inhibition was associated with increased H+ production and impaired myocardial function. However, despite an increase in O2 extraction to >90% during administration of l-NNA + 8-PT + glibenclamide, vasodilator reserve could still be recruited during exercise. Thus in awake swine, loss of KATP channels, adenosine, or NO is not compensated for by increased participation of the other two vasodilator mechanisms. These findings suggest a parallel rather than a redundancy design of CBF regulation in the porcine circulation.
Collapse
Affiliation(s)
- Daphne Merkus
- Division of Experimental Cardiology, Thoraxcenter, Erasmus Medical Center, 3000 DR Rotterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
22
|
Tune JD, Richmond KN, Gorman MW, Feigl EO. Control of coronary blood flow during exercise. Exp Biol Med (Maywood) 2002; 227:238-50. [PMID: 11910046 DOI: 10.1177/153537020222700404] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Under normal physiological conditions, coronary blood flow is closely matched with the rate of myocardial oxygen consumption. This matching of flow and metabolism is physiologically important due to the limited oxygen extraction reserve of the heart. Thus, when myocardial oxygen consumption is increased, as during exercise, coronary vasodilation and increased oxygen delivery are critical to preventing myocardial underperfusion and ischemia. Exercise coronary vasodilation is thought to be mediated primarily by the production of local metabolic vasodilators released from cardiomyocytes secondary to an increase in myocardial oxygen consumption. However, despite various investigations into this mechanism, the mediator(s) of metabolic coronary vasodilation remain unknown. As will be seen in this review, the adenosine, K(+)(ATP) channel and nitric oxide hypotheses have been found to be inadequate, either alone or in combination as multiple redundant compensatory mechanisms. Prostaglandins and potassium are also not important in steady-state coronary flow regulation. Other factors such as ATP and endothelium-derived hyperpolarizing factors have been proposed as potential local metabolic factors, but have not been examined during exercise coronary vasodilation. In contrast, norepinephrine released from sympathetic nerve endings mediates a feed-forward betaadrenoceptor coronary vasodilation that accounts for approximately 25% of coronary vasodilation observed during exercise. There is also a feed-forward alpha-adrenoceptor-mediated vasoconstriction that helps maintain blood flow to the vulnerable subendocardium when heart rate, myocardial contractility, and oxygen consumption are elevated during exercise. Control of coronary blood flow during pathophysiological conditions such as hypertension, diabetes mellitus, and heart failure is also addressed.
Collapse
Affiliation(s)
- Johnathan D Tune
- Department of Integrative Physiology, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA.
| | | | | | | |
Collapse
|
23
|
Abstract
Adenosine is widely distributed in mammals. One of the primary roles of adenosine within the cardiovascular system is to directly control the functions of both cardiac and vascular tissues. Recently, there has been considerable interest in the subclassification of adenosine receptors. Characterization of a heterogeneous population of receptors for adenosine could provide an opportunity for the development of novel compounds of therapeutic value. Adenosine is released from cells as a result of metabolism, and its release can be increased dramatically from cells that are metabolically stressed. This implies that adenosine can be released from a variety of cells throughout the body, as a result of increased metabolic rates, in concentrations that can have a profound impact on blood vessel function and, consequently, blood flow. It is recognized that the actions of this nucleoside on the vasculature are most prominent when oxygen demand is high and there is a reduction in oxygen tension at the site in question. Therefore, it is not surprising that adenosine has been shown to be an important regulator of blood vessel tone under hypoxic conditions. Furthermore, the activation of adenosine receptors on blood vessels can result in relaxation and/or contractions. The nature of the response subsequent to the activation of adenosine receptors is primarily dependent on the type of blood vessel involved and basal tone. This review will focus on the characterization of subtypes of adenosine receptors in blood vessels, as well as the effect of the stimulation of adenosine receptors on the peripheral circulation.
Collapse
Affiliation(s)
- R Tabrizchi
- Division of Basic Medical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada, A1B 3V6.
| | | |
Collapse
|
24
|
Rådegran G, Hellsten Y. Adenosine and nitric oxide in exercise-induced human skeletal muscle vasodilatation. ACTA PHYSIOLOGICA SCANDINAVICA 2000; 168:575-91. [PMID: 10759594 DOI: 10.1046/j.1365-201x.2000.00705.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The vasoactive substances adenosine and nitric oxide (NO) are credible candidates in the local regulation of skeletal muscle blood flow. Adenosine and NO have both been shown to increase in skeletal muscle cells and interstitial fluid during exercise and the enzymes responsible for their formation, AMP 5'-nucleotidase and NO synthase (NOS), have been shown to be activated upon muscle contraction. In vitro as well as in vivo evidence suggest that the contraction-induced increase in interstitial adenosine concentration largely stems from extracellular formation via the membrane-bound ecto-form of AMP 5'-nucleotidase. It remains unclear whether the exercise-induced NO formation in muscle originates from endothelial NOS in the microvascular endothelium, or from neuronal NOS (nNOS) in nerve cells and muscle fibres. Functional evidence for the role of adenosine in muscle blood flow control stems from studies using adenosine receptor agonists and antagonists, adenosine deaminase or adenosine uptake inhibitors. The majority of these studies have been performed on laboratory animals and, although the results show some discrepancy, the majority of studies indicate that adenosine does participate in the regulation of muscle blood flow. In humans, evidence is lacking. The role of NO in the regulation of skeletal muscle blood flow has mainly been studied using NOS inhibitors. Despite a large number of studies in this area, the role of NO for the contraction-induced increase in skeletal muscle blood flow is uncertain. The majority, but not all, human and animal studies show that, whereas blockade of NOS reduces muscle blood flow at rest and in recovery from exercise, there is no effect on the exercise-induced increase in muscle perfusion. Conclusive evidence for the mechanisms underlying the precise regulation of the multiphased increase in skeletal muscle blood flow during exercise and the role and potency of various vasoactive substances, remain missing.
Collapse
Affiliation(s)
- G Rådegran
- Copenhagen Muscle Research Centre, Rigshospitalet, Copenhagen, Denmark
| | | |
Collapse
|
25
|
Tune JD, Richmond KN, Gorman MW, Olsson RA, Feigl EO. Adenosine is not responsible for local metabolic control of coronary blood flow in dogs during exercise. Am J Physiol Heart Circ Physiol 2000; 278:H74-84. [PMID: 10644586 DOI: 10.1152/ajpheart.2000.278.1.h74] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this investigation was to quantitatively evaluate the role of adenosine in coronary exercise hyperemia. Dogs (n = 10) were chronically instrumented with catheters in the aorta and coronary sinus, and a flow probe on the circumflex coronary artery. Cardiac interstitial adenosine concentration was estimated from arterial and coronary venous plasma concentrations using a previously tested mathematical model. Coronary blood flow, myocardial oxygen consumption, heart rate, and aortic pressure were measured at rest and during graded treadmill exercise with and without adenosine receptor blockade with either 8-phenyltheophylline (8-PT) or 8-p-sulfophenyltheophylline (8-PST). In control vehicle dogs, exercise increased myocardial oxygen consumption 4.2-fold, coronary blood flow 3.8-fold, and heart rate 2.5-fold, whereas mean aortic pressure was unchanged. Coronary venous plasma adenosine concentration was little changed with exercise, and the estimated interstitial adenosine concentration remained well below the threshold for coronary vasodilation. Adenosine receptor blockade did not significantly alter myocardial oxygen consumption or coronary blood flow at rest or during exercise. Coronary venous and estimated interstitial adenosine concentration did not increase to overcome the receptor blockade with either 8-PT or 8-PST as would be predicted if adenosine were part of a high-gain, negative-feedback, local metabolic control mechanism. These results demonstrate that adenosine is not responsible for local metabolic control of coronary blood flow in dogs during exercise.
Collapse
Affiliation(s)
- J D Tune
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
26
|
Mühling J, Dehne MG, Sablotzki A, Mühling A, Hempelmann G. Effects of theophylline on human cerebral blood flow velocity during halothane and isoflurane anaesthesia. Eur J Anaesthesiol 1999; 16:380-6. [PMID: 10434166 DOI: 10.1046/j.1365-2346.1999.00502.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The acute influence of therapeutic doses of theophylline on cerebral blood flow velocities during general anaesthesia induced either by halothane or isoflurane has not been elucidated previously. The aim of this study, was therefore to investigate these effects during steady state anaesthetic conditions in anaesthetized patients using transcranial Doppler sonography. Thirty-four Patients were investigated. Anaesthesia was maintained either with 1 MAC (minimum alveolar concentration) halothane (n = 16) or 1 MAC isoflurane (n = 18); FiO2: 40%; end-expiratory pCO2: normocapnia. Theophylline administration was performed before surgery by infusing 6 mg kg-1 over a period of 7.5 min. Measurements were recorded prior to theophylline administration, and immediately after 2 mg kg-1 (2.5 min), 4 mg kg-1 (5 min) and 6 mg kg-1 (7.5 min), as well as 5, 10, 15, 20, 30 and 45 min after theophylline administration. Recorded variables included blood pressure, heart rate, arterial oxygen saturation, end-expiratory pCO2, body temperatures, middle cerebral artery blood flow velocity and pulsatility index. Theophylline administration was well tolerated by all study subjects. Heart rate, blood pressure, body temperatures, arterial oxygen saturation and end-expiratory pCO2 remained constant during the whole examination period. Following theophylline, mean blood flow velocity decreased by 25% in the halothane and by 30% in the isoflurane group (P < 0.05). By the end of the examination period, mean blood flow velocity had not yet recovered to the initial values whereby in both groups the mean blood flow velocity was 26% below the initial values. In the isoflurane group, the pulsatility index increased by about 20% (P < 0.05) and remained high until the end of the examination. In the halothane group, however, there were no changes in the pulsatility index. Our results show a remarkable, significant and simultaneous decrease in blood flow velocity in the middle cerebral artery associated with theophylline administration during halothane and isoflurane anaesthesia in man.
Collapse
Affiliation(s)
- J Mühling
- Department of Anaesthesiology and Intensive Care Medicine, Justus-Liebig-University, Giessen, Germany
| | | | | | | | | |
Collapse
|
27
|
Duncker DJ, Stubenitsky R, Verdouw PD. Role of adenosine in the regulation of coronary blood flow in swine at rest and during treadmill exercise. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:H1663-72. [PMID: 9815074 DOI: 10.1152/ajpheart.1998.275.5.h1663] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A pivotal role for adenosine in the regulation of coronary blood flow is still controversial. Consequently, we investigated its role in the regulation of coronary vasomotor tone in swine at rest and during graded treadmill exercise. During exercise, myocardial O2 consumption increased from 167 +/- 18 micromol/min at rest to 399 +/- 27 micromol/min at 5 km/h (P </= 0.05), which was paralleled by an increase in O2 delivery, so that myocardial O2 extraction (76 +/- 1 and 78 +/- 1% at rest and 5 km/h, respectively) and coronary venous PO2 (24.5 +/- 1.0 and 22.8 +/- 0.3 mmHg at rest and 5 km/h, respectively) remained unchanged. After adenosine receptor blockade with 8-phenyltheophylline (5 mg/kg iv), the relation between myocardial O2 consumption and coronary vascular resistance was shifted toward higher resistance, whereas myocardial O2 extraction rose to 81 +/- 1 and 83 +/- 1% at rest and 5 km/h and coronary venous PO2 fell to 19.2 +/- 0.8 and 18.9 +/- 0.8 mmHg at rest and 5 km/h, respectively (all P </= 0.05). Thus, although adenosine is not mandatory for the exercise-induced coronary vasodilation, it exerts a vasodilator influence on the coronary resistance vessels in swine at rest and during exercise.
Collapse
Affiliation(s)
- D J Duncker
- Experimental Cardiology, Thoraxcenter, Cardiovascular Research Institute COEUR, Erasmus University Rotterdam, 3000 DR Rotterdam, The Netherlands
| | | | | |
Collapse
|