1
|
Macedo ACPD, Schaan CW, Bock PM, Pinto MBD, Botton CE, Umpierre D, Schaan BD. Cardiorespiratory fitness in individuals with type 2 diabetes mellitus: a systematic review and meta-analysis. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2023; 67:e230040. [PMID: 37738467 PMCID: PMC10665050 DOI: 10.20945/2359-4292-2023-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 05/30/2023] [Indexed: 09/24/2023]
Abstract
Objective To conduct a systematic review and meta-analysis assessing the cardiorespiratory fitness (CRF) among individuals with and without type 2 diabetes. Materials and methods The current review was registered in PROSPERO under the number CRD42018082718. MEDLINE, EMBASE, and Cochrane Library databases were searched from inception through February 2022. Eligibility criteria consisted of observational or interventional studies that evaluated CRF through cardiopulmonary exercise testing or six-minute walk test in individuals with type 2 diabetes compared with individuals without type 2 diabetes. For data extraction, we used baseline CRF assessments of randomized clinical trials or follow-up CRF assessments in observational studies. We performed a meta-analysis using maximal oxygen consumption (VO2 max), and distance walked in the 6MWT as primary outcomes. They were extracted and expressed as mean differences (MDs) and 95% CIs between treatment and comparator groups. The meta-analysis was conducted using Review Manager (RevMan) software. Results Out of 8,347 studies retrieved, 77 were included. Compared with individuals without type 2 diabetes, individuals with diabetes achieved a lower VO2 max (-5.84 mL.kg-1.min-1, 95% CI -6.93, -4.76 mL.kg-1.min-1, p = <0.0001; I2 = 91%, p for heterogeneity < 0.0001), and a smaller distance walked in 6MWT (-93.30 meters, 95% CI -141.2, -45.4 meters, p > 0.0001; I2: 94%, p for heterogeneity < 0.0001). Conclusion Type 2 diabetes was associated with lower cardiorespiratory fitness, as observed by lower VO2 max on maximal tests, and smaller distance walked in 6MWT, however the quality of studies was low.
Collapse
Affiliation(s)
- Aline Chagastelles Pinto de Macedo
- Universidade Federal do Rio Grande do Sul, Programa de Pós-graduaçÃo em Ciências Médicas: Endocrinologia, Porto Alegre, RS, Brasil
- Laboratório de Atividade Física, Diabetes e Doença Cardiovascular (LADD), Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
| | - Camila Wohlgemuth Schaan
- Laboratório de Atividade Física, Diabetes e Doença Cardiovascular (LADD), Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
| | - Patricia Martins Bock
- Laboratório de Atividade Física, Diabetes e Doença Cardiovascular (LADD), Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil,
- Faculdades Integradas de Taquara, Taquara, RS, Brasil
- Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Mariana Brutto de Pinto
- Laboratório de Atividade Física, Diabetes e Doença Cardiovascular (LADD), Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
| | - Cintia Ehlers Botton
- Instituto de AvaliaçÃo de Tecnologia em Saúde (IATS) - CNPq/Brasil, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
- Universidade Federal do Ceará, Instituto de EducaçÃo Física e Esportes, Fortaleza, CE, Brasil
- Programa de Mestrado em Fisioterapia e Funcionalidade, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - Daniel Umpierre
- Laboratório de Atividade Física, Diabetes e Doença Cardiovascular (LADD), Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
- Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
- Instituto de AvaliaçÃo de Tecnologia em Saúde (IATS) - CNPq/Brasil, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
| | - Beatriz D Schaan
- Universidade Federal do Rio Grande do Sul, Programa de Pós-graduaçÃo em Ciências Médicas: Endocrinologia, Porto Alegre, RS, Brasil
- Laboratório de Atividade Física, Diabetes e Doença Cardiovascular (LADD), Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
- Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
- Instituto de AvaliaçÃo de Tecnologia em Saúde (IATS) - CNPq/Brasil, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
| |
Collapse
|
2
|
Henderson GC, Meyer JM. Transient elevation of triacylglycerol content in the liver: a fundamental component of the acute response to exercise. J Appl Physiol (1985) 2021; 130:1293-1303. [PMID: 33475457 DOI: 10.1152/japplphysiol.00930.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Exercise is well appreciated as a therapeutic approach to improve health. Although chronic exercise training can change metabolism, even a single exercise session can have significant effects upon metabolism. Responses of adipose tissue lipolysis and skeletal muscle triacylglycerol (TAG) utilization have been well appreciated as components of the acute exercise response. However, there are other central components of the physiological response to be considered, as well. A robust and growing body of literature depicts a rapid responsiveness of hepatic TAG content to single bouts of exercise, and there is a remaining need to incorporate this information into our overall understanding of how exercise affects the liver. TAG content in the liver increases during an exercise session and can continue to rise for a few hours afterwards, followed by a fairly rapid return to baseline. Here, we summarize evidence that rapid responsiveness of hepatic TAG content to metabolic stress is a fundamental component of the exercise response. Adipose tissue lipolysis and plasma free fatty acid concentration are likely the major metabolic controllers of enhanced lipid storage in the liver after each exercise bout, and we discuss nutritional impacts as well as health implications. Although traditionally clinicians would be merely concerned with hepatic lipids in overnight-fasted, rested individuals, it is now apparent that the content of hepatic TAG fluctuates in response to metabolic challenges such as exercise, and these responses likely exert significant impacts on health and cellular homeostasis.
Collapse
Affiliation(s)
| | - Juliauna M. Meyer
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana
| |
Collapse
|
3
|
Henderson GC, Martinez Tenorio V, Tuazon MA. Acute exercise in mice transiently remodels the hepatic lipidome in an intensity-dependent manner. Lipids Health Dis 2020; 19:219. [PMID: 33032600 PMCID: PMC7545884 DOI: 10.1186/s12944-020-01395-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/29/2020] [Indexed: 12/29/2022] Open
Abstract
Background The content of triacylglycerol (TAG) in the liver is known to rapidly increase after a single bout of exercise followed by recovery to sedentary levels. The response of other hepatic lipids, and acyl chain composition of lipid classes, would provide a deeper understanding of the response of hepatic lipid metabolism to acute exercise. Methods Female mice performed a single bout of continuous exercise (CE), high-intensity interval exercise (HIIE), or no exercise (CON). The total content of various lipids in the liver, and fatty acids within lipid classes, were measured in tissues collected 3 h after exercise (Day 1) and the day following exercise (Day 2). Results The total concentration of TAG rose on Day 1 after exercise (P < 0.05), with a greater elevation in HIIE than CE (P < 0.05), followed by a decline toward CON levels on Day 2. The total concentration of other measured lipid classes was not significantly altered by exercise. However, n-6 polyunsaturated fatty acid relative abundance in diacylglycerol (DAG) was increased by HIIE (P < 0.05). In CON liver, TAG content was positively correlated with DAG and phosphatidylethanolamine (P < 0.05), while these statistical associations were disrupted in exercised mice on Day 1. Conclusions The response of lipid metabolism to exercise involves the coordination of metabolism between various tissues, and the lipid metabolism response to acute exercise places a metabolic burden upon the liver. The present findings describe how the liver copes with this metabolic challenge. The flexibility of the TAG pool size in the liver, and other remodeling of the hepatic lipidome, may be fundamental components of the physiological response to intense exercise.
Collapse
Affiliation(s)
- Gregory C Henderson
- Department of Nutrition Science, Purdue University, 700 West State Street, West Lafayette, IN, 47907, USA.
| | - Valeria Martinez Tenorio
- Department of Nutrition Science, Purdue University, 700 West State Street, West Lafayette, IN, 47907, USA
| | - Marc A Tuazon
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| |
Collapse
|
4
|
Constantin-Teodosiu D, Constantin D, Pelsers MM, Verdijk LB, van Loon L, Greenhaff PL. Mitochondrial DNA copy number associates with insulin sensitivity and aerobic capacity, and differs between sedentary, overweight middle-aged males with and without type 2 diabetes. Int J Obes (Lond) 2019; 44:929-936. [PMID: 31641211 DOI: 10.1038/s41366-019-0473-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/19/2019] [Accepted: 09/30/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND/OBJECTIVES Increased risk of type 2 diabetes mellitus (T2DM) is linked to impaired muscle mitochondrial function and reduced mitochondrial DNA copy number (mtDNAnum). However, studies have failed to control for habitual physical activity levels, which directly influences both mtDNA copy number and insulin sensitivity. We, therefore, examined whether physical conditioning status (maximal oxygen uptake, V̇O2max) was associated with skeletal muscle mitochondrial volume and mtDNAnum, and was predictive of T2DM in overweight, middle-aged men. METHODS Whole-body physiological (ISI-insulin sensitivity index, HOMA-IR, V̇O2max) and muscle biochemical/molecular (vastus lateralis; mtDNAnum, mitochondrial and glycolytic enzymes activity, lipid content and markers of lipid peroxidation) measurements were performed in three groups of overweight, middle-aged male volunteers (n = 10 per group): sedentary T2DM (ST2DM); sedentary control (SC) and non-sedentary control (NSC), who differed in aerobic capacity (ST2DM < SC < NSC). RESULTS mtDNAnum was greater in NSC versus SC and ST2DM (P < 0.001; P < 0.001), and less in ST2DM versus SC (P < 0.01). Across all groups, mtDNAnum positively correlated with ISI (P < 0.001; r = 0.688) and V̇O2max (normalised to free fat mass; r = 0.684, P < 0.001), and negatively correlated to HOMA-IR (r = -0.544, P < 0.01). The activity of mitochondrial enzymes (GluDH, CS and β-HAD) was greater in NSC than ST2DM (P < 0.01, P < 0.001 and P < 0.05) and SC (P < 0.05, P < 0.01 and P < 0.05), but similar between ST2DM and SC. Intramuscular-free fatty acids, triglycerides and malondialdehyde contents were similar between ST2DM and SC. CONCLUSIONS Body composition and indices of muscle mitochondrial volume/function were similar between SC and ST2DM. However, mtDNAnum differed and was positively associated with ISI, HOMA-IR and V̇O2max across all groups. Collectively, the findings support the contention that habitual physical activity is a key component of T2DM development, possibly by influencing mtDNAnum.
Collapse
Affiliation(s)
- Dumitru Constantin-Teodosiu
- MRC/ARUK Centre for Musculoskeletal Ageing Research, National Institute for Health Research Nottingham Biomedical Research Centre, School of Life Sciences, Nottingham University Medical School, Nottingham, NG7 2UH, UK.
| | - Despina Constantin
- MRC/ARUK Centre for Musculoskeletal Ageing Research, National Institute for Health Research Nottingham Biomedical Research Centre, School of Life Sciences, Nottingham University Medical School, Nottingham, NG7 2UH, UK
| | - Maurice M Pelsers
- NUTRIM School for Nutrition and Translational Research in Metabolism, Department of Human Biology and Movement Sciences, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Lex B Verdijk
- NUTRIM School for Nutrition and Translational Research in Metabolism, Department of Human Biology and Movement Sciences, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Luc van Loon
- NUTRIM School for Nutrition and Translational Research in Metabolism, Department of Human Biology and Movement Sciences, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Paul L Greenhaff
- MRC/ARUK Centre for Musculoskeletal Ageing Research, National Institute for Health Research Nottingham Biomedical Research Centre, School of Life Sciences, Nottingham University Medical School, Nottingham, NG7 2UH, UK
| |
Collapse
|
5
|
Wilhelmsen A, Mallinson J, Jones R, Cooper S, Taylor T, Tsintzas K. Chronic effects of high-intensity interval training on postprandial lipemia in healthy men. J Appl Physiol (1985) 2019; 127:1763-1771. [PMID: 31622161 DOI: 10.1152/japplphysiol.00131.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The aim of this study was to determine the chronic (≥72 h postexercise) effects of high-intensity interval training (HIIT) on postprandial lipemia and metabolic markers in healthy volunteers. Eight physically active young men (mean ± SD: age 22 ± 3 yr, height 1.77 ± 0.07 m, body mass 67.7 ± 6.2 kg) underwent two 6-h mixed-meal tolerance tests and resting vastus lateralis muscle biopsies before the first session and ≥72 h after the final session of 4 wk of HIIT [16 sessions in total; 10 × 60-s bouts of cycling at 90% maximal oxygen uptake (V̇o2max), interspersed with 60-s intervals at 45% V̇o2max]. Arterialized and deep venous blood samples from across the forearm, brachial artery blood flow measurements, and whole-body indirect calorimetry data were obtained before, and at regular intervals for 6 h after, consumption of a standardized mixed meal. The main findings revealed that, when assessed ≥72 h postexercise, postprandial free fatty acid (FFA) uptake across the forearm was increased in response to exercise training (P = 0.025). However, 4 wk of HIIT did not alter fasting or postprandial circulating triglyceride concentrations or their tissue uptake, despite a 10.2% ± 7.7% improvement in V̇o2max (P = 0.004). Protein content of adipose triglyceride lipase in the vastus lateralis at rest was reduced by 25% ± 21% (P = 0.01). Collectively, these findings suggest that 4 wk of HIIT enhances postprandial clearance of FFA when assessed ≥72 h postexercise but does not confer persisting (training) adaptations in postprandial triglyceridemia.NEW & NOTEWORTHY When assessed ≥72 h after the last exercise session, 4 wk of high-intensity interval training (HIIT) did not improve triglyceridemia but enhanced free fatty acid uptake into muscle with a concurrent reduction in skeletal muscle adipose triglyceride lipase protein content. This suggests that previously reported acute reductions in postprandial triglyceridemia following a single bout of HIIT do not translate to sustained improvements after 4 wk of HIIT, supporting the concept of frequent exercise for the maintenance of lipemic control.
Collapse
Affiliation(s)
- Andrew Wilhelmsen
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Joanne Mallinson
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Robert Jones
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Scott Cooper
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Tariq Taylor
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Kostas Tsintzas
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| |
Collapse
|
6
|
Nielsen MH, Sabaratnam R, Pedersen AJT, Højlund K, Handberg A. Acute Exercise Increases Plasma Levels of Muscle-Derived Microvesicles Carrying Fatty Acid Transport Proteins. J Clin Endocrinol Metab 2019; 104:4804-4814. [PMID: 30933285 DOI: 10.1210/jc.2018-02547] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/26/2019] [Indexed: 02/03/2023]
Abstract
CONTEXT Microvesicles (MVs) are a class of membrane particles shed by any cell in the body in physiological and pathological conditions. They are considered to be key players in intercellular communication, and with a molecular content reflecting the composition of the cell of origin, they have recently emerged as a promising source of biomarkers in a number of diseases. OBJECTIVE The effects of acute exercise on the plasma concentration of skeletal muscle-derived MVs (SkMVs) carrying metabolically important membrane proteins were examined. PARTICIPANTS Thirteen men with obesity and type 2 diabetes mellitus (T2DM) and 14 healthy male controls with obesity exercised on a cycle ergometer for 60 minutes. INTERVENTIONS Muscle biopsies and blood samples-obtained before exercise, immediately after exercise, and 3 hours into recovery-were collected for the analysis of long-chain fatty acid (LCFA) transport proteins CD36 (a scavenger receptor class B protein) and fatty acid transport protein 4 (FATP4) mRNA content in muscle and for flow cytometric studies on circulating SkMVs carrying either LCFA transport protein. RESULTS Besides establishing a flow cytometric approach for the detection of circulating SkMVs and subpopulations carrying either CD36 or FATP4 and thereby adding proof to their existence, we demonstrated an overall exercise-induced change of SkMVs carrying these LCFA transport proteins. A positive correlation between exercise-induced changes in skeletal muscle CD36 mRNA expression and concentrations of SkMVs carrying CD36 was found in T2DM only. CONCLUSIONS This approach could add important real-time information about the abundance of LCFA transport proteins present on activated muscle cells in subjects with impaired glucose metabolism.
Collapse
Affiliation(s)
| | - Rugivan Sabaratnam
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- Section of Molecular Diabetes and Metabolism, Institute of Molecular Medicine and Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Andreas James Thestrup Pedersen
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- Section of Molecular Diabetes and Metabolism, Institute of Molecular Medicine and Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- Section of Molecular Diabetes and Metabolism, Institute of Molecular Medicine and Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
7
|
Chow LS, Mashek DG, Wang Q, Shepherd SO, Goodpaster BH, Dubé JJ. Effect of acute physiological free fatty acid elevation in the context of hyperinsulinemia on fiber type-specific IMCL accumulation. J Appl Physiol (1985) 2017; 123:71-78. [PMID: 28450549 DOI: 10.1152/japplphysiol.00209.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/22/2017] [Accepted: 04/22/2017] [Indexed: 12/22/2022] Open
Abstract
It is well described that increasing free fatty acids (FFAs) to high physiological levels reduces insulin sensitivity. In sedentary humans, intramyocellular lipid (IMCL) is inversely related to insulin sensitivity. Since muscle fiber composition affects muscle metabolism, whether FFAs induce IMCL accumulation in a fiber type-specific manner remains unknown. We hypothesized that in the setting of acute FFA elevation by lipid infusion within the context of a hyperinsulinemic-euglycemic clamp, IMCL will preferentially accumulate in type 1 fibers. Normal-weight participants (n = 57, mean ± SE: age 24 ± 0.6 yr, BMI 22.2 ± 0.3 kg/m2) who were either endurance trained or sedentary by self-report were recruited from the University of Minnesota (n = 31, n = 15 trained) and University of Pittsburgh (n = 26, n = 14 trained). All participants underwent a hyperinsulinemic-euglycemic clamp in the context of a 6-h infusion of either lipid or glycerol control. A vastus lateralis muscle biopsy was obtained at baseline and end-infusion (6 h). The muscle biopsies were processed and analyzed at the University of Pittsburgh for fiber type-specific IMCL accumulation by Oil-Red-O staining. Regardless of training status, acute elevation of FFAs to high physiological levels (~400-600 meq/l) increased IMCL preferentially in type 1 fibers (+35 ± 11% compared with baseline, +29 ± 11% compared with glycerol control: P < 0.05). The increase in IMCL correlated with a decline in insulin sensitivity as measured by the hyperinsulinemic-euglycemic clamp (r = -0.32, P < 0.01) independent of training status. Regardless of training status, increase of FFAs to a physiological range within the context of hyperinsulinemia shows preferential IMCL accumulation in type 1 fibers.NEW & NOTEWORTHY This novel human study examined the effects of FFA elevation in the setting of hyperinsulinemia on accumulation of fat in specific types of muscle fibers. Within the context of the hyperinsulinemic-euglycemic clamp, we found that an increase of FFAs to a physiological range sufficient to reduce insulin sensitivity is associated with preferential IMCL accumulation in type 1 fibers.
Collapse
Affiliation(s)
- Lisa S Chow
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota;
| | - Douglas G Mashek
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Qi Wang
- Division of Biostatistics, School of Public Health, Minneapolis, Minnesota
| | - Sam O Shepherd
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; and
| | - Bret H Goodpaster
- Department of Endocrinology, University of Pittsburgh Schools of the Health Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John J Dubé
- Department of Endocrinology, University of Pittsburgh Schools of the Health Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
8
|
Kim HJ, Yoon HM, Kwon O, Lee WJ. The Effect of Pueraria Lobata/Rehmannia Glutinosa and Exercise on Fatty Acid Transporters Expression in Ovariectomized Rats Skeletal Muscles. J Exerc Nutrition Biochem 2016; 20:32-38. [PMID: 27757385 PMCID: PMC5067417 DOI: 10.20463/jenb.2016.09.20.3.5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 08/11/2016] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Pueraria lobata/rehmannia glutinosa (PR) and exercise have been receiving a lot of attention from postmenopausal women, as a result of the side effects of estrogen replacement therapy. However, the effects of PR and exercise on fatty acid transporters (FATPs), which play essential role in fatty acid transport, have not been studied. In this study, we evaluated the effects of PR and aerobic exercise on FATP1, FABPpm and FAT/CD36 expression in ovariectomized rat skeletal muscles. METHODS Sixty rats were randomly divided into 6 groups: (1)HSV; high fat diet (HFD)+sedentary+vehicle, (2)HSP; HFD+sedentary+PR, (3)HSH; HFD+sedentary+17β-estradiol, (4)HEV; HFD+exercise+vehicle, (5) HEP; HFD+exercise+PR, (6)HEH; HFD+exercise+17β-estradiol. Exercise consisted of treadmill exercise (1-4th week: 15 m/min for 30 min, 5-8th week: 18 m/min for 40 min, 5 times/week). RESULTS Exercise does not alter FATP1 and FAT/CD36 gene levels in soleus and plantaris muscles. In contrast, exercise had main effect on up-regulation of FABPpm mRNA expression in both muscles. However, FABPpm level was not increased by exercise combined with treatments, indicative of no additive effects of PR or hormone on FABPpm gene expression. On the other hand, immunohistochemistry result showed that translocation of FATPs proteins to plasma membrane were higher in PR, exercise groups, and exercise combined with PR groups in both muscles. CONCLUSION These result showed that aerobic exercise and PR may help increase fat-oxidation through the induction of FABPpm, a muscle specific transporter, in OVX rat skeletal muscles. In addition, FABPpm expression is possibly regulated post-transcriptionally in exercise, or pre-translationally in PR.
Collapse
Affiliation(s)
- Hye Jin Kim
- Department of Kinesiology and Sports Studies, College of Science and Industry Convergence, Ewha Womans
University, SeoulRepublic of Korea
| | - Hae Min Yoon
- Department of Kinesiology and Sports Studies, College of Science and Industry Convergence, Ewha Womans
University, SeoulRepublic of Korea
| | - Oran Kwon
- Department of Nutritional Science and Food Management, College of Science and Industry Convergence, Ewha Womans University, SeoulRepublic of Korea
| | - Won Jun Lee
- Department of Kinesiology and Sports Studies, College of Science and Industry Convergence, Ewha Womans
University, SeoulRepublic of Korea
| |
Collapse
|
9
|
Sparks LM, Bosma M, Brouwers B, van de Weijer T, Bilet L, Schaart G, Moonen-Kornips E, Eichmann TO, Lass A, Hesselink MK, Schrauwen P. Reduced incorporation of fatty acids into triacylglycerol in myotubes from obese individuals with type 2 diabetes. Diabetes 2014; 63:1583-1593. [PMID: 24487026 PMCID: PMC4023412 DOI: 10.2337/db13-1123] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Altered skeletal muscle lipid metabolism is a hallmark feature of type 2 diabetes (T2D). We investigated muscle lipid turnover in T2D versus BMI-matched control subjects (controls) and examined whether putative in vivo differences would be preserved in the myotubes. Male obese T2D individuals (n = 6) and BMI-matched controls (n = 6) underwent a hyperinsulinemic-euglycemic clamp, VO2max test, dual-energy X-ray absorptiometry scan, underwater weighing, and muscle biopsy of the vastus lateralis. (14)C-palmitate and (14)C-oleate oxidation rates and incorporation into lipids were measured in muscle tissue as well as in primary myotubes. Palmitate oxidation (controls: 0.99 ± 0.17 nmol/mg protein; T2D: 0.53 ± 0.07 nmol/mg protein; P = 0.03) and incorporation of fatty acids (FAs) into triacylglycerol (TAG) (controls: 0.45 ± 0.13 nmol/mg protein; T2D: 0.11 ± 0.02 nmol/mg protein; P = 0.047) were significantly reduced in muscle homogenates of T2D. These reductions were not retained for palmitate oxidation in primary myotubes (P = 0.38); however, incorporation of FAs into TAG was lower in T2D (P = 0.03 for oleate and P = 0.11 for palmitate), with a strong correlation of TAG incorporation between muscle tissue and primary myotubes (r = 0.848, P = 0.008). The data indicate that the ability to incorporate FAs into TAG is an intrinsic feature of human muscle cells that is reduced in individuals with T2D.
Collapse
Affiliation(s)
- Lauren M. Sparks
- Department of Human Biology, NUTRIM—School for Nutrition, Toxicology and Metabolism, Departments of Human Biology, Maastricht University Medical Center, Maastricht, the Netherlands
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL
| | - Madeleen Bosma
- Department of Human Biology, NUTRIM—School for Nutrition, Toxicology and Metabolism, Departments of Human Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Bram Brouwers
- Department of Human Biology, NUTRIM—School for Nutrition, Toxicology and Metabolism, Departments of Human Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Tineke van de Weijer
- Department of Human Biology, NUTRIM—School for Nutrition, Toxicology and Metabolism, Departments of Human Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Lena Bilet
- Department of Human Biology, NUTRIM—School for Nutrition, Toxicology and Metabolism, Departments of Human Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Gert Schaart
- Department of Human Movement Sciences, NUTRIM—School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Esther Moonen-Kornips
- Department of Human Biology, NUTRIM—School for Nutrition, Toxicology and Metabolism, Departments of Human Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | | | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Matthijs K.C. Hesselink
- Department of Human Movement Sciences, NUTRIM—School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Patrick Schrauwen
- Department of Human Biology, NUTRIM—School for Nutrition, Toxicology and Metabolism, Departments of Human Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
10
|
Canton J, Neculai D, Grinstein S. Scavenger receptors in homeostasis and immunity. Nat Rev Immunol 2013; 13:621-34. [PMID: 23928573 DOI: 10.1038/nri3515] [Citation(s) in RCA: 580] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Scavenger receptors were originally identified by their ability to recognize and to remove modified lipoproteins; however, it is now appreciated that they carry out a striking range of functions, including pathogen clearance, lipid transport, the transport of cargo within the cell and even functioning as taste receptors. The large repertoire of ligands recognized by scavenger receptors and their broad range of functions are not only due to the wide range of receptors that constitute this family but also to their ability to partner with various co-receptors. The ability of individual scavenger receptors to associate with different co-receptors makes their responsiveness extremely versatile. This Review highlights recent insights into the structural features that determine the function of scavenger receptors and the emerging role that these receptors have in immune responses, notably in macrophage polarization and in the pathogenesis of diseases such as atherosclerosis and Alzheimer's disease.
Collapse
Affiliation(s)
- Johnathan Canton
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | |
Collapse
|
11
|
Holloway GP, Schwenk RW, Luiken JJFP, Glatz JFC, Bonen A. Fatty acid transport in skeletal muscle: role in energy provision and insulin resistance. ACTA ACUST UNITED AC 2010. [DOI: 10.2217/clp.10.51] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
12
|
Glatz JFC, Luiken JJFP, Bonen A. Membrane Fatty Acid Transporters as Regulators of Lipid Metabolism: Implications for Metabolic Disease. Physiol Rev 2010; 90:367-417. [DOI: 10.1152/physrev.00003.2009] [Citation(s) in RCA: 515] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Long-chain fatty acids and lipids serve a wide variety of functions in mammalian homeostasis, particularly in the formation and dynamic properties of biological membranes and as fuels for energy production in tissues such as heart and skeletal muscle. On the other hand, long-chain fatty acid metabolites may exert toxic effects on cellular functions and cause cell injury. Therefore, fatty acid uptake into the cell and intracellular handling need to be carefully controlled. In the last few years, our knowledge of the regulation of cellular fatty acid uptake has dramatically increased. Notably, fatty acid uptake was found to occur by a mechanism that resembles that of cellular glucose uptake. Thus, following an acute stimulus, particularly insulin or muscle contraction, specific fatty acid transporters translocate from intracellular stores to the plasma membrane to facilitate fatty acid uptake, just as these same stimuli recruit glucose transporters to increase glucose uptake. This regulatory mechanism is important to clear lipids from the circulation postprandially and to rapidly facilitate substrate provision when the metabolic demands of heart and muscle are increased by contractile activity. Studies in both humans and animal models have implicated fatty acid transporters in the pathogenesis of diseases such as the progression of obesity to insulin resistance and type 2 diabetes. As a result, membrane fatty acid transporters are now being regarded as a promising therapeutic target to redirect lipid fluxes in the body in an organ-specific fashion.
Collapse
Affiliation(s)
- Jan F. C. Glatz
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; and Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Joost J. F. P. Luiken
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; and Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Arend Bonen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; and Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| |
Collapse
|
13
|
Moro C, Galgani JE, Luu L, Pasarica M, Mairal A, Bajpeyi S, Schmitz G, Langin D, Liebisch G, Smith SR. Influence of gender, obesity, and muscle lipase activity on intramyocellular lipids in sedentary individuals. J Clin Endocrinol Metab 2009; 94:3440-7. [PMID: 19531593 PMCID: PMC2741707 DOI: 10.1210/jc.2009-0053] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
CONTEXT Obesity and type 2 diabetes are associated with elevated intramyocellular lipids (IMCLs) and insulin resistance. OBJECTIVE We tested the hypothesis that skeletal muscle lipases activity could influence IMCL content (including diacylglycerol and ceramides). DESIGN AND PATIENTS The present study included 48 subjects with a wide range of age (19-68 yr) and body mass index (20-45 kg/m(2)) who underwent skeletal muscle biopsy, dual-energy x-ray absorptiometry and a hyperinsulinemic euglycemic clamp. MAIN OUTCOME MEASURES Insulin sensitivity by hyperinsulinemic clamp, and intramyocellular triacylglycerol (IMTG), diacylglycerol (DAG), and ceramides content, and triacylglycerol and diacylglycerol hydrolase activities were measured in biopsies of vastus lateralis. IMCL was measured by (1)H-magnetic resonance spectroscopy in a subgroup of 25 subjects. Multivariate regression analyses were performed to identify the main predictors of IMCL. RESULTS Body fat was the main predictor of IMTG independently of the method and the type of muscle; IMTG concentration was higher in females vs. males and obese vs. nonobese subjects. Muscle DAG and ceramides concentrations were elevated in obese and type 2 diabetic subjects and were not related to body fat and fasting free fatty acids, whereas a direct association with the ratio of diacylglycerol hydrolase to triacylglycerol hydrolase activity (an index of incomplete triacylglycerol hydrolysis) was observed, which explained 54 and 38% of the variance in DAG and ceramides (P < 0.001), respectively. DAG content was the main determinant of insulin resistance. CONCLUSIONS These data suggest that intramyocellular DAG is an independent predictor of insulin resistance in humans and that its levels correlate with lipolytic enzymes activity in skeletal muscle but not with markers of adiposity.
Collapse
Affiliation(s)
- Cedric Moro
- Department of Molecular and Experimental Endocrinology, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, Louisiana 70808, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc Natl Acad Sci U S A 2009; 106:15430-5. [PMID: 19706383 DOI: 10.1073/pnas.0904944106] [Citation(s) in RCA: 729] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Visceral adipose tissue (VAT) is an important risk factor for obesity-related metabolic disorders. Therefore, a reduction in VAT has become a key goal in obesity management. However, VAT is correlated with intrahepatic triglyceride (IHTG) content, so it is possible that IHTG, not VAT, is a better marker of metabolic disease. We determined the independent association of IHTG and VAT to metabolic function, by evaluating groups of obese subjects, who differed in IHTG content (high or normal) but matched on VAT volume or differed in VAT volume (high or low) but matched on IHTG content. Stable isotope tracer techniques and the euglycemic-hyperinsulinemic clamp procedure were used to assess insulin sensitivity and very-low-density lipoprotein-triglyceride (VLDL-TG) secretion rate. Tissue biopsies were obtained to evaluate cellular factors involved in ectopic triglyceride accumulation. Hepatic, adipose tissue and muscle insulin sensitivity were 41, 13, and 36% lower (P < 0.01), whereas VLDL-triglyceride secretion rate was almost double (P < 0.001), in subjects with higher than normal IHTG content, matched on VAT. No differences in insulin sensitivity or VLDL-TG secretion were observed between subjects with different VAT volumes, matched on IHTG content. Adipose tissue CD36 expression was lower (P < 0.05), whereas skeletal muscle CD36 expression was higher (P < 0.05), in subjects with higher than normal IHTG. These data demonstrate that IHTG, not VAT, is a better marker of the metabolic derangements associated with obesity. Furthermore, alterations in tissue fatty acid transport could be involved in the pathogenesis of ectopic triglyceride accumulation by redirecting plasma fatty acid uptake from adipose tissue toward other tissues.
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW To summarize recent studies that shed more light on possible mechanisms by which ectopic lipid storage affects organ function. RECENT FINDINGS Although ectopic lipids have been considered as biomarkers of lipotoxicity, adaptation of metabolic fluxes and of mitochondrial function seem to be more important than actual cellular fat contents in liver and muscle. Diabetic and obese humans have elevated myocardial lipid contents, which are associated with mitochondrial and contractile dysfunction and could even precede the development of heart failure. Although pancreatic fat content is negatively associated with insulin secretion, [beta]-cell triglycerides are not easily accessible to measurement in humans rendering their role for [beta]-cell function unclear. New approaches to quantify energy metabolism in various organs could help to identify novel biomarkers of organ function in humans. SUMMARY Dietary intake of high-caloric high-fat diets and sedentary lifestyle lead to increased storage of triglycerides not only in adipose tissue but also ectopically in other tissues. Intracellular lipid contents in skeletal muscle and liver have been related to insulin resistance and inflammatory processes. Myocardial fat is increased in heart failure, whereas pancreatic fat could relate to insulin secretion.
Collapse
Affiliation(s)
- Julia Szendroedi
- Department of Medicine/Metabolic Diseases, Institute for Clinical Diabetology, German Diabetes Center, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | |
Collapse
|
16
|
Szendroedi J, Roden M. Mitochondrial fitness and insulin sensitivity in humans. Diabetologia 2008; 51:2155-67. [PMID: 18802678 DOI: 10.1007/s00125-008-1153-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 04/15/2008] [Indexed: 02/06/2023]
Abstract
Human mitochondria can be studied either in biopsies or by measuring flux through ATP synthase and phosphocreatine recovery using magnetic resonance spectroscopy. Myocellular ATP production (flux through ATP synthase [fATP]) increases by up to 90% during 8 h of insulin stimulation. Fasting mitochondrial function is 14-40% lower than in controls in the presence of insulin resistance, as seen in those with type 2 diabetes, their insulin-resistant relatives or the obese. Insulin-stimulated fATP is abolished in insulin-resistant relatives and patients with type 2 diabetes, and patients frequently show decreased mitochondrial size/density. Age, fat mass, physical activity, plasma NEFA and glucose all correlate negatively with mitochondrial function, but it is for methodological reasons difficult to determine whether reduced mitochondrial content or function account for reduced ATP production in insulin resistance. Experimental plasma NEFA elevation appears to inhibit mitochondrial function by interfering with the metabolic actions of insulin, which might explain impaired mitochondrial function in obesity. Alternatively, primary mitochondrial abnormalities, as seen in those with inherited risk of type 2 diabetes, could decrease lipid oxidation, thereby raising circulating and intracellular NEFA levels. In type 2 diabetes, chronic hyperglycaemia and dyslipidaemia could first diminish the function, and subsequently reduce the size or density of mitochondria via oxidative stress and apoptosis. Many questions remain unsolved, including (1) which mechanisms regulate mitochondrial adaptation to nutrient overload; (2) what factors control the expression of genes encoding mitochondrial proteins and other signals involved in mitochondrial biogenesis; (3) which geno/phenotypes are associated with both insulin resistance and mitochondrial abnormalities; and (4) which are the most promising targets for improving mitochondrial fitness in insulin resistance?
Collapse
Affiliation(s)
- J Szendroedi
- First Medical Department, Hanusch Hospital (Teaching Hospital of the Medical University of Vienna), Vienna, Austria
| | | |
Collapse
|
17
|
Norton L, Parr T, Chokkalingam K, Bardsley RG, Ye H, Bell GI, Pelsers MMAL, van Loon LJC, Tsintzas K. Calpain-10 gene and protein expression in human skeletal muscle: effect of acute lipid-induced insulin resistance and type 2 diabetes. J Clin Endocrinol Metab 2008; 93:992-8. [PMID: 18089694 PMCID: PMC2729205 DOI: 10.1210/jc.2007-1981] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Our objective was to investigate the effect of lipid-induced insulin resistance and type 2 diabetes on skeletal muscle calpain-10 mRNA and protein levels. RESEARCH DESIGN AND METHODS In the first part of this study, 10 healthy subjects underwent hyperinsulinemic euglycemic (4.5 mmol/liter) clamps for 6 h with iv infusion of either saline or a 20% Intralipid emulsion (Fresenius Kabi AG, Bad Homburg, Germany). Skeletal muscle biopsies were taken before and after 3- and 6-h insulin infusion and analyzed for calpain-10 mRNA and protein expression. In the second part of the study, muscle samples obtained after an overnight fast in 10 long-standing, sedentary type 2 diabetes patients, 10 sedentary, weight-matched, normoglycemic controls, and 10 age-matched, endurance-trained cyclists were analyzed for calpain-10 mRNA and protein content. RESULTS Intralipid infusion in healthy subjects reduced whole body glucose disposal by approximately 50% (P<0.001). Calpain-10 mRNA (P=0.01) but not protein content was reduced after 6-h insulin infusion in both the saline and Intralipid emulsion trials. Skeletal muscle calpain-10 mRNA and protein content did not differ between the type 2 diabetes patients and normoglycemic controls, but there was a strong trend for total calpain-10 protein to be greater in the endurance-trained athletes (P=0.06). CONCLUSIONS These data indicate that skeletal muscle calpain-10 expression is not modified by insulin resistance per se and suggest that hyperinsulinemia and exercise training may modulate human skeletal muscle calpain-10 expression.
Collapse
Affiliation(s)
- L Norton
- Centre for Integrated Systems Biology and Medicine, School of Biomedical Sciences, Nottingham University, Nottingham, NG7 2UH, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Moro C, Bajpeyi S, Smith SR. Determinants of intramyocellular triglyceride turnover: implications for insulin sensitivity. Am J Physiol Endocrinol Metab 2008; 294:E203-13. [PMID: 18003718 DOI: 10.1152/ajpendo.00624.2007] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Increased intramyocellular triglyceride (IMTG) content is found in both insulin-sensitive endurance-trained subjects and insulin-resistant obese/type 2 diabetic subjects. A high turnover rate of the IMTG pool in athletes is proposed to reduce accumulation of lipotoxic intermediates interfering with insulin signaling. IMTG turnover is a composite measure of the dynamic balance between lipolysis and lipid synthesis; both are influenced by mitochondrial fat oxidation and plasma free fatty acid availability. Therefore, more attention should be given to the factors controlling the rate of turnover of IMTG. In this review, particular attention has been given to muscle oxidative capacity, plasma free fatty acid availability, and IMTG hydrolysis (lipolysis) and synthesis. A higher oxidative, lipolytic, and lipid storage capacity in the muscle of endurance-trained subjects reflects a higher fractional turnover of the IMTG pool. Thus the co-localization of intermyofibrillar lipid droplets and mitochondria allows for a fine coupling of lipolysis of the IMTG pool to mitochondrial beta-oxidation. Conversely, reduced oxidative capacity and a mismatch between IMTG lipolysis and beta-oxidation might be detrimental to insulin sensitivity by generating several lipotoxic intermediates in sedentary populations including obese/type 2 diabetic subjects. Further studies are clearly required to better understand the relationship between the rate of turnover of IMTG and the accumulation of lipotoxic intermediates in the pathophysiology of insulin resistance.
Collapse
Affiliation(s)
- Cédric Moro
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | |
Collapse
|