1
|
Zhang F, Yu Q, Huang Y, Luo Y, Qin J, Chen L, Li E, Wang X. Study on the osmotic response and function of myo-inositol oxygenase in euryhaline fish nile tilapia ( Oreochromis niloticus). Am J Physiol Cell Physiol 2024; 326:C1054-C1066. [PMID: 38344798 DOI: 10.1152/ajpcell.00513.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 03/13/2024]
Abstract
To understand the role of myo-inositol oxygenase (miox) in the osmotic regulation of Nile tilapia, its expression was analyzed in various tissues. The results showed that the expression of miox gene was highest in the kidney, followed by the liver, and was significantly upregulated in the kidney and liver under 1 h hyperosmotic stress. The relative luminescence efficiency of the miox gene transcription starting site (-4,617 to +312 bp) under hyperosmotic stress was measured. Two fragments (-1,640/-1,619 and -620/-599) could induce the luminescence activity. Moreover, the -1,640/-1,619 and -620/-599 responded to hyperosmotic stress and high-glucose stimulation by base mutation, suggesting that osmotic and carbohydrate response elements may exist in this region. Finally, the salinity tolerance of Nile tilapia was significantly reduced after the knocking down of miox gene. The accumulation of myo-inositol was affected, and the expression of enzymes in glucose metabolism was significantly reduced after the miox gene was knocked down. Furthermore, hyperosmotic stress can cause oxidative stress, and MIOX may help maintain the cell redox balance under hyperosmotic stress. In summary, MIOX is essential in osmotic regulation to enhance the salinity tolerance of Nile tilapia by affecting myo-inositol accumulation, glucose metabolism, and antioxidant performance.NEW & NOTEWORTHY Myo-inositol oxygenase (MIOX) is the rate-limiting enzyme that catalyzes the first step of MI metabolism and determines MI content in aquatic animals. To understand the role of miox in the osmotic regulation of Nile tilapia, we analyzed its expression in different tissues and its function under hyperosmotic stress. This study showed that miox is essential in osmotic regulation to enhance the salinity tolerance of Nile tilapia by affecting myo-inositol accumulation, glucose metabolism, and antioxidant performance.
Collapse
Affiliation(s)
- Fan Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Qiuran Yu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Yuxing Huang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Yuan Luo
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Erchao Li
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Jacobs AB, Banerjee R, Deweese DE, Braun A, Babicz JT, Gee LB, Sutherlin KD, Böttger LH, Yoda Y, Saito M, Kitao S, Kobayashi Y, Seto M, Tamasaku K, Lipscomb JD, Park K, Solomon EI. Nuclear Resonance Vibrational Spectroscopic Definition of the Fe(IV) 2 Intermediate Q in Methane Monooxygenase and Its Reactivity. J Am Chem Soc 2021; 143:16007-16029. [PMID: 34570980 PMCID: PMC8631202 DOI: 10.1021/jacs.1c05436] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methanotrophic bacteria utilize the nonheme diiron enzyme soluble methane monooxygenase (sMMO) to convert methane to methanol in the first step of their metabolic cycle under copper-limiting conditions. The structure of the sMMO Fe(IV)2 intermediate Q responsible for activating the inert C-H bond of methane (BDE = 104 kcal/mol) remains controversial, with recent studies suggesting both "open" and "closed" core geometries for its active site. In this study, we employ nuclear resonance vibrational spectroscopy (NRVS) to probe the geometric and electronic structure of intermediate Q at cryogenic temperatures. These data demonstrate that Q decays rapidly during the NRVS experiment. Combining data from several years of measurements, we derive the NRVS vibrational features of intermediate Q as well as its cryoreduced decay product. A library of 90 open and closed core models of intermediate Q is generated using density functional theory to analyze the NRVS data of Q and its cryoreduced product as well as prior spectroscopic data on Q. Our analysis reveals that a subset of closed core models reproduce these newly acquired NRVS data as well as prior data. The reaction coordinate with methane is also evaluated using both closed and open core models of Q. These studies show that the potent reactivity of Q toward methane resides in the "spectator oxo" of its Fe(IV)2O2 core, in contrast to nonheme mononuclear Fe(IV)═O enzyme intermediates that H atoms abstract from weaker C-H bonds.
Collapse
Affiliation(s)
- Ariel B. Jacobs
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California, 94305, United States
| | - Rahul Banerjee
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55391 U.S.A
| | - Dory E. Deweese
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California, 94305, United States
| | - Augustin Braun
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California, 94305, United States
| | - Jeffrey T. Babicz
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California, 94305, United States
| | - Leland B. Gee
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California, 94305, United States
| | - Kyle D. Sutherlin
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California, 94305, United States
| | - Lars H. Böttger
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California, 94305, United States
| | - Yoshitaka Yoda
- Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan
| | - Makina Saito
- Department of Physics, Graduate School of Science, Tohoku University, Sendai, Miyagi 980-8578 Japan
| | - Shinji Kitao
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka, 590-0494
| | - Yasuhiro Kobayashi
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka, 590-0494
| | - Makoto Seto
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka, 590-0494
| | - Kenji Tamasaku
- RIKEN SPring-8 Center, RIKEN, Sayo, Hyogo, 679-5148, Japan
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55391 U.S.A
| | - Kiyoung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California, 94305, United States,Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California, 94025, United States
| |
Collapse
|
4
|
Maeba R, Araki A, Fujiwara Y. Serum Ethanolamine Plasmalogen and Urine Myo-Inositol as Cognitive Decline Markers. Adv Clin Chem 2018; 87:69-111. [PMID: 30342713 DOI: 10.1016/bs.acc.2018.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent studies have suggested that metabolic disorders, particularly type 2 diabetes mellitus (T2DM), and dementia, including Alzheimer's disease (AD), were linked at the clinical and molecular levels. Brain insulin deficiency and resistance may be key events in AD pathology mechanistically linking AD to T2DM. Ethanolamine plasmalogens (PlsEtns) are abundant in the brain and play essential roles in neuronal function and myelin formation. As such, PlsEtn deficiency may be pathologically relevant in some neurodegenerative disorders such as AD. Decreased brain PlsEtn associated with dementia may reflect serum PlsEtn deficiency. We hypothesized that myo-inositol plays a role in myelin formation through its facilitation of PlsEtn biosynthesis. Excessive urinary myo-inositol (UMI) loss would likely result in PlsEtn deficiency potentially leading to demyelinating diseases such as dementia. Accordingly, measurement of both serum PlsEtn and baseline UMI excretion could improve the detection of cognitive impairment (CI) in a more specific and reliable manner. To verify our hypothesis, we conducted a clinical observational study of memory clinic outpatients (MCO) and cognitively normal elderly (NE) for nearly 4.5years. We demonstrated that serum PlsEtn concentration associated with UMI excretion was useful for predicting advancing dementia in patients with mild CI. Because hyperglycemia and associated insulin resistance might be a leading cause of increased baseline UMI excretion, serum PlsEtn quantitation would be useful in detecting CI among the elderly with hyperglycemia. Our findings suggest that myo-inositol is a novel candidate molecule linking T2DM to AD.
Collapse
Affiliation(s)
- Ryouta Maeba
- Department of Biochemistry, Teikyo University School of Medicine, Tokyo, Japan
| | - Atsushi Araki
- Department of Diabetes, Metabolism and Endocrinology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Yoshinori Fujiwara
- Research Team for Social Participation and Community Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|