1
|
Ishibashi R, Maki R, Toyoshima F. Gene targeting in adult organs using in vivo cleavable donor plasmids for CRISPR-Cas9 and CRISPR-Cas12a. Sci Rep 2024; 14:7615. [PMID: 38556532 PMCID: PMC10982285 DOI: 10.1038/s41598-024-57551-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/19/2024] [Indexed: 04/02/2024] Open
Abstract
The CRISPR-Cas system for in vivo genome editing is a powerful tool for gene therapy against several diseases. We have previously developed the pCriMGET_9-12a system, an in vivo cleavable donor plasmid for precise targeted knock-in of exogenous DNA by both Cas9 and Cas12a. Here, we show that the pCriMGET_9-12a system can be applied for in vivo in-frame knock-in of exogenous DNA in adult mouse liver by hydrodynamic delivery of the targeting plasmids. The in vivo cleavable pCriMGET_9-12a donor plasmids significantly increased the knock-in efficiency of both CRISPR-Cas9 and CRISPR-Cas12a in the adult mouse liver compared to uncleavable donor plasmids. This strategy also achieved in-frame reporter gene knock-in without indel mutations. Therefore, in vivo gene targeting using the pCriMGET_9-12a system may contribute to the establishment of safer, more precise, versatile and efficient gene therapy methods in adult organs.
Collapse
Affiliation(s)
- Riki Ishibashi
- Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan.
- Department of Mammalian Regulatory Networks, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.
| | - Ritsuko Maki
- Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Fumiko Toyoshima
- Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Mammalian Regulatory Networks, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
- Department of Homeostatic Medicine, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| |
Collapse
|
2
|
Kevadiya BD, Islam F, Deol P, Zaman LA, Mosselhy DA, Ashaduzzaman M, Bajwa N, Routhu NK, Singh PA, Dawre S, Vora LK, Nahid S, Mathur D, Nayan MU, Baldi A, Kothari R, Patel TA, Madan J, Gounani Z, Bariwal J, Hettie KS, Gendelman HE. Delivery of gene editing therapeutics. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 54:102711. [PMID: 37813236 PMCID: PMC10843524 DOI: 10.1016/j.nano.2023.102711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/31/2023] [Accepted: 09/15/2023] [Indexed: 10/11/2023]
Abstract
For the past decades, gene editing demonstrated the potential to attenuate each of the root causes of genetic, infectious, immune, cancerous, and degenerative disorders. More recently, Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-associated protein 9 (CRISPR-Cas9) editing proved effective for editing genomic, cancerous, or microbial DNA to limit disease onset or spread. However, the strategies to deliver CRISPR-Cas9 cargos and elicit protective immune responses requires safe delivery to disease targeted cells and tissues. While viral vector-based systems and viral particles demonstrate high efficiency and stable transgene expression, each are limited in their packaging capacities and secondary untoward immune responses. In contrast, the nonviral vector lipid nanoparticles were successfully used for as vaccine and therapeutic deliverables. Herein, we highlight each available gene delivery systems for treating and preventing a broad range of infectious, inflammatory, genetic, and degenerative diseases. STATEMENT OF SIGNIFICANCE: CRISPR-Cas9 gene editing for disease treatment and prevention is an emerging field that can change the outcome of many chronic debilitating disorders.
Collapse
Affiliation(s)
- Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - Farhana Islam
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - Pallavi Deol
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Institute of Modeling Collaboration and Innovation and Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA.
| | - Lubaba A Zaman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - Dina A Mosselhy
- Department of Virology, Faculty of Medicine, University of Helsinki, P.O. Box 21, 00014 Helsinki, Finland; Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland; Microbiological Unit, Fish Diseases Department, Animal Health Research Institute, ARC, Dokki, Giza 12618, Egypt.
| | - Md Ashaduzzaman
- Department of Computer Science, University of Nebraska Omaha, Omaha, NE 68182, USA.
| | - Neha Bajwa
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Nanda Kishore Routhu
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| | - Preet Amol Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India; Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab.
| | - Shilpa Dawre
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKMs, NMIMS, Babulde Banks of Tapi River, MPTP Park, Mumbai-Agra Road, Shirpur, Maharashtra, 425405, India.
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.
| | - Sumaiya Nahid
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | | | - Mohammad Ullah Nayan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - Ashish Baldi
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India; Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab.
| | - Ramesh Kothari
- Department of Biosciences, Saurashtra University, Rajkot 360005, Gujarat, India.
| | - Tapan A Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-NIPER, Hyderabad 500037, Telangana, India.
| | - Zahra Gounani
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5, 00790 Helsinki, Finland.
| | - Jitender Bariwal
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, School of Medicine, 3601 4th Street, Lubbock, TX 79430-6551, USA.
| | - Kenneth S Hettie
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
3
|
Rittiner J, Cumaran M, Malhotra S, Kantor B. Therapeutic modulation of gene expression in the disease state: Treatment strategies and approaches for the development of next-generation of the epigenetic drugs. Front Bioeng Biotechnol 2022; 10:1035543. [PMID: 36324900 PMCID: PMC9620476 DOI: 10.3389/fbioe.2022.1035543] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/05/2022] [Indexed: 11/18/2022] Open
Abstract
Epigenetic dysregulation is an important determinant of many pathological conditions and diseases. Designer molecules that can specifically target endogenous DNA sequences provide a means to therapeutically modulate gene function. The prokaryote-derived CRISPR/Cas editing systems have transformed our ability to manipulate the expression program of genes through specific DNA and RNA targeting in living cells and tissues. The simplicity, utility, and robustness of this technology have revolutionized epigenome editing for research and translational medicine. Initial success has inspired efforts to discover new systems for targeting and manipulating nucleic acids on the epigenetic level. The evolution of nuclease-inactive and RNA-targeting Cas proteins fused to a plethora of effector proteins to regulate gene expression, epigenetic modifications and chromatin interactions opened up an unprecedented level of possibilities for the development of "next-generation" gene therapy therapeutics. The rational design and construction of different types of designer molecules paired with viral-mediated gene-to-cell transfers, specifically using lentiviral vectors (LVs) and adeno-associated vectors (AAVs) are reviewed in this paper. Furthermore, we explore and discuss the potential of these molecules as therapeutic modulators of endogenous gene function, focusing on modulation by stable gene modification and by regulation of gene transcription. Notwithstanding the speedy progress of CRISPR/Cas-based gene therapy products, multiple challenges outlined by undesirable off-target effects, oncogenicity and other virus-induced toxicities could derail the successful translation of these new modalities. Here, we review how CRISPR/Cas-based gene therapy is translated from research-grade technological system to therapeutic modality, paying particular attention to the therapeutic flow from engineering sophisticated genome and epigenome-editing transgenes to delivery vehicles throughout efficient and safe manufacturing and administration of the gene therapy regimens. In addition, the potential solutions to some of the obstacles facing successful CRISPR/Cas utility in the clinical research are discussed in this review. We believe, that circumventing these challenges will be essential for advancing CRISPR/Cas-based tools towards clinical use in gene and cell therapies.
Collapse
Affiliation(s)
- Joseph Rittiner
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
- Viral Vector Core, Duke University Medical Center, Durham, NC, United States
- Duke Center for Advanced Genomic Technologies, Durham, NC, United States
| | - Mohanapriya Cumaran
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
- Viral Vector Core, Duke University Medical Center, Durham, NC, United States
- Duke Center for Advanced Genomic Technologies, Durham, NC, United States
| | - Sahil Malhotra
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
- Viral Vector Core, Duke University Medical Center, Durham, NC, United States
- Duke Center for Advanced Genomic Technologies, Durham, NC, United States
| | - Boris Kantor
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
- Viral Vector Core, Duke University Medical Center, Durham, NC, United States
- Duke Center for Advanced Genomic Technologies, Durham, NC, United States
| |
Collapse
|
4
|
Rittiner JE, Moncalvo M, Chiba-Falek O, Kantor B. Gene-Editing Technologies Paired With Viral Vectors for Translational Research Into Neurodegenerative Diseases. Front Mol Neurosci 2020; 13:148. [PMID: 32903507 PMCID: PMC7437156 DOI: 10.3389/fnmol.2020.00148] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/16/2020] [Indexed: 12/20/2022] Open
Abstract
Diseases of the central nervous system (CNS) have historically been among the most difficult to treat using conventional pharmacological approaches. This is due to a confluence of factors, including the limited regenerative capacity and overall complexity of the brain, problems associated with repeated drug administration, and difficulties delivering drugs across the blood-brain barrier (BBB). Viral-mediated gene transfer represents an attractive alternative for the delivery of therapeutic cargo to the nervous system. Crucially, it usually requires only a single injection, whether that be a gene replacement strategy for an inherited disorder or the delivery of a genome- or epigenome-modifying construct for treatment of CNS diseases and disorders. It is thus understandable that considerable effort has been put towards the development of improved vector systems for gene transfer into the CNS. Different viral vectors are of course tailored to their specific applications, but they generally should share several key properties. The ideal viral vector incorporates a high-packaging capacity, efficient gene transfer paired with robust and sustained expression, lack of oncogenicity, toxicity and pathogenicity, and scalable manufacturing for clinical applications. In this review, we will devote attention to viral vectors derived from human immunodeficiency virus type 1 (lentiviral vectors; LVs) and adeno-associated virus (AAVs). The high interest in these viral delivery systems vectors is due to: (i) robust delivery and long-lasting expression; (ii) efficient transduction into postmitotic cells, including the brain; (iii) low immunogenicity and toxicity; and (iv) compatibility with advanced manufacturing techniques. Here, we will outline basic aspects of LV and AAV biology, particularly focusing on approaches and techniques aiming to enhance viral safety. We will also allocate a significant portion of this review to the development and use of LVs and AAVs for delivery into the CNS, with a focus on the genome and epigenome-editing tools based on clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas 9) and the development of novel strategies for the treatment of neurodegenerative diseases (NDDs).
Collapse
Affiliation(s)
- Joseph Edward Rittiner
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
- Viral Vector Core, Duke University Medical Center, Durham, NC, United States
- Duke Center for Advanced Genomic Technologies, Durham, NC, United States
| | - Malik Moncalvo
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
- Viral Vector Core, Duke University Medical Center, Durham, NC, United States
- Duke Center for Advanced Genomic Technologies, Durham, NC, United States
| | - Ornit Chiba-Falek
- Department of Neurology, Division of Translational Brain Sciences, Duke University Medical Center, Durham, NC, United States
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, United States
| | - Boris Kantor
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
- Viral Vector Core, Duke University Medical Center, Durham, NC, United States
- Duke Center for Advanced Genomic Technologies, Durham, NC, United States
| |
Collapse
|
5
|
Dodd DC. Editorial Farewell. Vet Pathol 2016. [DOI: 10.1177/030098587901600601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Kantor B, McCown T, Leone P, Gray SJ. Clinical applications involving CNS gene transfer. ADVANCES IN GENETICS 2015; 87:71-124. [PMID: 25311921 DOI: 10.1016/b978-0-12-800149-3.00002-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diseases of the central nervous system (CNS) have traditionally been the most difficult to treat by traditional pharmacological methods, due mostly to the blood-brain barrier and the difficulties associated with repeated drug administration targeting the CNS. Viral vector gene transfer represents a way to permanently provide a therapeutic protein within the nervous system after a single administration, whether this be a gene replacement strategy for an inherited disorder or a disease-modifying protein for a disease such as Parkinson's. Gene therapy approaches for CNS disorders has evolved considerably over the last two decades. Although a breakthrough treatment has remained elusive, current strategies are now considerably safer and potentially much more effective. This chapter will explore the past, current, and future status of CNS gene therapy, focusing on clinical trials utilizing adeno-associated virus and lentiviral vectors.
Collapse
Affiliation(s)
- Boris Kantor
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina, Columbia, SC, USA
| | - Thomas McCown
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Paola Leone
- Department of Cell Biology, Rowan University, Camden, NJ, USA
| | - Steven J Gray
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
7
|
Escors D, Breckpot K. Lentiviral vectors in gene therapy: their current status and future potential. Arch Immunol Ther Exp (Warsz) 2010; 58:107-19. [PMID: 20143172 DOI: 10.1007/s00005-010-0063-4] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 10/06/2009] [Indexed: 12/28/2022]
Abstract
The concept of gene therapy originated in the mid twentieth century and was perceived as a revolutionary technology with the promise to cure almost any disease of which the molecular basis was understood. Since then, several gene vectors have been developed and the feasibility of gene therapy has been shown in many animal models of human disease. However, clinical efficacy could not be demonstrated until the beginning of the new century in a small-scale clinical trial curing an otherwise fatal immunodeficiency disorder in children. This first success, achieved after retroviral therapy, was later overshadowed by the occurrence of vector-related leukemia in a significant number of the treated children, demonstrating that the future success of gene therapy depends on our understanding of vector biology. This has led to the development of later-generation vectors with improved efficiency, specificity, and safety. Amongst these are HIV-1 lentivirus-based vectors (lentivectors), which are being increasingly used in basic and applied research. Human gene therapy clinical trials are currently underway using lentivectors in a wide range of human diseases. The intention of this review is to describe the main scientific steps leading to the engineering of HIV-1 lentiviral vectors and place them in the context of current human gene therapy.
Collapse
Affiliation(s)
- David Escors
- Division of Infection and Immunity, Medical School of the Royal Free and University College London, London W1T 4JF, UK.
| | | |
Collapse
|
8
|
Snyder BR, Boulis NM, Federici T. Viral vector-mediated gene transfer for CNS disease. Expert Opin Biol Ther 2010; 10:381-94. [DOI: 10.1517/14712590903514074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Budak-Alpdogan T, Banerjee D, Bertino JR. Hematopoietic stem cell gene therapy with drug resistance genes: an update. Cancer Gene Ther 2005; 12:849-63. [PMID: 16037821 DOI: 10.1038/sj.cgt.7700866] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transfer of drug resistance genes into hematopoietic stem cells (HSCs) has promise for the treatment of a variety of inherited, that is, X-linked severe combined immune deficiency, adenosine deaminase deficiency, thalassemia, and acquired disorders, that is, breast cancer, lymphomas, brain tumors, and testicular cancer. Drug resistance genes are transferred into HSCs either for providing myeloprotection against chemotherapy-induced myelosuppression or for selecting HSCs that are concomitantly transduced with another gene for correction of an inherited disorder. In this review, we describe ongoing experimental approaches, observations from clinical trials, and safety concerns related to the drug resistance gene transfer.
Collapse
Affiliation(s)
- Tulin Budak-Alpdogan
- Department of Medicine, The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 195 Little Albany Street, New Brunswick, New Jersey 08903, USA
| | | | | |
Collapse
|
10
|
Affiliation(s)
- M Sadelain
- 1Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
11
|
Fletcher JC. Gene therapy in mental retardation: ethical considerations. MENTAL RETARDATION AND DEVELOPMENTAL DISABILITIES RESEARCH REVIEWS 2001; 1:7-13. [PMID: 11660293 DOI: 10.1002/mrdd.1410010105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Abstract
Gene therapy is a medical/surgical intervention currently being developed, in which genes are introduced into cells in order to treat or cure a wide variety of human diseases. The field has evolved over the past four decades, with most experimental gene-therapy studies based on the use of viruses to deliver the genes of therapeutic interest. More recently, a large number of non-viral approaches to gene therapy have emerged, yielding promising pre-clinical results, and which are currently being evaluated in early stage clinical trials.
Collapse
Affiliation(s)
- D A Treco
- TKT Incorporated, Cambridge, MA 02139, USA
| | | |
Collapse
|
13
|
Abstract
The term "gene therapy" was coined to distinguish it from the Orwellian connotations of "human genetic engineering," which, in turn, was derived from the term "genetic engineering." Genetic engineering was first used at the Sixth International Congress of Genetics held in 1932 and was taken to mean "the application of genetic principles to animal and plant breeding." Once the basics of molecular genetics and gene transfer in bacteria were established in the 1960s, gene transfer into animals and humans using either viral vectors and/or genetically modified cultured cells became inevitable. Despite the early exposition of the concept of gene therapy, progress awaited the advent of recombinant DNA technology. The lack of trustworthy techniques did not stop many researchers from attempting to transfer genes into cells in culture, animals, and humans. Viral genomes were used for the development of the first relatively efficient methods for gene transfer into mammalian cells in culture. In the late 1970s, early transfection techniques were combined with selection systems for cultured cells and recombinant DNA technology. With the development of retroviral vectors in the early 1980s, the possibility of efficient gene transfer into mammalian cells for the purpose of gene therapy became widely accepted.
Collapse
Affiliation(s)
- J A Wolff
- Waisman Center, Department of Pediatrics, University of Wisconsin, Madison 53705
| | | |
Collapse
|
14
|
Affiliation(s)
- T Friedmann
- Department of Pediatrics, UCSD School of Medicine, La Jolla 92093
| |
Collapse
|
15
|
Friedmann T. Milestone and events in the early development of human gene therapy. MOLECULAR GENETIC MEDICINE 1993; 3:1-32. [PMID: 8220161 DOI: 10.1016/b978-0-12-462003-2.50005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- T Friedmann
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla 92093
| |
Collapse
|
16
|
Abstract
The concepts of gene therapy arose initially during the 1960s and early 1970s whilst the development of genetically marked cells lines and the clarification of mechanisms of cell transformation by the papaovaviruses polyoma and SV40 was in progress. With the arrival of recombinant DNA techniques, cloned genes became available and were used to demonstrate that foreign genes could indeed correct genetic defects and disease phenotypes in mammalian cells in vitro. Efficient retroviral vectors and other gene transfer methods have permitted convincing demonstrations of efficient phenotype correction in vitro and in vivo, now making gene therapy a broadly accepted approach to therapy and justifying clinically applied studies with human patients.
Collapse
Affiliation(s)
- T Friedmann
- Department of Pediatrics, University of California San Diego, School of Medicine, La Jolla 92093
| |
Collapse
|
17
|
Abstract
The use of molecular techniques to correct human genetic diseases is a concept that was considered extremely remote by many investigators until quite recently. Several factors were responsible for changing the scientific community's attitude toward gene therapy: the development of recombinant DNA technology including the ability to clone disease-related genes; maturation of scientific and ethical reflection following apparent failures of early human experiments; and the development of efficient techniques for the transfer of genes into mammalian cells. Now is the time for the scientific and medical communities to come together and to cooperate to make human gene therapy a clinically useful procedure.
Collapse
Affiliation(s)
- T Friedmann
- Department of Pediatrics, University of California, San Diego School of Medicine, La Jolla 92093
| |
Collapse
|
18
|
Abstract
Current therapies for most human genetic diseases are inadequate. In response to the need for effective treatments, modern molecular genetics is providing tools for an unprecedented new approach to disease treatment through an attack directly on mutant genes. Recent results with several target organs and gene transfer techniques have led to broad medical and scientific acceptance of the feasibility of this "gene therapy" concept for disorders of the bone marrow, liver, and central nervous system; some kinds of cancer; and deficiencies of circulating enzymes, hormones, and coagulation factors. The most well-developed models involve alteration of mutant target genes by gene transfer with recombinant pathogenic viruses in order to express new genetic information and to correct disease phenotypes--the conversion of the swords of pathology into the plowshares of therapy.
Collapse
Affiliation(s)
- T Friedmann
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla 92093
| |
Collapse
|