1
|
Andreasen M, Nedergaard S. Effects of carbonic anhydrase activity on the excitability of hippocampal axons during high-frequency firing. Brain Res 2023; 1821:148604. [PMID: 37748571 DOI: 10.1016/j.brainres.2023.148604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/24/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Epileptic activity is known to cause a lowering of intraneuronal pH, which has been suggested to serve as a feedback signal to terminate seizures. The mechanism of such signaling is unclear, but likely involves an altered function of several types of ligand- and voltage-gated channels in postsynaptic membranes caused by increasing cytosolic and extracellular [H+]. In addition, axonal conduction properties may be altered by endogenous pH signals, but this has not been investigated. In the present study, we have recorded the axonal compound action potential (fiber volley) in hippocampal slices in the presence of glutamatergic and GABAergic antagonists. During high-frequency stimulation (HFS) of the Schaffer collaterals, the fiber volley was depressed and its latency from stimulus to peak increased. In the CA1 stratum radiatum these changes were enhanced when the carbonic anhydrase inhibitor acetazolamide (1 mM) was co-perfused. The enhancing effect of acetazolamide was absent after lowering of [Ca2+] in the perfusion medium. Acetazolamide had no detectable effect on HFS-evoked fiber volleys recorded from a more proximal site along the Schaffer collaterals (at the CA2-CA3 border) or from axons in the alveus of CA1. Intracellular acidification imposed by washout of NH4Cl (5 mM) had qualitatively similar effects on fiber volleys evoked at low frequency as those observed with acetazolamide during HFS in CA1 stratum radiatum. The results suggest that carbonic anhydrase-dependent pH regulation counteracts activity-induced reduction of the excitability of Schaffer collateral axons in CA1. A possible influence from local synaptic terminals on this effect is discussed.
Collapse
Affiliation(s)
- Mogens Andreasen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Steen Nedergaard
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
2
|
Prelic S, Pal Mahadevan V, Venkateswaran V, Lavista-Llanos S, Hansson BS, Wicher D. Functional Interaction Between Drosophila Olfactory Sensory Neurons and Their Support Cells. Front Cell Neurosci 2022; 15:789086. [PMID: 35069116 PMCID: PMC8777253 DOI: 10.3389/fncel.2021.789086] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/15/2021] [Indexed: 01/14/2023] Open
Abstract
Insects detect volatile chemicals using antennae, which house a vast variety of olfactory sensory neurons (OSNs) that innervate hair-like structures called sensilla where odor detection takes place. In addition to OSNs, the antenna also hosts various support cell types. These include the triad of trichogen, tormogen, and thecogen support cells that lie adjacent to their respective OSNs. The arrangement of OSN supporting cells occurs stereotypically for all sensilla and is widely conserved in evolution. While insect chemosensory neurons have received considerable attention, little is known about the functional significance of the cells that support them. For instance, it remains unknown whether support cells play an active role in odor detection, or only passively contribute to homeostasis, e.g., by maintaining sensillum lymph composition. To investigate the functional interaction between OSNs and support cells, we used optical and electrophysiological approaches in Drosophila. First, we characterized the distribution of various supporting cells using genetic markers. By means of an ex vivo antennal preparation and genetically-encoded Ca2+ and K+ indicators, we then studied the activation of these auxiliary cells during odor presentation in adult flies. We observed acute responses and distinct differences in Ca2+ and K+ fluxes between support cell types. Finally, we observed alterations in OSN responses upon thecogen cell ablation in mature adults. Upon inducible ablation of thecogen cells, we notice a gain in mechanical responsiveness to mechanical stimulations during single-sensillum recording, but a lack of change to the neuronal resting activity. Taken together, these results demonstrate that support cells play a more active and responsive role during odor processing than previously thought. Our observations thus reveal that support cells functionally interact with OSNs and may be important for the extraordinary ability of insect olfactory systems to dynamically and sensitively discriminate between odors in the turbulent sensory landscape of insect flight.
Collapse
Affiliation(s)
- Sinisa Prelic
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Venkatesh Pal Mahadevan
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Vignesh Venkateswaran
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Sofia Lavista-Llanos
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- CIFASIS-CONICET Franco-Argentine International Center for Information and Systems Sciences—National Council for Scientific and Technical Research, Rosario, Argentina
| | - Bill S. Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Dieter Wicher
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- *Correspondence: Dieter Wicher
| |
Collapse
|
3
|
Bai R, Springer CS, Plenz D, Basser PJ. Brain active transmembrane water cycling measured by MR is associated with neuronal activity. Magn Reson Med 2018; 81:1280-1295. [PMID: 30194797 DOI: 10.1002/mrm.27473] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 02/02/2023]
Abstract
PURPOSE fMRI is widely used to study brain activity. Unfortunately, conventional fMRI methods assess neuronal activity only indirectly, through hemodynamic coupling. Here, we show that active, steady-state transmembrane water cycling (AWC) could serve as a basis for a potential fMRI mechanism for direct neuronal activity detection. METHODS AWC and neuronal actitivity in rat organotypic cortical cultures were simultaneously measured with a hybrid MR-fluorescence system. Perfusion with a paramagnetic MRI contrast agent, Gadoteridol, allows NMR determination of the kinetics of transcytolemmal water exchange. Changes in intracellular calcium concentration, [Cai 2+ ] were used as a proxy of neuronal activity and were monitored by fluorescence imaging. RESULTS When we alter neuronal activity by titrating with extracellular [K+ ] near the normal value, we see an AWC response resembling Na+ -K+ -ATPase (NKA) Michaelis-Menten behavior. When we treat with the voltage-gated sodium channel inhibitor, or with an excitatory postsynaptic inhibitor cocktail, we see AWC decrease by up to 71%. AWC was found also to be positively correlated with the basal level of spontaneous activity, which varies in different cultures. CONCLUSIONS These results suggest that AWC is associated with neuronal activity and NKA activity is a major contributor in coupling AWC to neuronal activity. Although AWC comprises steady-state, homeostatic transmembrane water exchange, our analysis also yields a simultaneous measure of the average cell volume, which reports any slower net transmembrane water transport.
Collapse
Affiliation(s)
- Ruiliang Bai
- Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.,Section on Quantitative Imaging and Tissue Sciences, DIBGI, NICHD, National Institutes of Health, Bethesda, Maryland
| | - Charles S Springer
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, Oregon
| | - Dietmar Plenz
- Section on Critical Brain Dynamics, LSN, NIMH, National Institutes of Health, Bethesda, Maryland
| | - Peter J Basser
- Section on Quantitative Imaging and Tissue Sciences, DIBGI, NICHD, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
4
|
MacVicar BA, Choi HB. Astrocytes Provide Metabolic Support for Neuronal Synaptic Function in Response to Extracellular K . Neurochem Res 2017; 42:2588-2594. [PMID: 28664400 DOI: 10.1007/s11064-017-2315-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 05/19/2017] [Accepted: 05/26/2017] [Indexed: 01/07/2023]
Abstract
It is an honour to have this opportunity write an article in recognition of the immense contributions of Bruce Ransom to the field of glial research. For me (BAM) personally there are many highlights both as a colleague and a friend that come to mind when I reflect on the many years that I have known Bruce. My own entry into the glial field was inspired by the early work by Ransom and his lab showing the sensitivity of astrocytes to neuronal activity. During my PhD and postdoctoral research I read these early papers and was inspired to ask the question when I first set up my independent lab in 1983: what if astrocytes also express some of the multitude of ion channels or transmitter receptors that were beginning to be described in neurons? Could they modify neuronal excitability during seizures or behaviour? As it turned out this was not only true but glial-neuronal interactions continues to be a growing and exciting field that I am still working in. I first met Bruce at the 1984 Society for Neuroscience meeting in Anaheim at my poster describing voltage gated calcium channels in astrocytes in cell culture. That was the start of a great friendship and years of discussions and collaborations. This review describes recent work from my lab led by Hyun Beom Choi that followed and was inspired by the groundbreaking studies by Bruce on electrophysiological and pH recordings from astrocytes and on glycogen mobilization in astrocytes to protect white matter axons.
Collapse
Affiliation(s)
- Brian A MacVicar
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z3, Canada.
| | - Hyun Beom Choi
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z3, Canada
| |
Collapse
|
5
|
Abstract
Throughout the nervous system, neurons are closely surrounded by glial cells, leaving only a 20-nm wide extracellular space filled with interstitial fluid. Ions, transmitters, hormones, nutrients, and waste products all share this narrow diffusion pathway. Because the interstitial space occupies only a small volume, neuronal activity can lead to appreciable changes in the extracellular concentration of ions, protons, and neurotrans mitters. These changes can affect neuronal activity and are believed to be influenced by glial cells. The proximity of glial processes to synapses and axons make glial cells ideal partners to sequester ions and transmitters released by neurons. The failure of glial cells to perform such essential homeostatic functions can have profound effects, and these homeostatic activities may constitute one way in which glial cells can influence neuronal signaling. In addition, glial cells, which, unlike most neurons, are coupled to each other through gap-junctions, communicate with each other and possibly also with adjacent neurons through prop agated intracellular Ca2+waves. The importance of such interglial signaling is not understood. Additionally, glial cells and neurons mutually modulate their expression of ion channels, most likely through factors re leased into the extracellular space. The range of responses observed in glial cells and their intimate anatomical relationship with neurons suggest a broader role for glia than is currently appreciated. It also emphasizes the importance of a better understanding of glial-neuronal interactions to an understanding of brain function. The Neuroscientist 1:328-337, 1995
Collapse
Affiliation(s)
- Harald Sontheimer
- Neurobiology Research Center and Department of Physiology and Biophysics The University of Alabama at Birmingham Birmingham, Alabama
| |
Collapse
|
6
|
Wang L, Dufour S, Valiante TA, Carlen PL. Extracellular Potassium and Seizures: Excitation, Inhibition and the Role of Ih. Int J Neural Syst 2016; 26:1650044. [PMID: 27464853 DOI: 10.1142/s0129065716500441] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Seizure activity leads to increases in extracellular potassium concentration ([K[Formula: see text]]o), which can result in changes in neuronal passive and active membrane properties as well as in population activities. In this study, we examined how extracellular potassium modulates seizure activities using an acute 4-AP induced seizure model in the neocortex, both in vivo and in vitro. Moderately elevated [K[Formula: see text]]o up to 9[Formula: see text]mM prolonged seizure durations and shortened interictal intervals as well as depolarized the neuronal resting membrane potential (RMP). However, when [K[Formula: see text]]o reached higher than 9[Formula: see text]mM, seizure like events (SLEs) were blocked and neurons went into a depolarization-blocked state. Spreading depression was never observed as the blockade of ictal events could be reversed within 1-2[Formula: see text]min after the raised [K[Formula: see text]]o was changed back to control levels. This concentration-dependent dual effect of [K[Formula: see text]]o was observed using in vivo and in vitro mouse brain preparations as well as in human neocortical tissue resected during epilepsy surgery. Blocking the Ih current, mediated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, modulated the elevated [K[Formula: see text]]o influence on SLEs by promoting the high [K[Formula: see text]]o inhibitory actions. These results demonstrate biphasic actions of raised [K[Formula: see text]]o on neuronal excitability and seizure activity.
Collapse
Affiliation(s)
- Lihua Wang
- 1 Departments of Medicine (Neurology) and Physiology, University Health Network, University of Toronto, Toronto, M5T 2S8, Ontario, Canada
| | - Suzie Dufour
- 1 Departments of Medicine (Neurology) and Physiology, University Health Network, University of Toronto, Toronto, M5T 2S8, Ontario, Canada
| | - Taufik A Valiante
- 2 Division of Neurosurgery, Department of Surgery, University Health Network, University of Toronto, Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, M5T 2S8, Ontario, Canada
| | - Peter L Carlen
- 3 Departments of Medicine (Neurology) and Physiology, University Health Network, University of Toronto, Institute of Biomaterials and Biomedical Engineering University of Toronto, Toronto, M5T 2S8, Ontario, Canada
| |
Collapse
|
7
|
Scemes E, Spray DC. Extracellular K⁺ and astrocyte signaling via connexin and pannexin channels. Neurochem Res 2012; 37:2310-6. [PMID: 22481627 DOI: 10.1007/s11064-012-0759-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/09/2012] [Accepted: 03/21/2012] [Indexed: 10/28/2022]
Abstract
Astrocytes utilize two major pathways to achieve long distance intercellular communication. One pathway involves direct gap junction mediated signal transmission and the other consists of release of ATP through pannexin channels and excitation of purinergic receptors on nearby cells. Elevated extracellular potassium to levels occurring around hyperactive neurons affects both gap junction and pannexin1 channels. The action on Cx43 gap junctions is to increase intercellular coupling for a period that long outlasts the stimulus. This long term increase in coupling, termed "LINC", is mediated through calcium and calmodulin dependent activation of calmodulin dependent kinase (CaMK). Pannexin1 can be activated by elevations in extracellular potassium through a mechanism that is quite different. In this case, potassium shifts activation potentials to more physiological range, thereby allowing channel opening at resting or slightly depolarized potentials. Enhanced activity of both these channel types by elevations in extracellular potassium of the magnitude occurring during periods of high neuronal activity likely has profound effects on intercellular signaling among astrocytes in the nervous system.
Collapse
Affiliation(s)
- Eliana Scemes
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | |
Collapse
|
8
|
Bay V, Butt AM. Relationship between glial potassium regulation and axon excitability: a role for glial Kir4.1 channels. Glia 2012; 60:651-60. [PMID: 22290828 DOI: 10.1002/glia.22299] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 12/30/2011] [Accepted: 01/06/2012] [Indexed: 11/07/2022]
Abstract
Uptake of K(+) released by axons during action potential propagation is a major function of astrocytes. Here, we demonstrate the importance of glial inward rectifying potassium channels (Kir) in regulating extracellular K(+) ([K(+)](o)) and axonal electrical activity in CNS white matter of the mouse optic nerve. Increasing optic nerve stimulation frequency from 1 Hz to 10-35 Hz for 120 s resulted in a rise in [K(+)](o) and consequent decay in the compound action potential (CAP), a measure of reduced axonal activity. On cessation of high frequency stimulation, rapid K(+) clearance resulted in a poststimulus [K(+)](o) undershoot, followed by a slow recovery of [K(+)](o) and the CAP, which were more protracted with increasing stimulation frequency. Blockade of Kir (100 μM BaCl(2)) slowed poststimulus recovery of [K(+)](o) and the CAP at all stimulation frequencies, indicating a primary function of glial Kir was redistributing K(+) to the extracellular space to offset active removal by Na(+)-K(+) pumps. At higher levels of axonal activity, Kir blockade also increased [K(+)](o) accumulation, exacerbating the decline in the CAP and impeding its subsequent recovery. In the Kir4.1-/- mouse, astrocytes displayed a marked reduction of inward currents and were severely depolarized, resulting in retarded [K(+)](o) regulation and reduced CAP. The results demonstrate the importance of glial Kir in K(+) spatial buffering and sustaining axonal activity in the optic nerve. Glial Kir have increasing importance in K(+) clearance at higher levels of axonal activity, helping to maintain the physiological [K(+)](o) ceiling and ensure the fidelity of signaling between the retina and brain.
Collapse
Affiliation(s)
- Virginia Bay
- Institute of Biomedical and Biomolecular Science (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
| | | |
Collapse
|
9
|
Syková E, Svoboda J, Chvátal A, Jendelová P. Extracellular pH and stimulated neurons. CIBA FOUNDATION SYMPOSIUM 2007; 139:220-35. [PMID: 3203566 DOI: 10.1002/9780470513699.ch13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The use of ion-sensitive microelectrodes enabled us to follow the dynamic changes in extracellular pH (pHe) together with those in the extracellular concentration of some biologically important ions, particularly K+ and Ca2+. Activity-related changes in pHe were studied in isolated spinal cords of frogs and in spinal cords of rats in vivo. Repetitive electrical stimulation of an afferent input led either to triphasic alkaline-acid-acid changes (90% of frogs) or to triphasic alkaline-acid-alkaline changes (10% of frogs and rats) with the greatest changes in the lower dorsal horns. The transient acid shift by as much as 0.15-0.25 pH units is dominant and builds up during the stimulation. The changes in pHe were also found in response to various adequate stimuli applied to the skin on the hind limb. Using specific inhibitors of Na+/H+ exchange, K+-Cl- co-transport, Cl-/HCO3- exchange, the Na+/K+ pump and carbonic anhydrase, we found pHe homeostasis to be impaired and stimulation-induced changes in pHe decreased. We conclude that the pHe changes evoked by electrical or adequate stimulation of an afferent input are not determined by changes in extracellular strong ion concentration differences due to accumulation of lactate, since we found no effect of NaF, a metabolic blocker of lactate production. However, lactate accumulation has been demonstrated during seizures, spreading depression and anoxia. Recently, it has been recognized that the observed pHe changes can affect permeability of membrane ionic channels, neuronal excitability and glial cell function.
Collapse
Affiliation(s)
- E Syková
- Institute of Physiological Regulations, Czechoslovak Academy of Sciences, Prague, Czechoslovakia
| | | | | | | |
Collapse
|
10
|
Bolton S, Butt AM. The optic nerve: A model for axon–glial interactions. J Pharmacol Toxicol Methods 2005; 51:221-33. [PMID: 15862467 DOI: 10.1016/j.vascn.2004.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2004] [Indexed: 11/24/2022]
Abstract
The rodent optic nerve is a model tissue for the physiological investigation of axonal-glial interactions in a typical CNS white matter tract. There is strong evidence that nerve transmission is maintained by a considerable degree of dynamic signalling between axons and glia through a variety of mechanisms, such as regulation of the ionic environment, energy metabolism and calcium signalling. This review focuses on the methods used to examine axonal and glial functions and interactions, primarily in the rodent optic nerve. Techniques encompass intracellular microelectrodes, sucrose- and grease-gap recordings of membrane potentials, suction electrode to measure compound action potentials, the use of ion-sensitive electrodes, patch clamping and imaging. An overview of the advantages and drawbacks of each technique is given and the application of each to the understanding glial and axonal physiology is briefly discussed.
Collapse
Affiliation(s)
- Sally Bolton
- Centre for Neuroscience Research, Hodgkin Building, GKT Guy's Campus, King's College, London Bridge, London, SE1 1UL, UK
| | | |
Collapse
|
11
|
Abstract
Rapid changes in extracellular K+ concentration ([K+](o)) in the mammalian CNS are counteracted by simple passive diffusion as well as by cellular mechanisms of K+ clearance. Buffering of [K+](o) can occur via glial or neuronal uptake of K+ ions through transporters or K+-selective channels. The best studied mechanism for [K+](o) buffering in the brain is called K+ spatial buffering, wherein the glial syncytium disperses local extracellular K+ increases by transferring K+ ions from sites of elevated [K+](o) to those with lower [K+](o). In recent years, K+ spatial buffering has been implicated or directly demonstrated by a variety of experimental approaches including electrophysiological and optical methods. A specialized form of spatial buffering named K+ siphoning takes place in the vertebrate retina, where glial Muller cells express inwardly rectifying K+ channels (Kir channels) positioned in the membrane domains near to the vitreous humor and blood vessels. This highly compartmentalized distribution of Kir channels in retinal glia directs K+ ions from the synaptic layers to the vitreous humor and blood vessels. Here, we review the principal mechanisms of [K+](o) buffering in the CNS and recent molecular studies on the structure and functions of glial Kir channels. We also discuss intriguing new data that suggest a close physical and functional relationship between Kir and water channels in glial cells.
Collapse
Affiliation(s)
- P Kofuji
- Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
12
|
MacAulay N, Hamann S, Zeuthen T. Water transport in the brain: Role of cotransporters. Neuroscience 2004; 129:1031-44. [PMID: 15561418 DOI: 10.1016/j.neuroscience.2004.06.045] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2004] [Indexed: 11/15/2022]
Abstract
It is generally accepted that cotransporters transport water in addition to their normal substrates, although the precise mechanism is debated; both active and passive modes of transport have been suggested. The magnitude of the water flux mediated by cotransporters may well be significant: both the number of cotransporters per cell and the unit water permeability are high. For example, the Na(+)-glutamate cotransporter (EAAT1) has a unit water permeability one tenth of that of aquaporin (AQP) 1. Cotransporters are widely distributed in the brain and participate in several vital functions: inorganic ions are transported by K(+)-Cl(-) and Na(+)-K(+)-Cl(-) cotransporters, neurotransmitters are reabsorbed from the synaptic cleft by Na(+)-dependent cotransporters located on glial cells and neurons, and metabolites such as lactate are removed from the extracellular space by means of H(+)-lactate cotransporters. We have previously determined water transport capacities for these cotransporters in model systems (Xenopus oocytes, cell cultures, and in vitro preparations), and will discuss their role in water homeostasis of the astroglial cell under both normo- and pathophysiologal situations. Astroglia is a polarized cell with EAAT localized at the end facing the neuropil while the end abutting the circulation is rich in AQP4. The water transport properties of EAAT suggest a new model for volume homeostasis of the extracellular space during neural activity.
Collapse
Affiliation(s)
- N MacAulay
- The Panum Institute, Department of Medical Physiology, University of Copenhagen, Blegdamsvej 3C, DK 2200N Copenhagen, Denmark
| | | | | |
Collapse
|
13
|
Cannizzaro C, Monastero R, Vacca M, Martire M. [3H]-DA release evoked by low pH medium and internal H+ accumulation in rat hypothalamic synaptosomes: involvement of calcium ions. Neurochem Int 2003; 43:9-17. [PMID: 12605878 DOI: 10.1016/s0197-0186(02)00211-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The pH fluctuations have been often interpreted as an insufficient regulation or as a consequence of the onset of pathological events, such as ischemia, in which a significant decrease in pH levels occurs. Neurotransmitter release appears to be affected by pH drop significantly. In this study, we investigated the effect of an extracellular and an intracellular acidification on tritiated dopamine release ([3H]-DA release), from superfused rat hypothalamic synaptosomes. When compared to basal release, extracellular acidification, due to a reduction in the external pH of the nominally carbonic-free superfusion media, provoked a significant increase in [3H]-DA release that showed a sensitiveness to calcium omission. Intraterminal acidification, obtained blocking the Na(+)/H(+) exchanger by 5-(N-ethyl-N-isopropyl)-amiloride (EIPA) and 5-(N,N-dimethyl)-amiloride (DMA), induced a significant increase in [3H]-DA outflow which occurred in a calcium-dependent manner (80% inhibition in absence of calcium from superfusion media). To further promote an intraterminal acidification through a H(+) inner accumulation, the proton ionophore nigericin was used. At every dose employed (10 microM), this compound induced a significant increase in [3H]-DA outflow, compared to basal release. Nigericin-evoked [3H]-DA release showed a 50% decrease when calcium was omitted from superfusion media. When BAPTA-AM, a chelator of intracellular calcium, was added, nigericin-evoked [3H]-DA was completely abolished. These data indicate that [3H]-DA release can be induced by extracellular acidification due to a lowering of external pH and by an intraterminal acidification due to an internal proton accumulation. The mechanism that can trigger this exocytotic process appears to depend on calcium presence, and in particular, on an increased intraterminal calcium availability.
Collapse
Affiliation(s)
- Carla Cannizzaro
- Department of Pharmacology, University of Palermo, Via Del Vespro 129, 90127, Palermo, Italy.
| | | | | | | |
Collapse
|
14
|
Potassium homeostasis in the brain at the organ and cell level. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1569-2558(03)31027-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
15
|
Makara JK, Petheö GL, Tóth A, Spät A. pH-sensitive inwardly rectifying chloride current in cultured rat cortical astrocytes. Glia 2001; 34:52-8. [PMID: 11284019 DOI: 10.1002/glia.1039] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The effect of pH(o) on plasma membrane chloride current of cultured rat cortical astrocytes was investigated using the whole-cell patch-clamp technique. In the presence of intra- and extracellular solutions with symmetrical high Cl(-) content and K(+) channel inhibitors, the cells exhibited an inwardly rectifying current. The current activated slowly at potentials negative to -40 mV and did not display time-dependent inactivation. The current was inhibited by 0.1 mM Cd(2+), 0.1 mM Zn(2+), 1 mM 9-anthracene-carboxylic acid, and 0.2 mM 5-nitro-2-(3-phenylpropylamino)benzoic acid, but not by 10 mM Ba(2+) or 3 mM Cs(+). Reversal potential of the current followed the chloride equilibrium potential and was not influenced by changes in K(+) or Na(+) concentration. The inwardly rectifying chloride current was augmented by extracellular acidosis and reduced by alkalosis. The pH sensitivity was most pronounced in the physiologically relevant pH(o) range of 6.9--7.9. Lowering pH to 6.4 induced no additional increase in steady-state current amplitude compared with pH(o) 6.9, but it substantially slowed the activation kinetics. According to its kinetic and pharmacological properties this chloride current is similar to that found in cultured rat astrocytes after long-term treatment with dibutyryl-cAMP, however, in our cultures it was consistently expressed without any treatment with the drug. Considering that astrocytes possess carbonic anhydrase and Cl(-)/HCO3(-) antiporter, this current may participate in the regulation of the interstitial and astrocyte pH.
Collapse
Affiliation(s)
- J K Makara
- Department of Physiology and Laboratory of Cellular and Molecular Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | | | | | | |
Collapse
|
16
|
Bordey A, Lyons SA, Hablitz JJ, Sontheimer H. Electrophysiological characteristics of reactive astrocytes in experimental cortical dysplasia. J Neurophysiol 2001; 85:1719-31. [PMID: 11287494 DOI: 10.1152/jn.2001.85.4.1719] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neocortical freeze lesions have been widely used to study neuronal mechanisms underlying hyperexcitability in dysplastic cortex. Comparatively little attention has been given to biophysical changes in the surrounding astrocytes that show profound morphological and biochemical alterations, often referred to as reactive gliosis. Astrocytes are thought to aid normal neuronal function by buffering extracellular K(+). Compromised astrocytic K(+) buffering has been proposed to contribute to neuronal dysfunction. Astrocytic K(+) buffering is mediated, partially, by the activity of inwardly rectifying K(+) channels (K(IR)) and may involve intracellular redistribution of K(+) through gap-junctions. We characterized K(+) channel expression and gap-junction coupling between astrocytes in freeze-lesion-induced dysplastic neocortex. Whole cell patch-clamp recordings were obtained from astrocytes in slices from postnatal day (P) 16--P24 rats that had received a freeze-lesion on P1. A marked increase in glial fibrillary acidic protein immunoreactivity was observed along the entire length of the freeze lesion. Clusters of proliferative (bromo-deoxyuridine nuclear staining, BrdU+) astrocytes were seen near the depth of the microsulcus. Astrocytes in cortical layer I surrounding the lesion were characterized by a significant reduction in K(IR). BrdU-positive astrocytes near the depth of the microsulcus showed essentially no expression of K(IR) channels but markedly enhanced expression of delayed rectifier K(+) (K(DR)) channels. These proliferative cells showed virtually no dye coupling, whereas astrocytes in the hyperexcitable zone adjacent to the microsulcus displayed prominent dye-coupling as well as large K(IR) and outward K(+) currents. These findings suggest that reactive gliosis is accompanied by a loss of K(IR) currents and reduced gap junction coupling, which in turn suggests a compromised K(+) buffering capacity.
Collapse
Affiliation(s)
- A Bordey
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | |
Collapse
|
17
|
Ransom BR. Glial modulation of neural excitability mediated by extracellular pH: a hypothesis revisited. PROGRESS IN BRAIN RESEARCH 2001; 125:217-28. [PMID: 11098659 DOI: 10.1016/s0079-6123(00)25012-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Affiliation(s)
- B R Ransom
- University of Washington School of Medicine, Department of Neurology, Seattle 98195, USA.
| |
Collapse
|
18
|
Abstract
The incidence of seizures is high in infants and children. Many epileptic syndromes have their onset early in life. The increase in seizure susceptibility of the immature brain may be due to several factors, including an imbalance between excitatory and inhibitory processes, age-specific differences in ionic transport and clearance systems, high incidence of epileptogenic stimuli early in life, and the age-specific expression of pre- and perinatal brain anomalies. All of these factors must be taken into account when developing safe and effective age-specific antiepileptic drugs (AEDs). The use of developmental epilepsy models, followed by clinical trials in children, may help identify such AEDs.
Collapse
Affiliation(s)
- S L Moshé
- Department of Neurology, Albert Einstein College of Medicine, Einstein/Montefiore Epilepsy Management Center, Bronx, New York 10461, USA
| |
Collapse
|
19
|
Laming PR, Kimelberg H, Robinson S, Salm A, Hawrylak N, Müller C, Roots B, Ng K. Neuronal-glial interactions and behaviour. Neurosci Biobehav Rev 2000; 24:295-340. [PMID: 10781693 DOI: 10.1016/s0149-7634(99)00080-9] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Both neurons and glia interact dynamically to enable information processing and behaviour. They have had increasingly intimate, numerous and differentiated associations during brain evolution. Radial glia form a scaffold for neuronal developmental migration and astrocytes enable later synapse elimination. Functionally syncytial glial cells are depolarised by elevated potassium to generate slow potential shifts that are quantitatively related to arousal, levels of motivation and accompany learning. Potassium stimulates astrocytic glycogenolysis and neuronal oxidative metabolism, the former of which is necessary for passive avoidance learning in chicks. Neurons oxidatively metabolise lactate/pyruvate derived from astrocytic glycolysis as their major energy source, stimulated by elevated glutamate. In astrocytes, noradrenaline activates both glycogenolysis and oxidative metabolism. Neuronal glutamate depends crucially on the supply of astrocytically derived glutamine. Released glutamate depolarises astrocytes and their handling of potassium and induces waves of elevated intracellular calcium. Serotonin causes astrocytic hyperpolarisation. Astrocytes alter their physical relationships with neurons to regulate neuronal communication in the hypothalamus during lactation, parturition and dehydration and in response to steroid hormones. There is also structural plasticity of astrocytes during learning in cortex and cerebellum.
Collapse
Affiliation(s)
- P R Laming
- School of Biology and Biochemistry, Medical Biology Centre, 97 Lisburn Road, Belfast, UK.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The development of concepts describing potassium clearance mechanisms in the mammalian central nervous system in the last 35 years is reviewed. The pattern of excess potassium in the extracellular space is discussed as are the implications of these potassium levels for neuronal excitability. There is a systematic description of the available evidence for astrocytic involvement in situ. The three possible astrocytic potassium clearance mechanisms are introduced: spatial buffer mechanism; carrier-operated potassium chloride uptake as well as channel-operated potassium chloride uptake. The three mechanisms are compared and their compatibility is discussed. Evidence is now available showing that at least two of these if not all three mechanisms co-exist and complement each other. Finally, it is concluded that these potassium movements are not used as a signal system, only as a homeostatic feedback mechanisms. Such a genuine signal system involving glial elements exists--but it is based on calcium waves.
Collapse
Affiliation(s)
- W Walz
- Department of Physiology, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
21
|
Ransom CB, Ransom BR, Sontheimer H. Activity-dependent extracellular K+ accumulation in rat optic nerve: the role of glial and axonal Na+ pumps. J Physiol 2000; 522 Pt 3:427-42. [PMID: 10713967 PMCID: PMC2269766 DOI: 10.1111/j.1469-7793.2000.00427.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
1. We measured activity-dependent changes in [K+]o with K(+)-selective microelectrodes in adult rat optic nerve, a CNS white matter tract, to investigate the factors responsible for post-stimulus recovery of [K+]o. 2. Post-stimulus recovery of [K+]o followed a double-exponential time course with an initial, fast time constant, tau fast, of 0.9 +/- 0.2 s (mean +/- S.D.) and a later, slow time constant, tau slow, of 4.2 +/- 1 s following a 1 s, 100 Hz stimulus. tau fast, but not tau slow, decreased with increasing activity-dependent rises in [K+]o. tau slow, but not tau fast, increased with increasing stimulus duration. 3. Post-stimulus recovery of [K+]o was temperature sensitive. The apparent temperature coefficients (Q10, 27-37 degrees C) for the fast and slow components following a 1 s, 100 Hz stimulus were 1.7 and 2.6, respectively. 4. Post-stimulus recovery of [K+]o was sensitive to Na+ pump inhibition with 50 microM strophanthidin. Following a 1 s, 100 Hz stimulus, 50 microM strophanthidin increased tau fast and tau slow by 81 and 464%, respectively. Strophanthidin reduced the temperature sensitivity of post-stimulus recovery of [K+]o. 5. Post-stimulus recovery of [K+]o was minimally affected by the K+ channel blocker Ba2+ (0.2 mM). Following a 10 s, 100 Hz stimulus, 0.2 mM Ba2+ increased tau fast and tau slow by 24 and 18%, respectively. 6. Stimulated increases in [K+]o were followed by undershoots of [K+]o. Post-stimulus undershoot amplitude increased with stimulus duration but was independent of the peak preceding [K+]o increase. 7. These observations imply that two distinct processes contribute to post-stimulus recovery of [K+]o in central white matter. The results are compatible with a model of K+ removal that attributes the fast, initial phase of K+ removal to K+ uptake by glial Na+ pumps and the slower, sustained decline to K+ uptake via axonal Na+ pumps.
Collapse
Affiliation(s)
- C B Ransom
- Department of Neurobiology, University of Alabama School of Medicine, Birmingham 35294, USA
| | | | | |
Collapse
|
22
|
Syková E, Roitbak T, Mazel T, Simonová Z, Harvey AR. Astrocytes, oligodendroglia, extracellular space volume and geometry in rat fetal brain grafts. Neuroscience 1999; 91:783-98. [PMID: 10366034 DOI: 10.1016/s0306-4522(98)00603-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Fetal neocortex or tectum transplanted to the midbrain or cortex of newborn rats develops various degrees of gliosis, i.e. increased numbers of hypertrophied, glial fibrillary acidic protein-positive astrocytes. In addition, there were patches or bundles of myelinated fibres positive for the oligodendrocyte and central myelin marker Rip, and increased levels of extracellular matrix molecules. Three diffusion parameters--extracellular space volume fraction alpha (alpha = extracellular volume/total tissue volume), tortuosity lambda (lambda = square root(D/ADC), where D is the free and ADC is the apparent tetramethylammonium diffusion coefficient) and non-specific uptake k'--were determined in vivo from extracellular concentration-time profiles of tetramethylammonium. Grafts were subsequently processed immunohistochemically to compare diffusion measurements with graft morphology. Comparisons were made between the diffusion parameters of host cortex and corpus callosum, fetal cortical or tectal tissue transplanted to host midbrain ("C- and T-grafts") and fetal cortical tissue transplanted to host cortex ("cortex-to-cortex" or C-C-grafts). In host cortex, alpha ranged from 0.20 +/- 0.01 (layer V) to 0.21 +/- 0.01 (layers III, IV and VI) and lambda from 1.59 +/- 0.03 (layer VI) to 1.64 +/- 0.02 (layer III) (mean +/- S.E.M., n = 15). Much higher values were found in "young" C-grafts (81-150 days post-transplantation), where alpha = 0.34 +/- 0.01 and lambda = 1.78 +/- 0.03 (n = 13), as well as in T-grafts, where alpha = 0.29 +/- 0.02 and lambda = 1.85 +/- 0.04 (n = 7). Further analysis revealed that diffusion in grafts was anisotropic and more hindered than in host cortex. The heterogeneity of diffusion parameters correlated with the structural heterogeneity of the neuropil, with the highest values of alpha in gray matter and the highest values of lambda in white matter bundles. Compared to "young" C-grafts, in "old" C-grafts (one year post-transplantation) both alpha and lambda were significantly lower, and there was a clear decrease in glial fibrillary acidic protein immunoreactivity throughout the grafted tissue. In C-C-grafts, alpha and lambda varied with the degree of graft incorporation into host tissue, but on average they were significantly lower (alpha = 0.24 +/- 0.01 and lambda = 1.66 +/- 0.02, n = 8) than in young C- and T-grafts. Well-incorporated grafts revealed less astrogliosis, and alpha and lambda values were not significantly higher than those in normal host cortex. The observed changes in extracellular space diffusion parameters could affect the movement and accumulation of neuroactive substances and thus impact upon neuron-glia communication, synaptic and extrasynaptic transmission in the grafts. The potential relevance of these observations to human neuropathological conditions associated with acute or chronic astrogliosis is considered.
Collapse
Affiliation(s)
- E Syková
- Department of Neuroscience, 2nd Medical Faculty, Charles University, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
23
|
Hiruma H, Nishida S, Katakura T, Kusakabe T, Takenaka T, Kawakami T. Extracellular potassium rapidly inhibits axonal transport of particles in cultured mouse dorsal root ganglion neurites. JOURNAL OF NEUROBIOLOGY 1999; 38:225-33. [PMID: 10022568 DOI: 10.1002/(sici)1097-4695(19990205)38:2<225::aid-neu5>3.0.co;2-h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Changes in extracellular potassium concentration ([K+]o) modulate a variety of neuronal functions. However, whether axonal transport, which conveys materials to the appropriate destination for morphogenesis and other neuronal functions, depends on the extracellular K+ environment remains unclear. We therefore examined the effects of changes in [K+]o on axonal transport of particles visualized by video-enhanced microscopy in cultured mouse dorsal root gan-glion neurites. Increases in [K+]o (delta[K+]o > or = 2.5 mM) from control concentration (5 mM) inhibited both anterograde and retrograde axonal transport within a few minutes in a concentration-dependent manner. Conversely, removal of extracellular K+ induced the rapid facilitation of transport in both directions. These inhibitory and facilitatory responses were completely blocked by the K+ channel blocker tetraethylammonium (TEA), suggesting that the effect of changes in [K+]o involves the TEA-sensitive K+ channels. Increases in [K+]o provoked membrane depolarization in the absence and presence of TEA. Another depolarizing agent, veratridine, did not produce an effect on axonal transport. These results suggest that the extracellular K+-mediated inhibition of axonal transport does not depend on membrane depolarization. The inhibitory effect of increasing [K+]o on axonal transport was retained in calcium (Ca2+)-free extracellular medium, indicating that the inhibitory effect of extracellular K+ does not result from Ca2+ influx through voltage-dependent Ca2+ channels. In chloride (CI-)-free medium, increasing [K+]o failed to inhibit axonal transport, implying that the extracellular K+-mediated inhibition of axonal transport may be due to an increase in intracellular Cl- concentration associated with increases in the net inward movement of K+ and CI- across the membrane. Our results suggest that the extracellular K+ environment is involved in the rapid modulation of axonal transport of particles in dorsal root ganglion neurites.
Collapse
Affiliation(s)
- H Hiruma
- Department of Physiology, Kitasato University School of Medicine, Sagamihara, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Ransom BR, Orkand RK. Glial-neuronal interactions in non-synaptic areas of the brain: studies in the optic nerve. Trends Neurosci 1996; 19:352-8. [PMID: 8843605 DOI: 10.1016/0166-2236(96)10045-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Optic nerves, like other CNS tracts, consist of axons closely apposed across narrow extracellular clefts to the cell bodies and processes of glial cells. Despite the anatomical simplicity of these pathways and the absence of synapses, a surprising range of interactions occurs between axons and glial cells mediated by changes in the chemical composition of the extracellular fluid produced by glial or neuronal stimulation. Some of the interactions are relatively brief, resulting from alterations in extracellular ions such as K+ or H+, or alterations of small molecules like glutamate or ATP. Other interactions involve much longer time periods and presumably larger signaling molecules, like peptides or proteins. These play a role not only in the development of axonal pathways but also in the processes of degeneration and regeneration that follow brain injury or disease.
Collapse
Affiliation(s)
- B R Ransom
- Dept of Neurology, University of Washington School of Medicine, Seattle 98195-6465, USA
| | | |
Collapse
|
25
|
Abstract
The regulation of H+ in nervous systems is a function of several processes, including H+ buffering, intracellular H+ sequestering, CO2 diffusion, carbonic anhydrase activity and membrane transport of acid/base equivalents across the cell membrane. Glial cells participate in all these processes and therefore play a prominent role in shaping acid/base shifts in nervous systems. Apart from a homeostatic function of H(+)-regulating mechanisms, pH transients occur in all three compartments of nervous tissue, neurones, glial cells and extracellular spaces (ECS), in response to neuronal stimulation, to neurotransmitters and hormones as well as secondary to metabolic activity and ionic membrane transport. A pivotal role for H+ regulation and shaping these pH transients must be assigned to the electrogenic and reversible Na(+)-HCO3-membrane cotransport, which appears to be unique to glial cells in nervous systems. Activation of this cotransporter results in the release and uptake of base equivalents by glial cells, processes which are dependent on the glial membrane potential. Na+/H+ and Cl-/HCO3-exchange, and possibly other membrane carriers, accomplish the set of tools in both glial cells and neurones to regulate their intracellular pH. Due to the pH dependence of a great variety of processes, including ion channel gating and conductances, synaptic transmission, intercellular communication via gap junctions, metabolite exchange and neuronal excitability, rapid and local pH transients may have signalling character for the information processing in nervous tissue. The impact of H+ signalling under both physiological and pathophysiological conditions will be discussed for a variety of nervous system functions.
Collapse
Affiliation(s)
- J W Deitmer
- Abteilung für Allgemeine Zoologie, Universität Kaiserslautern, Germany
| | | |
Collapse
|
26
|
Kirischuk S, Scherer J, Möller T, Verkhratsky A, Kettenmann H. Subcellular heterogeneity of voltage-gated Ca2+ channels in cells of the oligodendrocyte lineage. Glia 1995; 13:1-12. [PMID: 7751051 DOI: 10.1002/glia.440130102] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We studied the distribution of voltage-gated Ca2+ channels in cells of the oligodendrocyte lineage from retinal and cortical cultures. Influx of Ca2+ via voltage-gated channels was activated by membrane depolarization with elevated extracellular K+ concentration ([K+]e) and local, subcellular increases in cytosolic free Ca2+ concentration ([Ca2+]in) could be monitored with a fluometric system connected to a laser scanning confocal microscope. In glial precursor cells from both retina and cortex, small depolarizations (with 10 or 20 mM K+) activated Ca2+ transients in processes indicating the presence of low-voltage-activated Ca2+ channels. Larger depolarizations (with 50 mM K+) additionally activated high-voltage-activated Ca2+ channels in the soma. An uneven distribution of Ca2+ channels was also observed in the mature oligodendrocytes; Ca2+ transients in processes were considerably larger. Recovery of Ca2+ levels after the voltage-induced influx was achieved by the activity of the plasmalemmal Ca2+ pump, while mitochondria played a minor role to restore Ca2+ levels after an influx through voltage-operated channels. During the development of white matter tracts, cells of the oligodendrocyte lineage contact axons to form myelin. Neuronal activity is accompanied by increases in [K+]e; this may lead to Ca2+ changes in the processes and the Ca2+ increases might be a signal for the glial precursor cell to start myelin formation.
Collapse
Affiliation(s)
- S Kirischuk
- Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | | | | | | | | |
Collapse
|
27
|
Rose CR, Deitmer JW. Evidence that glial cells modulate extracellular pH transients induced by neuronal activity in the leech central nervous system. J Physiol 1994; 481 ( Pt 1):1-5. [PMID: 7853232 PMCID: PMC1155860 DOI: 10.1113/jphysiol.1994.sp020413] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
1. The role of the giant neuropile glial cells in the buffering of activity-related extracellular pH changes was studied in segmental ganglia of the leech Hirudo medicinalis L. using pH-sensitive microelectrodes and a slow, two-electrode voltage-clamp system. Neuronal activity was induced by electrical stimulation of a ganglionic side nerve (20 Hz, 1 min). 2. In CO2-HCO3(-)-buffered saline the glial cells were depolarized by 6.5 +/- 2.3 mV and alkalinized by 0.024 +/- 0.006 pH units (mean +/- SD) during the stimulation. The stimulation induced an acidification of 0.032 +/- 0.006 pH units in the extracellular spaces (ECS). 3. Voltage clamping the glial cells suppressed the stimulus-induced glial depolarization and turned the intraglial alkalinization into an acidification of 0.045 +/- 0.021 pH units (n = 6) that closely resembled the acidification observed in the presence of the anion transport blocker DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid, 0.5 mM), and in CO2-HCO(3-)-free saline. 4. Voltage clamping the glial cell resulted in the appearance of a distinct stimulus-induced extracellular alkalinization of 0.024 +/- 0.013 pH units at the onset of the stimulation, as also observed during DIDS application and in the absence of CO2-HCO3-. 5. The results suggest that glial uptake of bicarbonate is mediated by depolarization-induced activation of the electrogenic Na(+)-HCO3- cotransport, which suppresses the profound alkalinization of the ECS during neuronal activity. This is the first direct evidence the glial cells actively modulate extracellular pH changes in a voltage-dependent manner.
Collapse
Affiliation(s)
- C R Rose
- Abteilung für Allgemeine Zoologie, Universität Kaiserslautern, Germany
| | | |
Collapse
|
28
|
Butt AM, Jennings J. The astrocyte response to gamma-aminobutyric acid attenuates with age in the rat optic nerve. Proc Biol Sci 1994; 258:9-15. [PMID: 7997461 DOI: 10.1098/rspb.1994.0134] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
There is increasing evidence that glial cells respond to the inhibitory neurotransmitter gamma-aminobutyric acid (GABA), and astrocytes have been shown to possess GABAA receptors both in vivo and in vitro. A recent study by Sakatani et al. (Proc. R. Soc. Lond. B247, 155 (1992)) demonstrated the transient expression of functional GABAA receptors in the developing rat optic nerve, but axonal and glial components of the response were not distinguished. To help address this problem, we have determined the electrophysiological response to GABA in astrocytes of the isolated intact optic nerves from neonatal rats, identified morphologically following intracellular injection of horseradish peroxidase. Astrocytes responded to GABA by a GABAA receptor-mediated depolarization which attenuated gradually during post-natal development; astrocytes in 21-day-old nerves were not observed to respond to GABA. The results indicate the transient presence of functional GABAA receptors in developing rat optic nerve astrocytes in situ, and we speculate upon a role for GABA in glial signalling and the organization of axonglial interrelations during development.
Collapse
Affiliation(s)
- A M Butt
- Division of Physiology, UMDS, St Thomas's Hospital, London, U.K
| | | |
Collapse
|
29
|
Colton CA, Jia M, Li MX, Gilbert DL. K+ modulation of microglial superoxide production: involvement of voltage-gated Ca2+ channels. THE AMERICAN JOURNAL OF PHYSIOLOGY 1994; 266:C1650-5. [PMID: 7517635 DOI: 10.1152/ajpcell.1994.266.6.c1650] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A variety of cytoactive factors produced during injury and inflammation are known to activate the central nervous system (CNS) macrophage, the microglia. Since extracellular potassium levels are known to rise rapidly at sites of injury in the CNS, we examined the possibility that changes in extracellular potassium could mediate changes in microglial function. The effect of an increase in potassium concentration on microglial superoxide anion production was studied in cultured neonatal rat microglia. Rather than directly inducing superoxide anion production, exposure to media containing 25 and 55 mM potassium enhanced the production of superoxide induced by phorbol 12-myristate 13-acetate. This potentiation was blocked by nifedipine, a voltage-gated calcium channel blocker. Treatment of the microglia with BAY K 8644, an agonist for voltage-gated calcium channels, produced an enhancement of superoxide levels similar to that of potassium. Because these data indicated the presence of a voltage-gated calcium channel, we also examined whole cell current in cultured microglia. A small, voltage-dependent inward calcium current was seen that was increased by exposure of the microglia to BAY K 8644. The presence of a small but finite calcium influx via these channels may be an important factor in the regulation of intracellular microglial events such as activation of the NADPH oxidase and the consequent production of superoxide anion.
Collapse
Affiliation(s)
- C A Colton
- Department of Physiology and Biophysics, Georgetown University Medical School, Washington, District of Columbia 20007
| | | | | | | |
Collapse
|
30
|
Butt AM, Jennings J. Response of astrocytes to gamma-aminobutyric acid in the neonatal rat optic nerve. Neurosci Lett 1994; 168:53-6. [PMID: 8028793 DOI: 10.1016/0304-3940(94)90414-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The electrophysiological response to gamma-aminobutyric acid (GABA) was determined in astrocytes of the isolated intact optic nerves of rats aged 8 to 12 days old, identified morphologically following intracellular injection of horseradish peroxidase. At this age, astrocytes had a mean (+/- S.E.M.) resting membrane potential of -62.25 +/- 1.9 mV (n = 32), and responded to GABA by a depolarization characterized by an initial peak of mean 9.1 +/- 0.6 mV, which was not sustained and fell to a plateau level. The effect of GABA was mimicked by the GABAA-receptor agonist muscimol, but not by the GABAB-receptor agonist baclofen, and was reduced in the presence of the GABAA-receptor antagonist bicuculline. Astrocytes responded to 10 mM [K+]o by a single phase depolarization of 16 +/- 2 mV (n = 5). It is concluded that GABA acts directly on astrocytes and its effect is not mediated by K+ released by axons. This study indicates the presence of functional GABAA receptors in neonatal rat optic nerve astrocytes in situ. The results suggest immature astrocytes may be the source of the GABA response described in two recent studies on the rat whole optic nerve preparation. The astrocyte response to GABA may be important in axon-glial signalling during development.
Collapse
Affiliation(s)
- A M Butt
- Sherrington School of Physiology, U.M.D.S., St. Thomas's Hospital, London, UK
| | | |
Collapse
|
31
|
Pappas CA, Ransom BR. A depolarization-stimulated, bafilomycin-inhibitable H+ pump in hippocampal astrocytes. Glia 1993; 9:280-91. [PMID: 8112821 DOI: 10.1002/glia.440090406] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Relatively little is known about the mechanisms of pHi regulation in mammalian glial cells. We analyzed pHi regulation in rat hippocampal astrocytes in vitro using the pH-sensitive dye BCECF. All experiments were carried out in CO2/HCO3(-)-free solutions. Recovery from NH4(+)-induced acid loads was strongly dependent on the presence of extracellular Na+ and was inhibited by amiloride and its more specific analog EIPA, indicating the presence of Na(+)-H+ exchange in these cells. Removing bath Na+ or adding amiloride caused resting pHi to shift in the acid direction. Even in the absence of bath Na+ or presence of Na+/H+ inhibitors, however, these astrocytes continued to show significant recovery from acid loads. The mechanism of this amiloride-insensitive and Na(+)-independent pHi recovery process was sought and appeared to be a proton pump. In the absence of Na+, recovery from an acid load was completely blocked by the highly specific blocker of vacuolar-type (v-type) H+ ATPase, bafilomycin A1 (BA1). In normal Na+ containing solutions, exposure to BA1 caused a small acid shift in baseline pHi and slowed recovery rate from NH4(+)-induced acid loads by about 32%. The rate of Na(+)-independent pHi recovery was increased by depolarization with 50 mM [K+] solution, and this effect was rapidly reversible and blocked by BA1. These results indicate that, in CO2/HCO3(-)-free solution, pHi regulation in hippocampal astrocytes was mediated by Na(+)-H+ exchange and by a BA1-inhibitable proton pump. Because the proton pump's activity was influenced by membrane potential, this acid exporting mechanism could contribute to the depolarization-induced alkalinization that is seen in astrocytes. Although v-type H(+)-ATPase had been previously isolated from the brain, this is the first report indicating that it has a role in regulating pHi in brain cells.
Collapse
Affiliation(s)
- C A Pappas
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510
| | | |
Collapse
|
32
|
Boyarsky G, Ransom B, Schlue WR, Davis MB, Boron WF. Intracellular pH regulation in single cultured astrocytes from rat forebrain. Glia 1993; 8:241-8. [PMID: 8406681 DOI: 10.1002/glia.440080404] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We used the fluorescent pH-sensitive dye 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein (BCECF) to monitor intracellular pH (pHi) in single astrocytes cultured from the forebrain of neonatal rats. When exposed to a nominally CO2/HCO3(-)-free medium buffered to pH 7.40 with HEPES at 37 degrees C, the cells had a mean pHi of 6.89. Switching to a medium buffered to pH 7.40 with 5% CO2 and 25 mM HCO3(-) caused the steady-state pHi to increase by an average of 0.35, suggesting the presence of a HCO3(-) -dependent acid-extrusion mechanism. The sustained alkalinization was sometimes preceded by a small transient acidification. In experiments in which astrocytes were exposed to nominally HCO3(-)-free (HEPES-buffered) solutions, the application and withdrawal of 20 mM extracellular NH4+ caused pHi to fall to a value substantially below the initial one. pHi spontaneously recovered from this acid load, stabilizing at a value approximately 0.1 higher than the one prevailing before the application of NH4+. In other experiments conducted on cell bathed in HEPES-buffered solutions, removing extracellular Na+ caused pHi to decrease rapidly by 0.5. Returning the Na+ caused pHi to increase rapidly, indicating the presence of an Na(+)-dependent/HCO3(-)-dependent acid-extrusion mechanism; the final pHi after returning Na+ was approximately 0.08 higher than the initial value. This pHi recovery elicited by returning Na+ was not substantially affected by 50 microM ethylisopropylamiloride (EIPA), but was speeded up by 50 microM 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- G Boyarsky
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510
| | | | | | | | | |
Collapse
|
33
|
Syková E, Chvátal A. Extracellular ionic and volume changes: the role in glia-neuron interaction. J Chem Neuroanat 1993; 6:247-60. [PMID: 8104419 DOI: 10.1016/0891-0618(93)90046-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Activity-related changes in extracellular K+ concentration ([K+]e), pH (pHe) and extracellular volume were studied by means of ion-selective microelectrodes in the adult rat spinal cord in vivo and in neonatal rat spinal cords isolated from pups 3-14 days of age (P3-P14). Concomitantly with the ionic changes, the extracellular space (ECS) volume fraction (alpha), ECS tortuosity (lambda) and non-specific uptake (kappa'), three parameters affecting the diffusion of substances in nervous tissue, were studied in the rat spinal cord gray matter. In adult rats, repetitive electrical nerve stimulation (10-100 Hz) elicited increases in [K+]e of about 2.0-3.5 mM, followed by a post-stimulation K(+)-undershoot and triphasic alkaline-acid-alkaline changes in pHe with a dominating acid shift. The ECS volume in the adult rat occupies about 20% of the tissue, alpha = 0.20 +/- 0.003, lambda = 1.62 +/- 0.02 and kappa' = 4.6 +/- 0.4 x 10(-3) s-1 (n = 39). In contrast, in pups at P3-P6, the [K+]e increased by as much as 6.5 mM at a stimulation frequency of 10 Hz, i.e. K+ ceiling level was elevated, and there was a dominating alkaline shift. An increase in [K+]e as large as 1.3-2.5 mM accompanied by an alkaline shift was evoked by a single electrical stimulus. The K+ ceiling level and alkaline shifts decreased with age, while an acid shift, which was preceded by a small initial alkaline shift, appeared in the second postnatal week. In pups at P1-P2, the spinal cord was X-irradiated to block gliogenesis. The typical decrease in [K+]e ceiling level and the development of the acid shift in pHe at P10-P14 were blocked by X-irradiation. Concomitantly, continuous development of glial fibrillary acidic protein positive reaction was disrupted and densely stained astrocytes in gray matter at P10-P14 revealed astrogliosis. The alkaline, but not the acid, shift was blocked by Mg2+ and picrotoxin (10(-6) M). Acetazolamide enhanced the alkaline but blocked the acid shift. Furthermore, the acid shift was blocked, and the alkaline shift enhanced, by Ba2+, amiloride and SITS. Application of glutamate or gamma-aminobutyric acid evoked an alkaline shift in the pHe baseline at P3-P14 as well as after X-irradiation. The results suggest that the activity-related acid shifts in pHe are related to membrane transport processes in mature glia, while the alkaline shifts have a postsynaptic origin and are due to activation of ligand-gated ion channels.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- E Syková
- Laboratory of Cellular Neurophysiology, Academy of Sciences of the Czech Republic, Prague
| | | |
Collapse
|
34
|
Syková E, Jendelová P, Simonová Z, Chvátal A. K+ and pH homeostasis in the developing rat spinal cord is impaired by early postnatal X-irradiation. Brain Res 1992; 594:19-30. [PMID: 1467938 DOI: 10.1016/0006-8993(92)91025-a] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Activity-related transient changes in extracellular K+ concentration ([K+]e) and pH (pHe) were studied by means of ion-selective microelectrodes in neonatal rat spinal cords isolated from pups 2-14 days of age. Pups 1 to 2 days old were X-irradiated to impair gliogenesis and spinal cords were isolated 2-13 days postirradiation (PI). In 2- to 14-day-old pups PI stimulation produced ionic changes that were the same as those in 3- to 6-day-old control (non-irradiated) pups; e.g. the [K+]e increased by 4.03 +/- 0.24 mM (mean +/- S.E.M., n = 30) at a stimulation frequency of 10 Hz and this was accompanied by an alkaline shift of 0.048 +/- 0.004 pH units (mean +/- S.E.M., n = 32) pH units. By contrast, stimulation in non-irradiated 10- to 14-day-old pups produced smaller [K+]e changes, of 1.95 +/- 0.12 mM (mean +/- S.E.M., n = 30), and an acid shift of 0.035 +/- 0.003 pH units which was usually preceded by a scarcely discernible initial alkaline shift, as is also the case in adult rats. Our results show that the decrease in [K+]e ceiling level and the development of the acid shift in pHe are blocked by X-irradiation. Concomitantly, typical continuous development of GFAP-positive reaction was disrupted and densely stained astrocytes in gray matter of 10- to 14-day-old pups PI revealed astrogliosis. In control 3- to 6-day-old pups and in pups PI the stimulation-evoked alkaline, but not the acid, shift was blocked by Mg2+ and picrotoxin (10(-6) M). The acid shift was blocked, and the alkaline shift enhanced, by acetazolamide, Ba2+, amiloride and SITS. Application of GABA evoked an alkaline shift in the pHe baseline which was blocked by picrotoxin and in HEPES-buffered solution. By contrast, the stimulus-evoked alkaline shifts were enhanced in HEPES-buffered solutions. The results suggest a dual mechanism of the stimulus-evoked alkaline shifts. Firstly, the activation of GABA-gated anion (Cl-) channels induces a passive net efflux of bicarbonate, which may lead to a fall in neuronal intracellular pH and to a rise in the pHe. Secondly, bicarbonate independent alkaline shifts may arise from synaptic activity resulting in a flux of acid equivalents.
Collapse
Affiliation(s)
- E Syková
- Laboratory of Cellular Neurophysiology, Czechoslovak Academy of Sciences, Bulovka, Prague
| | | | | | | |
Collapse
|
35
|
Ransom BR, Walz W, Davis PK, Carlini WG. Anoxia-induced changes in extracellular K+ and pH in mammalian central white matter. J Cereb Blood Flow Metab 1992; 12:593-602. [PMID: 1618938 DOI: 10.1038/jcbfm.1992.83] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In gray matter (GM), anoxia induces prominent extracellular ionic changes that are important in understanding the pathophysiology of this insult. White matter (WM) is also injured by anoxia but the accompanying changes in extracellular ions have not been studied. To provide such information, the time course and magnitude of anoxia-induced changes in extracellular K+ concentration ([K+]o) and extracellular pH (pHo) were measured in the isolated rat optic nerve, a representative central WM tract, using ion-selective microelectrodes. Anoxia produced less extreme changes in [K+]o and pHo in WM than are known to occur in GM; in WM during anoxia, the average maximum [K+]o was 14 +/- 2.9 mM (bath [K+]o = 3 mM) and the average maximum acid shift was 0.31 +/- 0.07 pH unit. The extracellular space volume rapidly decreased by approximately 20% during anoxia. Excitability of the rat optic nerve, monitored as the amplitude of the supramaximal compound action potential, was lost in close temporal association with the increase in [K+]o. Increasing the bath glucose concentration from 10 to 20 mM resulted in a much larger acid shift during anoxia (0.58 +/- 0.08 pH unit) and a smaller average increase in [K]o (9.2 +/- 2.6 mM). The increased extracellular glucose concentration presumably provided more substrate for anaerobic metabolism, resulting in more extracellular lactate accumulation (although not directly measured) and a greater acid shift. Enhanced anaerobic metabolism during anoxia would provide energy for operation of ion pumps, including the sodium pump, that would result in smaller changes in [K+]o. These effects were probably responsible for the observation that the optic nerve showed significantly less damage after 60 min of anoxia in the presence of 20 mM glucose compared to 10 mM glucose. Under normoxic conditions, increasing bath K+ concentration to 30 mM (i.e., well beyond the level shown to occur with anoxia) for 60 min caused abrupt loss of excitability during the period of application but minimal change in the amplitude of the compound action potential following the period of exposure. The anoxia-induced increase in [K+]o, therefore, was not itself directly responsible for irreversible loss of optic nerve function. These observations indicate that major qualitative differences exist between mammalian GM and WM with regard to anoxia-induced extracellular ionic changes.
Collapse
Affiliation(s)
- B R Ransom
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510
| | | | | | | |
Collapse
|
36
|
Ransom BR. Glial modulation of neural excitability mediated by extracellular pH: a hypothesis. PROGRESS IN BRAIN RESEARCH 1992; 94:37-46. [PMID: 1287724 DOI: 10.1016/s0079-6123(08)61737-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- B R Ransom
- Yale University School of Medicine, Department of Neurology, New Haven, CT 06510
| |
Collapse
|
37
|
Abstract
Stimulation-evoked transient changes in extracellular potassium ([K+]e) and pH (pHe) were studied in the neonatal rat spinal cords isolated from 3-13-day-old pups. In unstimulated pups the [K+]e baseline was elevated and pHe was more acid than that in Ringer's solution (3.5 mM K+, pH 7.3-7.35). The [K+]e and pHe in 3-6-day-old pups was 3.91 +/- 0.12 mM and pHe 7.19 +/- 0.01, respectively, while in 10-13-day-old pups it was 4.35 +/- 0.15 mM and 7.11 +/- 0.01, respectively. The [K+]e changes evoked in the dorsal horn by a single electrical stimulus were as large as 1.5-2.5 mM. Such changes in [K+]e are evoked in the adult rat spinal cord with stimulation at a frequency of 10-30 Hz. The maximal changes of 2.1-6.5 mM were found at a stimulation frequency of 10 Hz in 3-6-day-old animals. In older animals the [K+]e changes progressively decreased. The poststimulation K(+)-undershoot was found after a single stimulus as well as after repetitive stimulation. In 3-8-day-old pups, the stimulation evoked an alkaline shift, which was followed by a smaller poststimulation acid shift when the stimulation was discontinued. In pups 3-4-days-old the stimulation evoked the greatest alkaline shifts, i.e., by as much as 0.05 pH units after a single pulse and by about 0.1 pH units during stimulation at a frequency of 10 Hz. In 5-8-day-old pups, the alkaline shift became smaller and the poststimulation acid shift increased.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P Jendelová
- Laboratory of Neurohumoral Regulation, Czechoslovak Academy of Sciences, Prague
| | | |
Collapse
|
38
|
Butt AM, Jones HC, Abbott NJ. Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J Physiol 1990; 429:47-62. [PMID: 2277354 PMCID: PMC1181686 DOI: 10.1113/jphysiol.1990.sp018243] [Citation(s) in RCA: 504] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
1. Ion permeability of the blood-brain barrier was studied by in situ measurement of transendothelial electrical resistance in anaesthetized rats aged between 17 days gestation and 33 days after birth, and by electron microscopic examination of lanthanum permeability in fetal and neonatal rats aged up to 10 days old. 2. The blood-brain barrier in 17- to 20-day fetuses had a resistance of 310 omega cm2 but was impermeable to lanthanum, and therefore had properties intermediate between leaky and tight epithelia. 3. From 21 days gestation, the resistance was 1128 omega cm2, indicating a tight blood-brain barrier and low ion permeability. There was little further change in barrier resistance after birth, and in 28- to 33-day rats, when the brain barrier systems are mature in other ways, vessels had a mean resistance of 1462 omega cm2. 4. In the tight blood-brain barrier, arterial vessels had a significantly higher resistance than venous vessels, 1490 and 918 omega cm2 respectively. In vessels less than 50 microns diameter and within the normal 60 min experimental period, there was no significant variation in vessel resistance. 5. Hyperosmotic shock caused a rapid decay in resistance (maximal within 5 min), and after disruption of the blood-brain barrier, vessel resistance was 100-300 omega cm2 in both arterial and venous vessels, and the effect was reversible. After the application of metabolic poisons (NaCN plus iodoacetate) and low temperature there was a similarly low electrical resistance. 6. It is concluded that the increase in electrical resistance at birth indicates a decrease in paracellular ion permeability at the blood-brain barrier and is required for effective brain interstitial fluid ion regulation.
Collapse
Affiliation(s)
- A M Butt
- Biomedical Sciences Division, King's College London
| | | | | |
Collapse
|
39
|
Syková E, Svoboda J. Extracellular alkaline-acid-alkaline transients in the rat spinal cord evoked by peripheral stimulation. Brain Res 1990; 512:181-9. [PMID: 2354355 DOI: 10.1016/0006-8993(90)90625-l] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Regional differences in extracellular pH (pHe) were found in unstimulated rat spinal cord using double-barrel pH-sensitive microelectrodes. The pHe in the lower dorsal horn (laminae III-VII) was about 7.15, i.e. by about 0.2 pH units lower than that measured in the cerebrospinal fluid. Transient acid shifts in pHe by 0.01-0.05 pH units were found when acute nociceptive stimuli (pinch, press, heat) were applied to the hind paw. Chemical or thermal injury evoked by subcutaneous injection of turpentine or by application of 1-3 ml of hot oil onto the hindpaw produced a long-term decrease in pHe base line in the lower dorsal horn by about 0.05-0.1 pH units. The decrease in pHe began 2-10 min after injury and persisted for more than 2 h. Electrical nerve stimulation (10-100 Hz, 20-60 s) elicited biphasic (acid-alkaline) or triphasic (alkaline-acid-alkaline) changes in pHe which have a similar depth profile as the concomitantly recorded increase in [K+]e. An initial alkaline shift by about 0.005 pH units was found to be significantly decreased by La3+, an H+ channel blocker. The dominating acid shift by about 0.1-0.2 pH units was accelerated and increased by acetazolamide (carbonic anhydrase inhibitor) showing that the high buffering capacity of the extracellular fluid may hamper the resolution of acid perturbations. Stimulation-evoked acid shifts were blocked by amiloride, SITS, DIDS and La3+ and therefore have a complex mechanism which includes Na+/H+ exchange, Cl-/HCO3- cotransport and/or Na+/Cl-/H+/HCO3- antiport and H+ efflux through voltage-sensitive H+ channels. The poststimulation alkaline shift (alkaline undershoot) was blocked by ouabain and reflects coupled clearance of K+ and H+ by active transport processes.
Collapse
Affiliation(s)
- E Syková
- Institute of Physiological Regulations, Czechoslovak Academy of Sciences, Prague
| | | |
Collapse
|
40
|
Sykovå E, Jendelovå P, Svoboda J, Sedman G, Ng KT. Activity-related rise in extracellular potassium concentration in the brain of 1-3-day-old chicks. Brain Res Bull 1990; 24:569-75. [PMID: 2357588 DOI: 10.1016/0361-9230(90)90161-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The concentration of K+ [( K+]) was measured in the cerebrospinal fluid (CSF) and in the extracellular fluid [( K+]e) in the medial forebrain of two-day-old chicks by means of K(+)-sensitive microelectrodes (K-ISM). The K-ISM potential in the CSF was compared with that in artificial CSF with 3, 4 or 6 mmol/l of [K+]. The [K+] found in CSF was 3.79 +/- 0.57 (n = 8), in the hyperstriatum accessorium (HA) 3.70 +/- 0.32 (n = 13) and in the neostriatum (N) 3.51 +/- 0.32 (n = 13; mmol/l; mean +/- SEM). Trains of local electrical stimuli (10-100 Hz, 30 sec) applied to the surface of the forebrain increased [K+]e in both HA and N by 11-13 mmol/l. Increases in [K+]e in the ectostriatum (E) of 5-6 mmol/l was found in response to electrical stimulation (30-100 Hz, 5-10 sec) of the contralateral optic nerve, and of about 2 mmol/l by applying pressure to the bulb. In chicks adapted to the dark, stimulation of the contralateral eye or both eyes with bright light flashes (1-2 Hz) or with continuous light resulted in an increase in [K+]e of 0.5-1.0 mmol/l. Smaller increases in [K+]e of 0.15-1.25 mmol/l were found in HV and N after the application of a small quantity (0.1 ml) of the chemical taste aversant methylanthranilate (MeA) or the electrical stimulation of the beak by two needle electrodes inserted into the palatum or into the tongue. After application of MeA the increase in [K+]e began 3-4 min after application and persisted for 20 min.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- E Sykovå
- Institute of Physiological Regulations, Czechoslovak Academy of Sciences, Prague
| | | | | | | | | |
Collapse
|
41
|
Black JA, Friedman B, Waxman SG, Elmer LW, Angelides KJ. Immuno-ultrastructural localization of sodium channels at nodes of Ranvier and perinodal astrocytes in rat optic nerve. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON. SERIES B, BIOLOGICAL SCIENCES 1989; 238:39-51. [PMID: 2574468 DOI: 10.1098/rspb.1989.0065] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Immuno-electron microscopic localization of sodium channels at nodes of Ranvier within adult optic nerve was demonstrated with polyclonal antibody 7493. The 7493 antisera, which is directed against purified sodium channels from rat brain, recognizes a 260 kDa protein in immunoblots of the crude glycoprotein fraction from adult rat optic nerve. Intense immunoreactivity with 7493 antisera was observed at nodes of Ranvier. Axon membrane at the node was densely stained, whereas paranodal and internodal axon membrane did not exhibit immunoreactivity. The axoplasm beneath the nodal membrane displayed variable immunostaining. Neither terminal paranodal oligodendroglial loops nor oligodendrocyte plasmalemma were immunoreactive with 7493 antisera. However, perinodal astrocyte processes exhibited intense immunoreactivity with the anti-sodium channel antisera. Optic nerves incubated with pre-immune sera, or with 7493 antisera that had been pre-adsorbed with purified sodium channel protein, displayed no immunoreactivity. These results demonstrate localization of sodium channels at high density at mammalian nodes of Ranvier and in some perinodal astrocyte processes. The latter observation offers support for an active role for perinodal astrocyte processes in the aggregation of sodium channels within the axon membrane at the node of Ranvier.
Collapse
Affiliation(s)
- J A Black
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
| | | | | | | | | |
Collapse
|
42
|
Hoppe D, Lux HD, Schachner M, Kettenmann H. Activation of K+ currents in cultured Schwann cells is controlled by extracellular pH. Pflugers Arch 1989; 415:22-8. [PMID: 2560163 DOI: 10.1007/bf00373137] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We analyzed the pH dependence of K+ currents recorded with the patch-clamp technique from cultured Schwann cells obtained from mouse dorsal root ganglia. Currents were activated at potentials more positive than -50 mV which was close to the resting membrane potential. Current amplitudes were affected by a change in extracellular pH (pHo), being increased at alkaline, and decreased at acidic pHo. The strongest effect of a pHo change was observed on currents activated close to the resting membrane potential suggesting a functional role for the pH sensitivity of K+ currents. Analysis of the time course of current activation at different pHo values led to the conclusion that the pH-sensitivity of K+ currents in Schwann cells is due to changes in surface charges shifting the potential sensed by the gating process of the channel. The reversal potential of the currents was not affected by a change in pHo. This observation and the finding that even a strong acidification to a pHo value of 5.0 did not lead to a blockade of the fully activated channel, indicate that the pH-sensitive charges are not located in the channel pore. Under the assumption that pHo changes in a peripheral nerve are associated with nerve activity as in the optic nerve, the pH-sensitive K+ channel in Schwann cells could serve to facilitate the spatial buffering of extracellular K+.
Collapse
Affiliation(s)
- D Hoppe
- Institut für Neurobiologie, Universität Heidelberg, Federal Republic of Germany
| | | | | | | |
Collapse
|
43
|
Reichenbach A. Glia:neuron index: review and hypothesis to account for different values in various mammals. Glia 1989; 2:71-7. [PMID: 2524444 DOI: 10.1002/glia.440020202] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The present paper proposes a hypothesis to account for different values of the glia:neuron index in comparable central nervous system tissues of various mammals. This hypothesis assumes that K+ ions released by active neurons are a mitogenic signal for glial cells. The thicker the tissue (for example, the brain wall), the more difficult is efficient K+ clearance, and more perinatal glial cell proliferation should occur. Thus, this hypothesis accounts for higher glia:neuron indices in mammals with thicker brain walls.
Collapse
Affiliation(s)
- A Reichenbach
- Carl Ludwig Institute of Physiology, Karl Marx University, Leipzig, German Democratic Republic
| |
Collapse
|
44
|
Black JA, Waxman SG, Friedman B, Elmer LW, Angelides KJ. Sodium channels in astrocytes of rat optic nerve in situ: immuno-electron microscopic studies. Glia 1989; 2:353-69. [PMID: 2553601 DOI: 10.1002/glia.440020508] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Immuno-electron microscopic localization of sodium channels within astrocyte somata and processes of adult rat optic nerve was demonstrated with polyclonal antibody 7493. In immunoblots of crude glycoproteins from adult rat optic nerve, antisera 7493, which is directed against purified rat brain sodium channels, recognizes a 260 kDa protein. Antisera 7493 intensely immunostains axon membrane at nodes of Ranvier. Associated perinodal astrocyte processes are also stained with antisera 7493. In addition, astrocyte cell bodies and major processes exhibit immunoreactivity with antibody 7493. Immunostaining with antisera 7493 is heterogeneously distributed within astrocyte cytoplasm and also appears to be associated with some regions of astrocyte plasmalemma. Glial filaments are not immunostained with 7493 antisera. Astrocyte processes forming the glial limitans and surrounding blood vessels display reduced immunoreactivity to 7493 compared to longitudinally oriented or perinodal astrocyte processes. However, some focal regions of the glial limitans exhibit robust 7493 immunostaining. Oligodendrocytes do not display 7493 antisera immunoreactivity. Optic nerve sections incubated with preimmune sera or with 7493 antisera that had been previously adsorbed with purified sodium channel protein, exhibited no immunoreactivity. These results demonstrate localization of sodium channels within astrocytes in situ of rat optic nerve and extend previous electrophysiological and pharmacological findings of sodium channels in cultured astrocytes. Possible functional roles of sodium channels within astrocytes are discussed.
Collapse
Affiliation(s)
- J A Black
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510
| | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- W Walz
- Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
46
|
Walton KD, Chesler M. Activity-related extracellular potassium transients in the neonatal rat spinal cord: an in vitro study. Neuroscience 1988; 25:983-95. [PMID: 2457188 DOI: 10.1016/0306-4522(88)90051-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Transient increases and decreases in extracellular potassium (delta[K+]o) were recorded from the gray matter of hemisected, neonatal rat spinal cords isolated from 3, 4, 9- and 10-day-old pups. delta[K+]o were evoked in both the ventral and dorsal regions of the gray matter by electrical stimulation. In the ventral horn, repetitive stimulation of the ventral root was required to elicit detectable delta[K+]o. By contrast, single dorsal root stimuli evoked clear delta[K+]o. In the dorsal horn, single orthodromic stimuli elicited delta[K+]o as large as 4-5 mM from a baseline of 4.5 mM. With repetitive stimulation the [K+]o reached, but never exceeded, a ceiling of 10-11 mM. Undershoots were seen only after repetitive stimulation. Spontaneous delta[K+]o were observed in the ventral horn and were well correlated with ventral root activity. Spontaneous delta[K+]o were rare in the dorsal cord, but were recorded after bath application of apamin or tetraethylammonium. The magnitude and distribution of evoked K+ transients and postsynaptic components of the evoked field potential were well correlated in both the dorsal and the ventral gray matter. delta[K+]o were reversibly blocked by 1 mM CdCl2 in the bath and diminished by 1 mM BaCl2. Bath application of mephenesin, apamin or tetraethylammonium diminished evoked delta[K+]o in a stimulus-dependent manner. In apamin and tetraethylammonium, decreases from control responses were largest with high intensity stimulation, the opposite was the case with mephenesin. These results are interpreted in terms of the spinal circuits activated by high- and low-intensity electrical stimulation. We conclude that activity-related delta[K+]o in neonatal spinal cord are large enough to modulate neuronal electrical activity and the [K+]o is well regulated compared to other immature CNS regions studied. Thus, local increases in [K+]o may, by modulating neuronal activity, play a role in neonatal spinal cord developmental processes.
Collapse
Affiliation(s)
- K D Walton
- Department of Physiology and Biophysics, New York University Medical Center, NY 10016
| | | |
Collapse
|
47
|
Davis PK, Carlini WG, Ransom BR, Black JA, Waxman SG. Carbonic anhydrase activity develops postnatally in the rat optic nerve. Brain Res 1987; 428:291-8. [PMID: 3103868 DOI: 10.1016/0165-3806(87)90126-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We examined the appearance of carbonic anhydrase (CA) activity in rat optic nerves (RONs) 5-77 postnatal days of age and correlated the appearance of enzyme activity with structural and physiological alterations. CA activity was nearly absent before 10 days of age and appeared in this CNS white matter tract with a developmental time-course similar to that of oligodendrogliogenesis and myelinogenesis. When oligodendrocytes and myelin were depleted in the RON by treatment with a mitotic inhibitor, CA activity was markedly reduced. These observations support the hypothesis that CA is contained primarily in oligodendrocytes and myelin. Neural activity in the RON caused changes in extracellular pH (pHo) and the character of these pHo responses was very age dependent; older nerves exhibited much larger acid shifts than neonatal nerves. The development of CA activity may be a factor contributing to this physiological alteration.
Collapse
|
48
|
|