1
|
Stone ET, Pinto AK. T Cells in Tick-Borne Flavivirus Encephalitis: A Review of Current Paradigms in Protection and Disease Pathology. Viruses 2023; 15:958. [PMID: 37112938 PMCID: PMC10146733 DOI: 10.3390/v15040958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
The family Flaviviridae is comprised of a diverse group of arthropod-borne viruses that are the etiological agents of globally relevant diseases in humans. Among these, infection with several of these flaviviruses-including West Nile virus (WNV), Zika virus (ZIKV), Japanese encephalitis virus (JEV), tick-borne encephalitis virus (TBEV), and Powassan virus (POWV)-can result in neuroinvasive disease presenting as meningitis or encephalitis. Factors contributing to the development and resolution of tick-borne flavivirus (TBEV, POWV) infection and neuropathology remain unclear, though many recently undertaken studies have described the virus-host interactions underlying encephalitic disease. With access to neural tissues despite the selectively permeable blood-brain barrier, T cells have emerged as one notable contributor to neuroinflammation. The goal of this review is to summarize the recent advances in tick-borne flavivirus immunology-particularly with respect to T cells-as it pertains to the development of encephalitis. We found that although T cell responses are rarely evaluated in a clinical setting, they are integral in conjunction with antibody responses to restricting the entry of TBFV into the CNS. The extent and means by which they can drive immune pathology, however, merits further study. Understanding the role of the T cell compartment in tick-borne flavivirus encephalitis is instrumental for improving vaccine safety and efficacy, and has implications for treatments and interventions for human disease.
Collapse
Affiliation(s)
| | - Amelia K. Pinto
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA
| |
Collapse
|
2
|
Calderón-Peláez MA, Velandia-Romero ML, Bastidas-Legarda LY, Beltrán EO, Camacho-Ortega SJ, Castellanos JE. Dengue Virus Infection of Blood-Brain Barrier Cells: Consequences of Severe Disease. Front Microbiol 2019; 10:1435. [PMID: 31293558 PMCID: PMC6606788 DOI: 10.3389/fmicb.2019.01435] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 06/06/2019] [Indexed: 01/10/2023] Open
Abstract
More than 500 million people worldwide are infected each year by any of the four-dengue virus (DENV) serotypes. The clinical spectrum caused during these infections is wide and some patients may develop neurological alterations during or after the infection, which could be explained by the cryptic neurotropic and neurovirulent features of flaviviruses like DENV. Using in vivo and in vitro models, researchers have demonstrated that DENV can affect the cells from the blood-brain barrier (BBB) in several ways, which could result in brain tissue damage, neuronal loss, glial activation, tissue inflammation and hemorrhages. The latter suggests that BBB may be compromised during infection; however, it is not clear whether the damage is due to the infection per se or to the local and/or systemic inflammatory response established or activated by the BBB cells. Similarly, the kinetics and cascade of events that trigger tissue damage, and the cells that initiate it, are unknown. This review presents evidence of the BBB cell infection with DENV and the response established toward it by these cells; it also describes the consequences of this response on the nervous tissue, compares these evidence with the one reported with neurotropic viruses of the Flaviviridae family, and shows the complexity and unpredictability of dengue and the neurological alterations induced by it. Clinical evidence and in vitro and in vivo models suggest that this virus uses the bloodstream to enter nerve tissue where it infects the different cells of the neurovascular unit. Each of the cell populations respond individually and collectively and control infection and inflammation, in other cases this response exacerbates the damage leaving irreversible sequelae or causing death. This information will allow us to understand more about the complex disease known as dengue, and its impact on a specialized and delicate tissue like is the nervous tissue.
Collapse
|
3
|
Salimi H, Cain MD, Klein RS. Encephalitic Arboviruses: Emergence, Clinical Presentation, and Neuropathogenesis. Neurotherapeutics 2016; 13:514-34. [PMID: 27220616 PMCID: PMC4965410 DOI: 10.1007/s13311-016-0443-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Arboviruses are arthropod-borne viruses that exhibit worldwide distribution, contributing to systemic and neurologic infections in a variety of geographical locations. Arboviruses are transmitted to vertebral hosts during blood feedings by mosquitoes, ticks, biting flies, mites, and nits. While the majority of arboviral infections do not lead to neuroinvasive forms of disease, they are among the most severe infectious risks to the health of the human central nervous system. The neurologic diseases caused by arboviruses include meningitis, encephalitis, myelitis, encephalomyelitis, neuritis, and myositis in which virus- and immune-mediated injury may lead to severe, persisting neurologic deficits or death. Here we will review the major families of emerging arboviruses that cause neurologic infections, their neuropathogenesis and host neuroimmunologic responses, and current strategies for treatment and prevention of neurologic infections they cause.
Collapse
Affiliation(s)
- Hamid Salimi
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew D Cain
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Robyn S Klein
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
4
|
|
5
|
Donadieu E, Bahuon C, Lowenski S, Zientara S, Coulpier M, Lecollinet S. Differential virulence and pathogenesis of West Nile viruses. Viruses 2013; 5:2856-80. [PMID: 24284878 PMCID: PMC3856419 DOI: 10.3390/v5112856] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/13/2013] [Accepted: 11/14/2013] [Indexed: 12/21/2022] Open
Abstract
West Nile virus (WNV) is a neurotropic flavivirus that cycles between mosquitoes and birds but that can also infect humans, horses, and other vertebrate animals. In most humans, WNV infection remains subclinical. However, 20%-40% of those infected may develop WNV disease, with symptoms ranging from fever to meningoencephalitis. A large variety of WNV strains have been described worldwide. Based on their genetic differences, they have been classified into eight lineages; the pathogenic strains belong to lineages 1 and 2. Ten years ago, Beasley et al. (2002) found that dramatic differences exist in the virulence and neuroinvasion properties of lineage 1 and lineage 2 WNV strains. Further insights on how WNV interacts with its hosts have recently been gained; the virus acts either at the periphery or on the central nervous system (CNS), and these observed differences could help explain the differential virulence and neurovirulence of WNV strains. This review aims to summarize the current state of knowledge on factors that trigger WNV dissemination and CNS invasion as well as on the inflammatory response and CNS damage induced by WNV. Moreover, we will discuss how WNV strains differentially interact with the innate immune system and CNS cells, thus influencing WNV pathogenesis.
Collapse
Affiliation(s)
- Emilie Donadieu
- Université Paris Est Créteil (UPEC), UMR 1161 Virologie, Institut National de la Recherche Agronomique (INRA), Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES) , Ecole Nationale Vétérinaire d'Alfort (ENVA), 7 avenue du Général De Gaulle, Maisons-Alfort 94700, France.
| | | | | | | | | | | |
Collapse
|
6
|
Lim SM, Koraka P, Osterhaus AD, Martina BE. West Nile virus: immunity and pathogenesis. Viruses 2011; 3:811-28. [PMID: 21994755 PMCID: PMC3185772 DOI: 10.3390/v3060811] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Revised: 05/26/2011] [Accepted: 05/27/2011] [Indexed: 11/17/2022] Open
Abstract
West Nile virus (WNV) is a neurotropic, arthropod-borne flavivirus that is maintained in an enzootic cycle between mosquitoes and birds, but can also infect and cause disease in horses and humans. WNV is endemic in parts of Africa, Europe, the Middle East, and Asia, and since 1999 has spread to North America, Mexico, South America, and the Caribbean. WNV infects the central nervous system (CNS) and can cause severe disease in a small minority of infected humans, mostly immunocompromised or the elderly. This review discusses some of the mechanisms by which the immune system can limit dissemination of WNV infection and elaborates on the mechanisms involved in pathogenesis. Reasons for susceptibility to WNV-associated neuroinvasive disease in less than 1% of cases remain unexplained, but one favored hypothesis is that the involvement of the CNS is associated with a weak immune response allowing robust WNV replication in the periphery and spread of the virus to the CNS.
Collapse
Affiliation(s)
- Stephanie M. Lim
- Department of Virology, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; E-Mails: (S.M.L.); (P.K.); (A.D.M.E.O.)
| | - Penelope Koraka
- Department of Virology, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; E-Mails: (S.M.L.); (P.K.); (A.D.M.E.O.)
| | - Albert D.M.E. Osterhaus
- Department of Virology, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; E-Mails: (S.M.L.); (P.K.); (A.D.M.E.O.)
| | - Byron E.E. Martina
- Department of Virology, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; E-Mails: (S.M.L.); (P.K.); (A.D.M.E.O.)
| |
Collapse
|
7
|
Zhang M, Daniel S, Huang Y, Chancey C, Huang Q, Lei YF, Grinev A, Mostowski H, Rios M, Dayton A. Anti-West Nile virus activity of in vitro expanded human primary natural killer cells. BMC Immunol 2010; 11:3. [PMID: 20089143 PMCID: PMC2822749 DOI: 10.1186/1471-2172-11-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 01/20/2010] [Indexed: 11/10/2022] Open
Abstract
Background Natural Killer (NK) cells are a crucial component of the host innate immune system with anti-viral and anti-cancer properties. However, the role of NK cells in West Nile virus (WNV) infection is controversial, with reported effects ranging from active suppression of virus to no effect at all. It was previously shown that K562-mb15-41BBL (K562D2) cells, which express IL-15 and 4-1BBL on the K562 cell surface, were able to expand and activate human primary NK cells of normal peripheral blood mononuclear cells (PBMC). The expanded NK cells were tested for their ability to inhibit WNV infection in vitro. Results Co-culture of PBMC with irradiated K562D2 cells expanded the NK cell number by 2-3 logs in 2-3 weeks, with more than 90% purity; upregulated NK cell surface activation receptors; downregulated inhibitory receptors; and boosted interferon gamma (IFN-γ) production by ~33 fold. The expanded NK (D2NK) cell has strong natural killing activity against both K562 and Vero cells, and killed the WNV infected Vero cells through antibody-dependent cellular cytotoxicity (ADCC). The D2NK cell culture supernatants inhibited both WNV replication and WNV induced cytopathic effect (CPE) in Vero cells when added before or after infection. Anti-IFN-γ neutralizing antibody blocked the NK supernatant-mediated anti-WNV effect, demonstrating a noncytolytic activity mediated through IFN-γ. Conclusions Co-culture of PBMC with K562D2 stimulatory cells is an efficient technique to prepare large quantities of pure and active NK cells, and these expanded NK cells inhibited WNV infection of Vero cells through both cytolytic and noncytolytic activities, which may imply a potential role of NK cells in combating WNV infection.
Collapse
Affiliation(s)
- Mingjie Zhang
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, Food and Drug Administration, 1401 Rockville Pike, Rockville, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Růžek D, Vancová M, Tesařová M, Ahantarig A, Kopecký J, Grubhoffer L. Morphological changes in human neural cells following tick-borne encephalitis virus infection. J Gen Virol 2009; 90:1649-1658. [DOI: 10.1099/vir.0.010058-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Tick-borne encephalitis (TBE) is one of the leading and most dangerous human viral neuroinfections in Europe and north-eastern Asia. The clinical manifestations include asymptomatic infections, fevers and debilitating encephalitis that might progress into chronic disease or fatal infection. To understand TBE pathology further in host nervous systems, three human neural cell lines, neuroblastoma, medulloblastoma and glioblastoma, were infected with TBE virus (TBEV). The susceptibility and virus-mediated cytopathic effect, including ultrastructural and apoptotic changes of the cells, were examined. All the neural cell lines tested were susceptible to TBEV infection. Interestingly, the neural cells produced about 100- to 10 000-fold higher virus titres than the conventional cell lines of extraneural origin, indicating the highly susceptible nature of neural cells to TBEV infection. The infection of medulloblastoma and glioblastoma cells was associated with a number of major morphological changes, including proliferation of membranes of the rough endoplasmic reticulum and extensive rearrangement of cytoskeletal structures. The TBEV-infected cells exhibited either necrotic or apoptotic morphological features. We observed ultrastructural apoptotic signs (condensation, margination and fragmentation of chromatin) and other alterations, such as vacuolation of the cytoplasm, dilatation of the endoplasmic reticulum cisternae and shrinkage of cells, accompanied by a high density of the cytoplasm. On the other hand, infected neuroblastoma cells did not exhibit proliferation of membranous structures. The virions were present in both the endoplasmic reticulum and the cytoplasm. Cells were dying preferentially by necrotic mechanisms rather than apoptosis. The neuropathological significance of these observations is discussed.
Collapse
Affiliation(s)
- Daniel Růžek
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic and Faculty of Science, University of South Bohemia, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| | - Marie Vancová
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic and Faculty of Science, University of South Bohemia, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| | - Martina Tesařová
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic and Faculty of Science, University of South Bohemia, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| | - Arunee Ahantarig
- Faculty of Science, Mahidol University, 6 Rama Road, Bangkok 10400, Thailand
| | - Jan Kopecký
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic and Faculty of Science, University of South Bohemia, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| | - Libor Grubhoffer
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic and Faculty of Science, University of South Bohemia, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| |
Collapse
|
9
|
Diamond MS. Progress on the development of therapeutics against West Nile virus. Antiviral Res 2009; 83:214-27. [PMID: 19501622 DOI: 10.1016/j.antiviral.2009.05.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 05/27/2009] [Indexed: 02/07/2023]
Abstract
A decade has passed since the appearance of West Nile virus (WNV) in humans in the Western Hemisphere in New York City. During this interval, WNV spread inexorably throughout North and South America and caused millions of infections ranging from a sub-clinical illness, to a self-limiting febrile syndrome or lethal neuroinvasive disease. Its entry into the United States triggered intensive research into the basic biology of WNV and the elements that comprise a protective host immune response. Although no therapy is currently approved for use in humans, several strategies are being pursued to develop effective prophylaxis and treatments. This review describes the current state of knowledge on epidemiology, clinical presentation, pathogenesis, and immunobiology of WNV infection, and highlights progress toward an effective therapy.
Collapse
Affiliation(s)
- Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
10
|
van Marle G, Antony J, Ostermann H, Dunham C, Hunt T, Halliday W, Maingat F, Urbanowski MD, Hobman T, Peeling J, Power C. West Nile virus-induced neuroinflammation: glial infection and capsid protein-mediated neurovirulence. J Virol 2007; 81:10933-49. [PMID: 17670819 PMCID: PMC2045515 DOI: 10.1128/jvi.02422-06] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
West Nile virus (WNV) infection causes neurological disease at all levels of the neural axis, accompanied by neuroinflammation and neuronal loss, although the underlying mechanisms remain uncertain. Given the substantial activation of neuroinflammatory pathways observed in WNV infection, we hypothesized that WNV-mediated neuroinflammation and cell death occurred through WNV infection of both glia and neurons, which was driven in part by WNV capsid protein expression. Analysis of autopsied neural tissues from humans with WNV encephalomyelitis (WNVE) revealed WNV infection of both neurons and glia. Upregulation of proinflammatory genes, CXCL10, interleukin-1beta, and indolamine-2',3'-deoxygenase with concurrent suppression of the protective astrocyte-specific endoplasmic reticulum stress sensor gene, OASIS (for old astrocyte specifically induced substance), was evident in WNVE patients compared to non-WNVE controls. These findings were supported by increased ex vivo expression of these proinflammatory genes in glia infected by WNV-NY99. WNV infection caused endoplasmic reticulum stress gene induction and apoptosis in neurons but did not affect glial viability. WNV-infected astrocytic cells secreted cytotoxic factors, which caused neuronal apoptosis. The expression of the WNV-NY99 capsid protein in neurons and glia by a Sindbis virus-derived vector (SINrep5-WNVc) caused neuronal death and the release of neurotoxic factors by infected astrocytes, coupled with proinflammatory gene induction and suppression of OASIS. Striatal implantation of SINrep5-WNV(C) induced neuroinflammation in rats, together with the induction of CXCL10 and diminished OASIS expression, compared to controls. Moreover, magnetic resonance neuroimaging showed edema and tissue injury in the vicinity of the SINrep5-WNVc implantation site compared to controls, which was complemented by neurobehavioral abnormalities in the SINrep5-WNVc-implanted animals. These studies underscore the important interactions between the WNV capsid protein and neuroinflammation in the pathogenesis of WNV-induced neurological disorders.
Collapse
Affiliation(s)
- Guido van Marle
- Departments of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wang Y, Lobigs M, Lee E, Koskinen A, Müllbacher A. CD8(+) T cell-mediated immune responses in West Nile virus (Sarafend strain) encephalitis are independent of gamma interferon. J Gen Virol 2006; 87:3599-3609. [PMID: 17098975 DOI: 10.1099/vir.0.81306-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The flavivirus West Nile virus (WNV) can cause fatal encephalitis in humans and mice. It has recently been demonstrated, in an experimental model using WNV strain Sarafend and C57BL/6 mice, that both virus- and immune-mediated pathology is involved in WNV encephalitis, with CD8(+) T cells being the dominant subpopulation of lymphocyte infiltrates in the brain. Here, the role of activated WNV-immune CD8(+) T cells in mouse WNV encephalitis was investigated further. Passive transfer of WNV-immune CD8(+) T cells reduced mortality significantly and prolonged survival times of mice infected with WNV. Early infiltration of WNV-immune CD8(+) T cells into infected brains is shown, suggesting a beneficial contribution of these lymphocytes to recovery from encephalitis. This antiviral function was not markedly mediated by gamma interferon (IFN-gamma), as a deficiency in IFN-gamma did not affect mortality to two strains of WNV (Sarafend and Kunjin) or brain virus titres significantly. The cytolytic potential, as well as precursor frequency, of WNV-immune CD8(+) T cells were not altered by the absence of IFN-gamma. This was reflected in transfer experiments of WNV-immune CD8(+) T cells from IFN-gamma(-/-) mice into WNV-infected wild-type mice, which showed that IFN-gamma-deficient T cells were as effective as those from WNV-immune wild-type mice in ameliorating disease outcome. It is speculated here that one of the pleiotropic functions of IFN-gamma is mimicked by WNV-Sarafend-mediated upregulation of cell-surface expression of major histocompatibility complex antigens, which may explain the lack of phenotype of IFN-gamma(-/-) mice in response to WNV.
Collapse
Affiliation(s)
- Yang Wang
- Division of Immunology and Genetics, The John Curtin School of Medical Research, The Australian National University (ANU), PO Box 334, Canberra, ACT 2601, Australia
| | - Mario Lobigs
- Division of Immunology and Genetics, The John Curtin School of Medical Research, The Australian National University (ANU), PO Box 334, Canberra, ACT 2601, Australia
| | - Eva Lee
- Division of Immunology and Genetics, The John Curtin School of Medical Research, The Australian National University (ANU), PO Box 334, Canberra, ACT 2601, Australia
| | - Aulikki Koskinen
- Division of Immunology and Genetics, The John Curtin School of Medical Research, The Australian National University (ANU), PO Box 334, Canberra, ACT 2601, Australia
| | - Arno Müllbacher
- Division of Immunology and Genetics, The John Curtin School of Medical Research, The Australian National University (ANU), PO Box 334, Canberra, ACT 2601, Australia
| |
Collapse
|
12
|
Samuel MA, Diamond MS. Pathogenesis of West Nile Virus infection: a balance between virulence, innate and adaptive immunity, and viral evasion. J Virol 2006; 80:9349-60. [PMID: 16973541 PMCID: PMC1617273 DOI: 10.1128/jvi.01122-06] [Citation(s) in RCA: 242] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Melanie A Samuel
- Division of Infectious Diseases, Department of Molecular Microbiology, Washington University School of Medicine, Campus Box 8051, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | |
Collapse
|
13
|
Klein RS, Lin E, Zhang B, Luster AD, Tollett J, Samuel MA, Engle M, Diamond MS. Neuronal CXCL10 directs CD8+ T-cell recruitment and control of West Nile virus encephalitis. J Virol 2005; 79:11457-66. [PMID: 16103196 PMCID: PMC1193600 DOI: 10.1128/jvi.79.17.11457-11466.2005] [Citation(s) in RCA: 328] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The activation and entry of antigen-specific CD8(+) T cells into the central nervous system is an essential step towards clearance of West Nile virus (WNV) from infected neurons. The molecular signals responsible for the directed migration of virus-specific T cells and their cellular sources are presently unknown. Here we demonstrate that in response to WNV infection, neurons secrete the chemokine CXCL10, which recruits effector T cells via the chemokine receptor CXCR3. Neutralization or a genetic deficiency of CXCL10 leads to a decrease in CXCR3(+) CD8(+) T-cell trafficking, an increase in viral burden in the brain, and enhanced morbidity and mortality. These data support a new paradigm in chemokine neurobiology, as neurons are not generally considered to generate antiviral immune responses, and CXCL10 may represent a novel neuroprotective agent in response to WNV infection in the central nervous system.
Collapse
Affiliation(s)
- Robyn S Klein
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Over the past five years, West Nile (WN) virus has emerged as an important public health concern in the United States. Recent studies from experimental models of WN virus infection have increased our understanding of its pathogenesis and immunity. These include the demonstration that the gene encoding 2'-5'oligoadenylate synthetase is responsible for murine susceptibility to WN virus, the elucidation of the contributions of B, CD8(+) and gamma T cells in the control of murine WN virus infection, and the use of active immunization with envelope protein and passive transfer of immunoglobulin for immunotherapy. These efforts will facilitate the development of effective vaccines and therapies to combat WN virus.
Collapse
MESH Headings
- 2',5'-Oligoadenylate Synthetase/genetics
- 2',5'-Oligoadenylate Synthetase/immunology
- 2',5'-Oligoadenylate Synthetase/metabolism
- Animals
- B-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Disease Models, Animal
- Encephalitis/genetics
- Encephalitis/immunology
- Encephalitis/prevention & control
- Encephalitis/virology
- Humans
- Immunity, Innate
- Mice
- Mice, Knockout
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Vaccination
- Vaccines, DNA/immunology
- West Nile virus/genetics
- West Nile virus/immunology
Collapse
Affiliation(s)
- Tian Wang
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
15
|
Cheeran MCJ, Hu S, Sheng WS, Rashid A, Peterson PK, Lokensgard JR. Differential responses of human brain cells to West Nile virus infection. J Neurovirol 2005; 11:512-24. [PMID: 16338745 DOI: 10.1080/13550280500384982] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In recent years, West Nile virus (WNV) has emerged as a major cause of encephalitis in the United States. However, the neuropathogenesis of this flavivirus is poorly understood. In the present study, the authors used primary human brain cell cultures to investigate two neuropathogenic features: viral replication and induction of cytokines. Although neurons and astrocytes were found to support productive WNV infection, viral growth was poorly permissive in microglial cells. Compared to neuronal cultures that sustained viral growth for at least 2 weeks, replication peaked in astrocytes by 72 h post infection. In response to viral infection, astrocytes produced chemokines (CXCL10 and CCL5), but none of the cytokines (tumor necrosis factor [TNF]-alpha, interleukin [IL]-1beta, IL-6, interferon alpha or gamma) tested could be detected. Although microglial cells failed to support viral replication, WNV induced production of the proinflammatory cytokines IL-6 and TNF-alpha. Microglial cells also released robust amounts of the chemokines CXCL10 and CCL2, as well as lower levels of CCL5, in response to WNV infection. WNV-induced chemokine and cytokine production by microglia was coupled with activation of mitogen-activated protein kinase (MAPK) intracellular signaling pathways. Inhibition of p38 MAPK decreased chemokine production in response to WNV. Taken together, these findings suggest that microglial cell responses may influence the neuropathogenesis of WNV infection.
Collapse
Affiliation(s)
- Maxim C-J Cheeran
- Neuroimmunology Laboratory, Minneapolis Medical Research Foundation, University of Minnesota Medical School, 55455, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Shrestha B, Diamond MS. Role of CD8+ T cells in control of West Nile virus infection. J Virol 2004; 78:8312-21. [PMID: 15254203 PMCID: PMC446114 DOI: 10.1128/jvi.78.15.8312-8321.2004] [Citation(s) in RCA: 318] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Accepted: 03/31/2004] [Indexed: 12/12/2022] Open
Abstract
Infection with West Nile virus (WNV) causes fatal encephalitis more frequently in immunocompromised humans than in those with a healthy immune system. Although a complete understanding of this increased risk remains unclear, experiments with mice have begun to define how different components of the adaptive and innate immune response function to limit infection. Previously, we demonstrated that components of humoral immunity, particularly immunoglobulin M (IgM) and IgG, have critical roles in preventing dissemination of WNV infection to the central nervous system. In this study, we addressed the function of CD8(+) T cells in controlling WNV infection. Mice that lacked CD8(+) T cells or classical class Ia major histocompatibility complex (MHC) antigens had higher central nervous system viral burdens and increased mortality rates after infection with a low-passage-number WNV isolate. In contrast, an absence of CD8(+) T cells had no effect on the qualitative or quantitative antibody response and did not alter the kinetics or magnitude of viremia. In the subset of CD8(+)-T-cell-deficient mice that survived initial WNV challenge, infectious virus was recovered from central nervous system compartments for several weeks. Primary or memory CD8(+) T cells that were generated in vivo efficiently killed target cells that displayed WNV antigens in a class I MHC-restricted manner. Collectively, our experiments suggest that, while specific antibody is responsible for terminating viremia, CD8(+) T cells have an important function in clearing infection from tissues and preventing viral persistence.
Collapse
Affiliation(s)
- Bimmi Shrestha
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | | |
Collapse
|
17
|
Wang Y, Lobigs M, Lee E, Müllbacher A. CD8+ T cells mediate recovery and immunopathology in West Nile virus encephalitis. J Virol 2004; 77:13323-34. [PMID: 14645588 PMCID: PMC296062 DOI: 10.1128/jvi.77.24.13323-13334.2003] [Citation(s) in RCA: 235] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
C57BL/6J mice infected intravenously with the Sarafend strain of West Nile virus (WNV) develop a characteristic central nervous system (CNS) disease, including an acute inflammatory reaction. Dose response studies indicate two distinct kinetics of mortality. At high doses of infection (10(8) PFU), direct infection of the brain occurred within 24 h, resulting in 100% mortality with a 6-day mean survival time (MST), and there was minimal destruction of neural tissue. A low dose (10(3) PFU) of infection resulted in 27% mortality (MST, 11 days), and virus could be detected in the CNS 7 days postinfection (p.i.). Virus was present in the hypogastric lymph nodes and spleens at days 4 to 7 p.i. Histology of the brains revealed neuronal degeneration and inflammation within leptomeninges and brain parenchyma. Inflammatory cell infiltration was detectable in brains from day 4 p.i. onward in the high-dose group and from day 7 p.i. in the low-dose group, with the severity of infiltration increasing over time. The cellular infiltrates in brain consisted predominantly of CD8(+), but not CD4(+), T cells. CD8(+) T cells in the brain and the spleen expressed the activation markers CD69 early and expressed CD25 at later time points. CD8(+) T-cell-deficient mice infected with 10(3) PFU of WNV showed increased mortalities but prolonged MST and early infection of the CNS compared to wild-type mice. Using high doses of virus in CD8-deficient mice leads to increased survival. These results provide evidence that CD8(+) T cells are involved in both recovery and immunopathology in WNV infection.
Collapse
Affiliation(s)
- Yang Wang
- Division of Immunology and Genetics, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia
| | | | | | | |
Collapse
|
18
|
Diamond MS, Shrestha B, Mehlhop E, Sitati E, Engle M. Innate and adaptive immune responses determine protection against disseminated infection by West Nile encephalitis virus. Viral Immunol 2004; 16:259-78. [PMID: 14583143 DOI: 10.1089/088282403322396082] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
WNV continues to spread throughout the Western Hemisphere as virus activity in insects and animals has been reported in the United States, Canada, Mexico, and the Caribbean islands. West Nile virus (WNV) infects the central nervous system and causes severe disease primarily in humans who are immunocompromised or elderly. In this review, we discuss the mechanisms by which the immune system limits dissemination of WNV infection. Recent experimental studies in animals suggest important roles for both the innate and the adaptive immune responses in controlling WNV infection. Interferons, antibody, complement components and CD8+ T cells coordinate protection against severe infection and disease. These findings are analyzed in the context of recent approaches to vaccine development and immunotherapy against WNV.
Collapse
Affiliation(s)
- Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | |
Collapse
|
19
|
Shrestha B, Gottlieb D, Diamond MS. Infection and injury of neurons by West Nile encephalitis virus. J Virol 2003; 77:13203-13. [PMID: 14645577 PMCID: PMC296085 DOI: 10.1128/jvi.77.24.13203-13213.2003] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2003] [Accepted: 09/12/2003] [Indexed: 11/20/2022] Open
Abstract
West Nile virus (WNV) infects neurons and leads to encephalitis, paralysis, and death in humans, animals, and birds. We investigated the mechanism by which neuronal injury occurs after WNV infection. Neurons in the anterior horn of the spinal cords of paralyzed mice exhibited a high degree of WNV infection, leukocyte infiltration, and degeneration. Because it was difficult to distinguish whether neuronal injury was caused by viral infection or by the immune system response, a novel tissue culture model for WNV infection was established in neurons derived from embryonic stem (ES) cells. Undifferentiated ES cells were relatively resistant to WNV infection. After differentiation, ES cells expressed neural antigens, acquired a neuronal phenotype, and became permissive for WNV infection. Within 48 h of exposure to an exceedingly low multiplicity of infection (5 x 10(-4)), 50% of ES cell-derived neurons became infected, producing nearly 10(7) PFU of infectious virus per ml, and began to die by an apoptotic mechanism. The establishment of a tractable virus infection model in ES cell-derived neurons facilitates the study of the molecular basis of neurotropism and the mechanisms of viral and immune-mediated neuronal injury after infection by WNV or other neurotropic pathogens.
Collapse
Affiliation(s)
- Bimmi Shrestha
- Departments of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
20
|
Abstract
After a virus infects an animal, antiviral responses are generated that attempt to prevent dissemination. Interferons, antibody, complement, T and natural killer cells all contribute to the control and eradication of viral infections. Most flaviviruses, with the exception of some of the encephalitic viruses, cause acute disease and do not establish persistent infection. The outcome of flavivirus infection in an animal is determined by a balance between the speed of viral replication and spread, and the immune system response. Although many of the mechanistic details require further elucidation, flaviviruses have evolved specific tactics to evade the innate and adaptive immune response. A more thorough understanding of these principles could lead to improved models for viral pathogenesis and to strategies for the development of novel antiviral agents.
Collapse
Affiliation(s)
- Michael S Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110, United States of America.
| |
Collapse
|
21
|
Abstract
Within the flavivirus family, viruses that cause natural infections of the central nervous system (CNS) principally include members of the Japanese encephalitis virus (JEV) serogroup and the tick-borne encephalitis virus (TBEV) serocomplex. The pathogenesis of diseases involves complex interactions of viruses, which differ in neurovirulence potential, and a number of host factors, which govern susceptibility to infection and the capacity to mount effective antiviral immune responses both in the periphery and within the CNS. This chapter summarizes progress in the field of flavivirus neuropathogenesis. Mosquito-borne and tickborne viruses are considered together. Flavivirus neuropathogenesis involves both neuroinvasiveness (capacity to enter the CNS) and neurovirulence (replication within the CNS), both of which can be manipulated experimentally. Neuronal injury as a result of bystander effects may be a factor during flavivirus neuropathogenesis given that microglial activation and elaboration of inflammatory mediators, including IL-1β and TNF-α, occur in the CNS during these infections and may accompany the production of nitric oxide and peroxynitrite, which can cause neurotoxicity.
Collapse
Affiliation(s)
- Thomas J Chambers
- Department of Molecular Microbiology and Immunology, St. Louis University Health Sciences Center, School of Medicine, St. Louis, Missouri 63104, USA
| | | |
Collapse
|
22
|
Argall KG, Armati PJ, King NJ, Douglas MW. The effects of West Nile virus on major histocompatibility complex class I and II molecule expression by Lewis rat Schwann cells in vitro. J Neuroimmunol 1991; 35:273-84. [PMID: 1955569 DOI: 10.1016/0165-5728(91)90181-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The expression of major histocompatibility complex (MHC) class I and II molecules by Lewis rat Schwann cells after infection with West Nile virus (WNV) in vitro was examined by fluorescence microscopy and flow cytometry. WNV enhanced the expression of MHC class I molecules and induced the expression of MHC class II molecules by Schwann cells. Irradiated medium from WNV-infected Schwann cell cultures upregulated class I molecule expression on dissociated Schwann cell cultures but did not induce the expression of class II molecules. This finding has implications for virally triggered autoimmune diseases of nervous tissue.
Collapse
Affiliation(s)
- K G Argall
- School of Biological Sciences, University of Sydney, NSW, Australia
| | | | | | | |
Collapse
|