1
|
Villanueva J, Gimenez-Molina Y, Davletov B, Gutiérrez LM. Vesicle Fusion as a Target Process for the Action of Sphingosine and Its Derived Drugs. Int J Mol Sci 2022; 23:ijms23031086. [PMID: 35163009 PMCID: PMC8834808 DOI: 10.3390/ijms23031086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
The fusion of membranes is a central part of the physiological processes involving the intracellular transport and maturation of vesicles and the final release of their contents, such as neurotransmitters and hormones, by exocytosis. Traditionally, in this process, proteins, such SNAREs have been considered the essential components of the fusion molecular machinery, while lipids have been seen as merely structural elements. Nevertheless, sphingosine, an intracellular signalling lipid, greatly increases the release of neurotransmitters in neuronal and neuroendocrine cells, affecting the exocytotic fusion mode through the direct interaction with SNAREs. Moreover, recent studies suggest that FTY-720 (Fingolimod), a sphingosine structural analogue used in the treatment of multiple sclerosis, simulates sphingosine in the promotion of exocytosis. Furthermore, this drug also induces the intracellular fusion of organelles such as dense vesicles and mitochondria causing cell death in neuroendocrine cells. Therefore, the effect of sphingosine and synthetic derivatives on the heterologous and homologous fusion of organelles can be considered as a new mechanism of action of sphingolipids influencing important physiological processes, which could underlie therapeutic uses of sphingosine derived lipids in the treatment of neurodegenerative disorders and cancers of neuronal origin such neuroblastoma.
Collapse
Affiliation(s)
- José Villanueva
- Instituto de Neurociencias, CSIC-Universidad Miguel Hernández, Cra de Valencia S/N, Sant Joan d’Alacant, 03550 Alicante, Spain;
- Correspondence: (J.V.); (L.M.G.)
| | - Yolanda Gimenez-Molina
- Instituto de Neurociencias, CSIC-Universidad Miguel Hernández, Cra de Valencia S/N, Sant Joan d’Alacant, 03550 Alicante, Spain;
| | - Bazbek Davletov
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK;
| | - Luis M. Gutiérrez
- Instituto de Neurociencias, CSIC-Universidad Miguel Hernández, Cra de Valencia S/N, Sant Joan d’Alacant, 03550 Alicante, Spain;
- Correspondence: (J.V.); (L.M.G.)
| |
Collapse
|
2
|
Gimenez-Molina Y, García-Martínez V, Villanueva J, Davletov B, Gutiérrez LM. Multiple sclerosis drug FTY-720 toxicity is mediated by the heterotypic fusion of organelles in neuroendocrine cells. Sci Rep 2019; 9:18471. [PMID: 31804600 PMCID: PMC6895052 DOI: 10.1038/s41598-019-55106-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/24/2019] [Indexed: 12/29/2022] Open
Abstract
FTY-720 (Fingolimod) was one of the first compounds authorized for the treatment of multiple sclerosis. Among its other activities, this sphingosine analogue enhances exocytosis in neuroendocrine chromaffin cells, altering the quantal release of catecholamines. Surprisingly, the size of chromaffin granules is reduced within few minutes of treatment, a process that is paralleled by the homotypic fusion of granules and their heterotypic fusion with mitochondria, as witnessed by dynamic confocal and TIRF microscopy. Electron microscopy studies support these observations, revealing the fusion of several vesicles with individual mitochondria to form large, round mixed organelles. This cross-fusion is SNARE-dependent, being partially prevented by the expression of an inactive form of SNAP-25. Fused mitochondria exhibit an altered redox potential, which dramatically enhances cell death. Therefore, the cross-fusion of intracellular organelles appears to be a new mechanism to be borne in mind when considering the effect of FTY-720 on the survival of neuroendocrine cells.
Collapse
Affiliation(s)
- Yolanda Gimenez-Molina
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Sant Joan d'Alacant, Alicante, 03550, Spain
| | - Virginia García-Martínez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Sant Joan d'Alacant, Alicante, 03550, Spain
| | - José Villanueva
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Sant Joan d'Alacant, Alicante, 03550, Spain
| | - Bazbek Davletov
- Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Luis M Gutiérrez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Sant Joan d'Alacant, Alicante, 03550, Spain.
| |
Collapse
|
3
|
Garcia-Martinez V, Gimenez-Molina Y, Villanueva J, Darios FD, Davletov B, Gutiérrez LM. Emerging evidence for the modulation of exocytosis by signalling lipids. FEBS Lett 2018; 592:3493-3503. [PMID: 29962039 PMCID: PMC6282582 DOI: 10.1002/1873-3468.13178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/01/2018] [Accepted: 06/27/2018] [Indexed: 01/22/2023]
Abstract
Membrane fusion is a key event in exocytosis of neurotransmitters and hormones stored in intracellular vesicles. In this process, soluble N‐ethylmaleimide sensitive factor attachment protein receptor (SNARE) proteins are essential components of the exocytotic molecular machinery, while lipids have been seen traditionally as structural elements. However, the so‐called signalling lipids, such as sphingosine and arachidonic acid, interact with SNAREs and directly modulate the frequency and mode of fusion events. Interestingly, recent work has proved that the sphingosine analogue FTY‐720, used in the treatment of multiple sclerosis, mimics the effects of signalling lipids. In the present Review, we discuss recent investigations suggesting that endogenous signalling lipids and synthetic analogues can modulate important physiological aspects of secretion, such as quantal release, vesicle recruitment into active sites, vesicle transport and even organelle fusion in the cytosol. Therefore, these compounds are far from being merely structural components of cellular membranes.
Collapse
Affiliation(s)
- Virginia Garcia-Martinez
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández de Elche, Sant Joan d'Alacant, Alicante, Spain
| | - Yolanda Gimenez-Molina
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández de Elche, Sant Joan d'Alacant, Alicante, Spain
| | - José Villanueva
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández de Elche, Sant Joan d'Alacant, Alicante, Spain
| | - Frederic D Darios
- Inserm, U1127, CNRS, UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, Sorbonne Université, Paris, France
| | - Bazbek Davletov
- Department of Biomedical Sciences, University of Sheffield, UK
| | - Luis M Gutiérrez
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández de Elche, Sant Joan d'Alacant, Alicante, Spain
| |
Collapse
|
4
|
Chang CW, Chiang CW, Jackson MB. Fusion pores and their control of neurotransmitter and hormone release. J Gen Physiol 2017; 149:301-322. [PMID: 28167663 PMCID: PMC5339513 DOI: 10.1085/jgp.201611724] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 01/06/2017] [Accepted: 01/19/2017] [Indexed: 11/20/2022] Open
Abstract
Chang et al. review fusion pore structure and dynamics and discuss the implications for hormone and neurotransmitter release Ca2+-triggered exocytosis functions broadly in the secretion of chemical signals, enabling neurons to release neurotransmitters and endocrine cells to release hormones. The biological demands on this process can vary enormously. Although synapses often release neurotransmitter in a small fraction of a millisecond, hormone release can be orders of magnitude slower. Vesicles usually contain multiple signaling molecules that can be released selectively and conditionally. Cells are able to control the speed, concentration profile, and content selectivity of release by tuning and tailoring exocytosis to meet different biological demands. Much of this regulation depends on the fusion pore—the aqueous pathway by which molecules leave a vesicle and move out into the surrounding extracellular space. Studies of fusion pores have illuminated how cells regulate secretion. Furthermore, the formation and growth of fusion pores serve as a readout for the progress of exocytosis, thus revealing key kinetic stages that provide clues about the underlying mechanisms. Herein, we review the structure, composition, and dynamics of fusion pores and discuss the implications for molecular mechanisms as well as for the cellular regulation of neurotransmitter and hormone release.
Collapse
Affiliation(s)
- Che-Wei Chang
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705
| | - Chung-Wei Chiang
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705
| | - Meyer B Jackson
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705
| |
Collapse
|
5
|
García-Martínez V, Montes MA, Villanueva J, Gimenez-Molina Y, de Toledo GA, Gutiérrez LM. Sphingomyelin derivatives increase the frequency of microvesicle and granule fusion in chromaffin cells. Neuroscience 2015; 295:117-25. [PMID: 25813703 DOI: 10.1016/j.neuroscience.2015.03.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/18/2015] [Accepted: 03/18/2015] [Indexed: 10/23/2022]
Abstract
Sphingomyelin derivatives like sphingosine have been shown to enhance secretion in a variety of systems, including neuroendocrine and neuronal cells. By studying the mechanisms underlying this effect, we demonstrate here that sphingomyelin rafts co-localize strongly with synaptosomal-associated protein of 25Kda (SNAP-25) clusters in cultured bovine chromaffin cells and that they appear to be linked in a dynamic manner. In functional terms, when cultured rat chromaffin cells are treated with sphingomyelinase (SMase), producing sphingomyelin derivatives, the secretion elicited by repetitive depolarizations is enhanced. This increase was independent of cell size and it was significant 15min after initiating stimulation. Interestingly, by evaluating the membrane capacitance we found that the events in control untreated cells corresponded to two populations of microvesicles and granules, and the fusion of both these populations is clearly enhanced after treatment with SMase. Furthermore, SMase does not increase the size of chromaffin granules. Together, these results strongly suggest that SNARE-mediated exocytosis is enhanced by the generation of SMase derivatives, reflecting an increase in the frequency of fusion of both microvesicles and chromaffin granules rather than an increase in the size of these vesicles.
Collapse
Affiliation(s)
- V García-Martínez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Sant Joan d'Alacant, Alicante 03550, Spain
| | - M A Montes
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, 41009 Sevilla, Spain
| | - J Villanueva
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Sant Joan d'Alacant, Alicante 03550, Spain
| | - Y Gimenez-Molina
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Sant Joan d'Alacant, Alicante 03550, Spain
| | - G A de Toledo
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, 41009 Sevilla, Spain
| | - L M Gutiérrez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Sant Joan d'Alacant, Alicante 03550, Spain.
| |
Collapse
|
6
|
Lipid metabolites enhance secretion acting on SNARE microdomains and altering the extent and kinetics of single release events in bovine adrenal chromaffin cells. PLoS One 2013; 8:e75845. [PMID: 24073281 PMCID: PMC3779176 DOI: 10.1371/journal.pone.0075845] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 08/22/2013] [Indexed: 01/03/2023] Open
Abstract
Lipid molecules such as arachidonic acid (AA) and sphingolipid metabolites have been implicated in modulation of neuronal and endocrine secretion. Here we compare the effects of these lipids on secretion from cultured bovine chromaffin cells. First, we demonstrate that exogenous sphingosine and AA interact with the secretory apparatus as confirmed by FRET experiments. Examination of plasma membrane SNARE microdomains and chromaffin granule dynamics using total internal reflection fluorescent microscopy (TIRFM) suggests that sphingosine production promotes granule tethering while arachidonic acid promotes full docking. Our analysis of single granule release kinetics by amperometry demonstrated that both sphingomyelinase and AA treatments enhanced drastically the amount of catecholamines released per individual event by either altering the onset phase of or by prolonging the off phase of single granule catecholamine release kinetics. Together these results demonstrate that the kinetics and extent of the exocytotic fusion pore formation can be modulated by specific signalling lipids through related functional mechanisms.
Collapse
|
7
|
|
8
|
Forces and stresses acting on fusion pore membrane during secretion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1009-23. [PMID: 19366587 DOI: 10.1016/j.bbamem.2009.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2008] [Revised: 01/07/2009] [Accepted: 01/30/2009] [Indexed: 11/23/2022]
Abstract
To assess the forces and stresses present in fusion pore during secretion the stationary convective flux of lipid through a fusion pore connecting two planar membranes under different tensions was investigated through computer simulations. The physics of the problem is described by Navier-Stokes equations, and the convective flux of lipid was evaluated using finite element method. Each of the membrane monolayer is considered separately as an isotropic, homogeneous and incompressible viscous medium with the same viscosity. The difference in membrane tensions, which is simulated as the pressure difference at two ends of each monolayer, is the driving force of the lipid flow. The two monolayers interact by sliding past each other with inter-monolayer frictional viscosity. Fluid velocity, pressure, shear and normal stresses, viscous and frictional dissipations and forces were calculated to evaluate where the fusion pore will deform, extend (or compress) and dilate. The pressure changes little in the planar sections, whereas in the toroidal section the change is rapid. The magnitude of lipid velocity peaks at the pore neck. The radial lipid velocity is zero at the neck, has two peaks one on each side of the pore neck, and diminishes without going to zero in planar parts of two monolayers. The peaks are of opposite signs due to the change of direction of lipid flow. The axial velocity is confined to the toroidal section, peaks at the neck and is clearly greater in the outer monolayer. As a result of the spatially highly uneven lipid flow the membrane is under a significant stress, shear and normal. The shear stress, which indicates where the membrane will deform without changing the volume, has two peaks placed symmetrically about the neck. The normal stress shows where the membrane may extend or compress. Both, the radial and axial normal stresses are negative (extensive) in the upper toroidal section and positive (compressive) in the lower toroidal section. The pressure difference determines lipid velocity and velocity dependent variables (shear as well as normal axial and radial stresses), but also contributes directly to the force on the membranes and critically influences where and to what extent the membrane will deform, extend or dilate. The viscosity coefficient (due to friction of one element of lipid against neighboring ones), and frictional coefficient (due to friction between two monolayers sliding past each other) further modulate some variables. Lipid velocity rises as pressure difference increases, diminishes as the viscosity coefficient rises but is unaffected by the frictional coefficient. The shear and normal stresses rise as pressure difference increases, but the change of the viscosity coefficients has no effect. Both the viscous dissipation (which has two peaks placed symmetrically about the neck) and much smaller frictional dissipation (which peaks at the pore neck) rise with pressure and diminish if the viscosity coefficient rises, but only the frictional dissipation increases if the frictional coefficient increases. Finally, the radial force causing pore dilatation, and which is significant only in the planar section of the vesicular membrane, is governed almost entirely by the pressure, whereas the viscosity and frictional coefficients have only a marginal effect. Many variables are altered during pore dilatation. The lipid velocity and dissipations (viscous and frictional) rise approximately linearly with pore radius, whereas the lipid mass flow increases supra-linearly owing to the combined effects of the changes in pore radius and greater lipid velocity. Interestingly the radial force on the vesicular membrane increases only marginally.
Collapse
|
9
|
Plonsky I, Kingsley DH, Rashtian A, Blank PS, Zimmerberg J. Initial size and dynamics of viral fusion pores are a function of the fusion protein mediating membrane fusion. Biol Cell 2008; 100:377-86. [PMID: 18208404 PMCID: PMC3650648 DOI: 10.1042/bc20070040] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION Protein-mediated merger of biological membranes, membrane fusion, is an important process. To investigate the role of fusogenic proteins in the initial size and dynamics of the fusion pore (a narrow aqueous pathway, which widens to finalize membrane fusion), two different fusion proteins expressed in the same cell line were investigated: the major glycoprotein of baculovirus Autographa californica (GP64) and the HA (haemagglutinin) of influenza X31. RESULTS The host Sf9 cells expressing these viral proteins, irrespective of protein species, fused to human RBCs (red blood cells) upon acidification of the medium. A high-time-resolution electrophysiological study of fusion pore conductance revealed fundamental differences in (i) the initial pore conductance; pores created by HA were smaller than those created by GP64; (ii) the ability of pores to flicker; only HA-mediated pores flickered; and (iii) the time required for pore formation; HA-mediated pores took much longer to form after acidification. CONCLUSION HA and GP64 have divergent electrophysiological phenotypes even when they fuse identical membranes, and fusion proteins play a crucial role in determining initial fusion pore characteristics. The structure of the initial fusion pore detected by electrical conductance measurements is sensitive to the nature of the fusion protein.
Collapse
Affiliation(s)
- Ilya Plonsky
- Laboratory of Cellular and Molecular Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1855, U.S.A
| | | | | | | | | |
Collapse
|
10
|
Abstract
Neurons communicate with one another through the release of molecules from synaptic vesicles and large dense core granules through the process of exocytosis. During exocytosis, molecules are released to the extracellular space through a fusion pore, which can either dilate, resulting in full fusion, or close, resulting in incomplete exocytosis, often referred to as 'kiss and run' exocytosis. Recently, there has been much interest in the regulation of this process in both neurons and neuroendocrine cells. There has been much recent work that addresses the existence of incomplete exocytosis in neurons and neuroendocrine cells, as well as recent work probing the molecular components and modulation of the fusion pore.
Collapse
Affiliation(s)
- Seong An
- Yale University School of Medicine, Department of Cellular and Molecular Physiology, Sterling Hall of Medicine, B-147, 333 Cedar St, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
11
|
Ohki S, Thacore H, Flanagan TD. Effects of temperature on viral glycoprotein mobility and a possible role of internal "viroskeleton" proteins in Sendai virus fusion. J Membr Biol 2004; 199:73-83. [PMID: 15383918 DOI: 10.1007/s00232-004-0678-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2003] [Revised: 03/22/2004] [Indexed: 10/26/2022]
Abstract
The effect of temperature on fusion of Sendai virus with target membranes and mobility of the viral glycoproteins was studied with fluorescence methods. When intact virus was used, the fusion threshold temperature (20-22 degrees C) was not altered regardless of the different types of target membranes. Viral glycoprotein mobility in the intact virus increased with temperature, particularly sharply at the fusion threshold temperature. This effect was suppressed by the presence of erythrocyte ghosts and/or dextran sulfate in the virus suspension. In these cases also, no change in the fusion threshold temperature was observed. On the other hand, reconstituted viral envelopes (virosomes) bearing viral glycoproteins but lacking matrix proteins were capable of fusing with erythrocyte ghosts even at temperatures lower than the fusion threshold temperature and no fusion threshold temperature was observed over the range of 10-40 degrees C. The mobility of viral glycoproteins on virosomes was much greater and virtually temperature-independent. The intact virus treated with an actin-affector, jasplakinolide, reduced the extent of fusion with erythrocyte ghosts and the mobility of viral glycoproteins, while the treatment of virosomes with the same drug did not affect the extent of fusion of virosomes with erythrocyte ghosts and the mobility of the glycoproteins. These results suggest that viral matrix proteins including actins affect viral glycoprotein mobility and may be responsible for the temperature threshold phenomenon observed in Sendai virus fusion.
Collapse
Affiliation(s)
- S Ohki
- Department of Physiology & Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 3435 Main Street, Buffalo, NY 14214, USA.
| | | | | |
Collapse
|
12
|
|
13
|
Peisajovich SG, Epand RF, Epand RM, Shai Y. Sendai virus N-terminal fusion peptide consists of two similar repeats, both of which contribute to membrane fusion. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:4342-50. [PMID: 12199713 DOI: 10.1046/j.1432-1033.2002.03132.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The N-terminal fusion peptide of Sendai virus F1 envelope glycoprotein is a stretch of 14 amino acids, most of which are hydrophobic. Following this region, we detected a segment of 11 residues that are strikingly similar to the N-terminal fusion peptide. We found that, when anchored to the membrane by palmitoylation of its N-terminus, this segment (WT-palm-19-33) induces membrane fusion of large unilamellar liposomes to almost the same extent as a segment that includes the N-terminal fusion peptide. The activity of WT-palm-19-33 was dependent on its specific sequence, as a palmitoylated peptide with the same amino-acid composition but a scrambled sequence was inactive. Interestingly, two mutations (G7A and G12A) known to increase F1- induced cell-cell fusion, also increased the homology between the N-terminal fusion peptide and WT-palm-19-33. The role of the amino-acid sequence on the fusogenicity, secondary structure, and mechanism of membrane fusion was analyzed by comparing a peptide comprising both homologous segments (WT 1-33), a G12A mutant (G12A 1-33), a G7A-G12A double mutant (G7A-G12A 1-33), and a peptide with a scrambled sequence (SC 1-33). Based on these experiments, we postulate that replacement of Gly 7 and Gly12 by Ala increases the alpha helical content of the N-terminal region, with a concomitant increase in its fusogenic activity. Furthermore, the dissimilar abilities of the different peptides to induce membrane negative curvature as well as to promote isotropic 31P NMR signals, suggest that these mutations might also alter the extent of membrane penetration of the 33-residue peptide. Interestingly, our results serve to explain the effect of the G7A and G12A mutations on the fusogenic activity of the parent F1 protein in vivo.
Collapse
Affiliation(s)
- Sergio G Peisajovich
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
14
|
Chen FS, Markosyan RM, Melikyan GB. The process of membrane fusion: Nipples, hemifusion, pores, and pore growth. PEPTIDE-LIPID INTERACTIONS 2002. [DOI: 10.1016/s1063-5823(02)52020-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
15
|
Lentz BR, Lee JK. Poly(ethylene glycol) (PEG)-mediated fusion between pure lipid bilayers: a mechanism in common with viral fusion and secretory vesicle release? Mol Membr Biol 1999; 16:279-96. [PMID: 10766128 DOI: 10.1080/096876899294508] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Membrane fusion is fundamental to the life of eukaryotic cells. Cellular trafficking and compartmentalization, import of food stuffs and export of waste, inter-cellular communication, sexual reproduction, and cell division are all dependent on this basic process. Yet, little is known about the molecular mechanism(s) by which fusion occurs. It is known that fusing membranes must somehow be docked and brought into close contact. Specific proteins, many of which have been identified within the past decade, accomplish this. An electrical connection or 'fusion pore' is established between compartments surrounded by the fusing membranes. Three primary views of the mechanism of pore formation during secretory and viral fusion have been proposed within the past decade. In one view, a protein ring forms an initial transient connection that expands slowly by recruiting lipid so as to form a lipidic junction. In another view, the initial fusion pore consists of a protein-lipid complex that transforms slowly until the fusion proteins dissociate from the complex to form an irreversible lipidic pore. In a third view, the initial pore is a transient lipid pore that fluctuates between open and closed states before either expanding irreversibly or closing. Recent work has helped define the mechanism by which poly(ethylene glycol) (PEG) mediates fusion of highly curved model membranes composed only of synthetic phospholipids. PEG is a highly hydrated polymer that can bring vesicle membranes to near molecular contact by making water between them thermodynamically unfavourable. Disrupted packing in the contacting monolayers of these vesicle membranes is necessary to induce fusion. The time course and sequence of molecular events of the ensuing fusion process have also been defined. This sequence of events involves the formation of an initial, transient intermediate in which outer leaflet lipids have mixed and small transient pores join fusing compartments ('stalk'). The transient intermediate transforms in 1-3 min to a fusion-committed, second intermediate ('septum') that then 'pops' to form the fusion pore. Inner leaflet mixing, which is shown to be distinct from outer leaflet mixing, accompanies contents mixing that marks formation of the fusion pore. Both the sequence of events and the activation energies of these events correspond well to those observed in viral membrane fusion and secretory granule fusion. These results strongly support the contention that both viral and secretory fusion events occur by lipid molecule rearrangements that can be studied and defined through the use of PEG-mediated vesicle fusion as a model system. A possible mechanism by which fusion proteins might mediate this lipidic process is described.
Collapse
Affiliation(s)
- B R Lentz
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, 27599-7260, USA.
| | | |
Collapse
|
16
|
Abstract
Membrane fusion is essential for cell survival and has attracted a great deal of both theoretical and experimental interest. Fluorescence (de)quenching measurements were designed to distinguish between bilayermerging and vesicle-mixing. Theoretical studies and various microscopic and diffraction methods have elucidated the mechanism of membrane fusion. These have revealed that membrane proximity and high defect density in the adjacent bilayers are the only prerequisites for fusion. Intermediates, such as stalk or inverse micellar structures can, but need not, be involved in vesicle fusion. Nonlamellar phase creation is accompanied by massive membrane fusion although it is not a requirement for bilayer merging. Propensity for membrane fusion is increased by increasing the local membrane disorder as well by performing manipulations that bring bilayers closer together. Membrane rigidification and enlarged bilayer separation opposes this trend. Membrane fusion is promoted by defects created in the bilayer due to the vicinity of lipid phase transition, lateral phase separation or domain generation, high local membrane curvature, osmotic or electric stress in or on the membrane; the addition of amphiphats or macromolecules which insert themselves into the membrane, freezing or other mechanical membrane perturbation have similar effects. Lowering the water activity by the addition of water soluble polymers or by partial system dehydration invokes membrane aggregation and hence facilitates fusion; as does the membrane charge neutralization after proton or other ion binding to the lipids and intermembrane scaffolding by proteins or other macromolecules. The alignment of defect rich domains and polypeptides or protein binding is pluripotent: not only does it increase the number of proximal defects in the bilayers, it triggers the vesicle aggregation and is fusogenic. Exceptions are the bound molecules that create steric or electrical barriers between the membranes which prevent fusion. Membrane fusion can be non-leaky but it is very common to lose material from the vesicle interior during the later stages of membrane unification, that is, after a few hundred microseconds following the induction of fusion.
Collapse
Affiliation(s)
- G Cevc
- Medizinische Biophysik, Technische Universität München, Klinikum r.d.I., Ismaningerstrasse 22, D-81675, Munich, Germany
| | | |
Collapse
|
17
|
Abstract
Although catalyzed by different proteins, the energy barriers for lipid bilayer fusion in exocytosis, viral fusion, and trafficking seem to be the same as those for the fusion of protein-free phospholipid membranes. To minimize this energy, fusion will proceed through a minimal number of lipid molecules, probably localized in bent non-bilayer intermediates. Experiments on phospholipid bilayer membrane fusion show the pathway of contact, hemifusion, flickering fusion pore formation, and fusion pore enlargement caused by swelling of the vesicle. Lipid curvature determines the barriers to hemifusion and fusion pore formation, while swelling-induced membrane tension drives fusion pore enlargement. Experiments on viral protein-induced cell-cell fusion and exocytosis show the same pathway with the same fundamental effects of lipid curvature and membrane tension. Thus while proteins control these reactions, lipid energetics determine the basic reaction scheme for membrane fusion.
Collapse
Affiliation(s)
- J Zimmerberg
- Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
18
|
Martin I, Pécheur EI, Ruysschaert JM, Hoekstra D. Membrane fusion induced by a short fusogenic peptide is assessed by its insertion and orientation into target bilayers. Biochemistry 1999; 38:9337-47. [PMID: 10413508 DOI: 10.1021/bi9829534] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To clarify the molecular mechanism by which an amphipathic negatively charged peptide consisting of 11 residues (WAE) induces fusion, and the relevance of these features for fusion, its mode of insertion and orientation into target bilayers were investigated. Using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) in combination with techniques based on tryptophan fluorescence, the peptide was found to form an alpha-helix, shallowly inserted into the membrane to which it is anchored. Interestingly, in the presence of target membranes, WAE inserts into the target bilayer as an alpha-helix oriented almost parallel to the lipid acyl chains. The accessibility of the peptide to either acrylamide (as an aqueous quencher of Trp fluorescence) or deuterium oxide (on the course of an FTIR deuteration kinetics) was lower in the presence than in the absence of target membranes, confirming that under those conditions, the peptide was shielded from the aqueous environment. Since fusion experiments have shown a temperature dependence, the effect of this later parameter on the structure and mode of insertion of the peptide was also analyzed. In the presence of target membrane, but not in their absence, the amount of alpha-helical structure increased with temperature, reflecting a similar temperature-dependent increase in the rate and extent of WAE-induced fusion. Also, the extent of penetration of the helix into the target membrane was greater at 37 degrees C than at lower temperatures. This temperature-dependent distinction was revealed by a decreased accessibility of the peptide to deuterium oxide and acrylamide at 37 degrees C as compared to that at lower temperatures. These data underscore the role of peptide structure, peptide penetration, and orientation in the mechanism of protein-induced membrane fusion.
Collapse
Affiliation(s)
- I Martin
- Laboratoire de Chimie-Physique des Macromolécules aux Interfaces (LCPMI), Université Libre de Bruxelles, Belgium.
| | | | | | | |
Collapse
|
19
|
Chizmadzhev YA, Kumenko DA, Kuzmin PI, Chernomordik LV, Zimmerberg J, Cohen FS. Lipid flow through fusion pores connecting membranes of different tensions. Biophys J 1999; 76:2951-65. [PMID: 10354423 PMCID: PMC1300267 DOI: 10.1016/s0006-3495(99)77450-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
When two membranes fuse, their components mix; this is usually described as a purely diffusional process. However, if the membranes are under different tensions, the material will spread predominantly by convection. We use standard fluid mechanics to rigorously calculate the steady-state convective flux of lipids. A fusion pore is modeled as a toroid shape, connecting two planar membranes. Each of the membrane monolayers is considered separately as incompressible viscous media with the same shear viscosity, etas. The two monolayers interact by sliding past each other, described by an intermonolayer viscosity, etar. Combining a continuity equation with an equation that balances the work provided by the tension difference, Deltasigma, against the energy dissipated by flow in the viscous membrane, yields expressions for lipid velocity, upsilon, and area of lipid flux, Phi. These expressions for upsilon and Phi depend on Deltasigma, etas, etar, and geometrical aspects of a toroidal pore, but the general features of the theory hold for any fusion pore that has a roughly hourglass shape. These expressions are readily applicable to data from any experiments that monitor movement of lipid dye between fused membranes under different tensions. Lipid velocity increases nonlinearly from a small value for small pore radii, rp, to a saturating value at large rp. As a result of velocity saturation, the flux increases linearly with pore radius for large pores. The calculated lipid flux is in agreement with available experimental data for both large and transient fusion pores.
Collapse
|
20
|
Tahara M, Coorssen JR, Timmers K, Blank PS, Whalley T, Scheller R, Zimmerberg J. Calcium can disrupt the SNARE protein complex on sea urchin egg secretory vesicles without irreversibly blocking fusion. J Biol Chem 1998; 273:33667-73. [PMID: 9837952 DOI: 10.1074/jbc.273.50.33667] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The homotypic fusion of sea urchin egg cortical vesicles (CV) is a system in which to correlate the biochemistry and physiology of membrane fusion. Homologues of vesicle-associated membrane protein (VAMP), syntaxin, and SNAP-25 were identified in CV membranes. A VAMP and syntaxin immunoreactive band at a higher apparent molecular mass (approximately 70 kDa) was detected; extraction and analysis confirmed that the band contained VAMP, SNAP-25, and syntaxin. This complex was also identified by immunoprecipitation and by sucrose gradient analysis. VAMP in the complex was insensitive to proteolysis by tetanus toxin. All criteria identify the SNARE complex as that described in other secretory systems. Complexes exist pre-formed on individual CV membranes and form between contacting CV. Most notably, CV SNARE complexes are disrupted in response to [Ca2+]free that trigger maximal fusion. N-Ethylmaleimide, which blocks fusion at or before the Ca2+-triggering step, blocks complex disruption by Ca2+. However, disruption is not blocked by lysophosphatidylcholine, which transiently arrests a late stage of fusion. Since removal of lysophosphatidylcholine from Ca2+-treated CV is known to allow fusion, complex disruption occurs independently from the membrane fusion step. As Ca2+ disrupts rather than stabilizes the complex, the presumably coiled-coil SNARE interactions are not needed at the time of fusion. These findings rule out models of fusion in which SNARE complex formation goes to completion ("zippers-up") after Ca2+ binding removes a "fusion-clamp."
Collapse
Affiliation(s)
- M Tahara
- Laboratory of Cellular and Molecular Biophysics, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Lee J, Lentz BR. Secretory and viral fusion may share mechanistic events with fusion between curved lipid bilayers. Proc Natl Acad Sci U S A 1998; 95:9274-9. [PMID: 9689070 PMCID: PMC21328 DOI: 10.1073/pnas.95.16.9274] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/1998] [Accepted: 06/05/1998] [Indexed: 02/08/2023] Open
Abstract
Activation energies for the individual steps of secretory and viral fusion are reported to be large [Oberhauser, A. F., Monck, J. R. & Fernandez, J. M. (1992) Biophys. J. 61, 800-809; Clague, M. J., Schoch, C., Zech, L. & Blumenthal, R. (1990) Biochemistry 29, 1303-1308]. Understanding the cause for these large activation energies is crucial to defining the mechanisms of these two types of biological membrane fusion. We showed recently that the fusion of protein-free model lipid bilayers mimics the sequence of steps observed during secretory and viral fusion, suggesting that these processes may involve common lipid, rather than protein, rearrangements. To test for this possibility, we determined the activation energies for the three steps that we were able to distinguish as contributing to the fusion of protein-free model lipid bilayers. Activation energies for lipid rearrangements associated with formation of the reversible first intermediate, with conversion of this to a semi-stable second intermediate, and with irreversible fusion pore formation were 37 kcal/mol, 27 kcal/mol, and 22 kcal/mol, respectively. The first and last of these were comparable to the activation energies observed for membrane lipid exchange (42 kcal/mol) during viral fusion and for the rate of fusion pore opening during secretory granule release (23 kcal/mol). This striking similarity suggests strongly that the basic molecular processes involved in secretory and viral fusion involve a set of lipid molecule rearrangements that also are involved in model membrane fusion.
Collapse
Affiliation(s)
- J Lee
- Department of Biochemistry and Biophysics, University of North Carolina, School of Medicine, Chapel Hill, NC 27599-7260, USA
| | | |
Collapse
|
22
|
Chernomordik LV, Frolov VA, Leikina E, Bronk P, Zimmerberg J. The pathway of membrane fusion catalyzed by influenza hemagglutinin: restriction of lipids, hemifusion, and lipidic fusion pore formation. J Cell Biol 1998; 140:1369-82. [PMID: 9508770 PMCID: PMC2132678 DOI: 10.1083/jcb.140.6.1369] [Citation(s) in RCA: 318] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The mechanism of bilayer unification in biological fusion is unclear. We reversibly arrested hemagglutinin (HA)-mediated cell-cell fusion right before fusion pore opening. A low-pH conformation of HA was required to form this intermediate and to ensure fusion beyond it. We present evidence indicating that outer monolayers of the fusing membranes were merged and continuous in this intermediate, but HA restricted lipid mixing. Depending on the surface density of HA and the membrane lipid composition, this restricted hemifusion intermediate either transformed into a fusion pore or expanded into an unrestricted hemifusion, without pores but with unrestricted lipid mixing. Our results suggest that restriction of lipid flux by a ring of activated HA is necessary for successful fusion, during which a lipidic fusion pore develops in a local and transient hemifusion diaphragm.
Collapse
Affiliation(s)
- L V Chernomordik
- Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-1855, USA.
| | | | | | | | | |
Collapse
|
23
|
Durell SR, Martin I, Ruysschaert JM, Shai Y, Blumenthal R. What studies of fusion peptides tell us about viral envelope glycoprotein-mediated membrane fusion (review). Mol Membr Biol 1997; 14:97-112. [PMID: 9394290 DOI: 10.3109/09687689709048170] [Citation(s) in RCA: 184] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This review describes the numerous and innovative methods used to study the structure and function of viral fusion peptides. The systems studied include both intact fusion proteins and synthetic peptides interacting with model membranes. The strategies and methods include dissecting the fusion process into intermediate stages, comparing the effects of sequence mutations, electrophysiological patch clamp methods, hydrophobic photolabelling, video microscopy of the redistribution of both aqueous and lipophilic fluorescent probes between cells, standard optical spectroscopy of peptides in solution (circular dichroism and fluorescence) and attenuated total reflection-Fourier transform infrared spectroscopy of peptides bound to planar bilayers. Although the goal of a detailed picture of the fusion pore has not been achieved for any of the intermediate stages, important properties useful for constraining the development of models are emerging. For example, the presence of alpha-helical structure in at least part of the fusion peptide is strongly correlated with activity; whereas, beta-structure tends to be less prevalent, associated with non-native experimental conditions, and more related to vesicle aggregation than fusion. The specific angle of insertion of the peptides into the membrane plane is also found to be an important characteristic for the fusion process. A shallow penetration, extending only to the central aliphatic core region, is likely responsible for the destabilization of the lipids required for coalescence of the apposing membranes and fusion. The functional role of the fusion peptides (which tend to be either nonpolar or aliphatic) is then to bind to and dehydrate the outer bilayers at a localized site; and thus reduce the energy barrier for the formation of highly curved, lipidic 'stalk' intermediates. In addition, the importance of the formation of specific, 'higher-order' fusion peptide complexes has also been shown. Recent crystallographic structures of core domains of two more fusion proteins (in addition to influenza haemagglutinin) has greatly facilitated the development of prototypic models of the fusion site. This latter effort will undoubtedly benefit from the insights and constraints gained from the studies of fusion peptides.
Collapse
Affiliation(s)
- S R Durell
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
24
|
Melikyan GB, Brener SA, Ok DC, Cohen FS. Inner but not outer membrane leaflets control the transition from glycosylphosphatidylinositol-anchored influenza hemagglutinin-induced hemifusion to full fusion. J Cell Biol 1997; 136:995-1005. [PMID: 9060465 PMCID: PMC2132481 DOI: 10.1083/jcb.136.5.995] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/1996] [Revised: 11/27/1996] [Indexed: 02/03/2023] Open
Abstract
Cells that express wild-type influenza hemagglutinin (HA) fully fuse to RBCs, while cells that express the HA-ectodomain anchored to membranes by glycosylphosphatidylinositol, rather than by a transmembrane domain, only hemifuse to RBCs. Amphipaths were inserted into inner and outer membrane leaflets to determine the contribution of each leaflet in the transition from hemifusion to fusion. When inserted into outer leaflets, amphipaths did not promote the transition, independent of whether the agent induces monolayers to bend outward (conferring positive spontaneous monolayer curvature) or inward (negative curvature). In contrast, when incorporated into inner leaflets, positive curvature agents led to full fusion. This suggests that fusion is completed when a lipidic fusion pore with net positive curvature is formed by the inner leaflets that compose a hemifusion diaphragm. Suboptimal fusion conditions were established for RBCs bound to cells expressing wild-type HA so that lipid but not aqueous dye spread was observed. While this is the same pattern of dye spread as in stable hemifusion, for this "stunted" fusion, lower concentrations of amphipaths in inner leaflets were required to promote transfer of aqueous dyes. Also, these amphipaths induced larger pores for stunted fusion than they generated within a stable hemifusion diaphragm. Therefore, spontaneous curvature of inner leaflets can affect formation and enlargement of fusion pores induced by HA. We propose that after the HA-ectodomain induces hemifusion, the transmembrane domain causes pore formation by conferring positive spontaneous curvature to leaflets of the hemifusion diaphragm.
Collapse
Affiliation(s)
- G B Melikyan
- Department of Molecular Biophysics and Physiology, Rush Medical College, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
25
|
Chernomordik LV, Leikina E, Frolov V, Bronk P, Zimmerberg J. An early stage of membrane fusion mediated by the low pH conformation of influenza hemagglutinin depends upon membrane lipids. J Cell Biol 1997; 136:81-93. [PMID: 9008705 PMCID: PMC2132452 DOI: 10.1083/jcb.136.1.81] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/1996] [Revised: 11/07/1996] [Indexed: 02/03/2023] Open
Abstract
While the specificity and timing of membrane fusion in diverse physiological reactions, including virus-cell fusion, is determined by proteins, fusion always involves the merger of membrane lipid bilayers. We have isolated a lipid-dependent stage of cell-cell fusion mediated by influenza hemagglutinin and triggered by cell exposure to mildly acidic pH. This stage preceded actual membrane merger and fusion pore formation but was subsequent to a low pH-induced change in hemagglutinin conformation that is required for fusion. A low pH conformation of hemagglutinin was required to achieve this lipid-dependent stage and also, downstream of it, to drive fusion to completion. The lower the pH of the medium applied to trigger fusion and, thus, the more hemagglutinin molecules activated, the less profound was the dependence of fusion on lipids. Membrane-incorporated lipids affected fusion in a manner that correlated with their dynamic molecular shape, a characteristic that determines a lipid monolayer's propensity to bend in different directions. The lipid sensitivity of this stage, i.e., inhibition of fusion by inverted cone-shaped lysophosphatidylcholine and promotion by cone-shaped oleic acid, was consistent with the stalk hypothesis of fusion, suggesting that fusion proteins begin membrane merger by promoting the formation of a bent, lipid-involving, stalk intermediate.
Collapse
Affiliation(s)
- L V Chernomordik
- Laboratary of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
26
|
Plonsky I, Zimmerberg J. The initial fusion pore induced by baculovirus GP64 is large and forms quickly. J Cell Biol 1996; 135:1831-9. [PMID: 8991094 PMCID: PMC2133954 DOI: 10.1083/jcb.135.6.1831] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The formation of the fusion pore is the first detectable event in membrane fusion (Zimmerberg, J., R. Blumenthal, D.P. Sarkar, M. Curran, and S.J. Morris. 1994. J. Cell Biol. 127:1885-1894). To date, fusion pores measured in exocytosis and viral fusion have shared features that include reversible closure (flickering), highly fluctuating semistable stages, and a lag time of at least several seconds between the triggering and the pore opening. We investigated baculovirus GP64-induced Sf9 cell-cell fusion, triggered by external acid solution, using two different electrophysiological techniques: double whole-cell recording (for high time resolution, model-independent measurements), and the more conventional time-resolved admittance recordings. Both methods gave essentially the same results, thus validating the use of the admittance measurements for fusion pore conductance calculations. Fusion was first detected by abrupt pore formation with a wide distribution of initial conductance, centered around 1 nS. Often the initial fusion pore conductance was stable for many seconds. Fluctuations in semistable conductances were much less than those of other fusion pores. The waiting time distribution, measured between pH onset and initial pore appearance, fits best to a model with many (approximately 19) independent elements. Thus, unlike previously measured fusion pores, GP64-mediated pores do not flicker, can have large, stable initial pore conductances lasting up to a minute, and have typical lag times of < 1 s. These findings are consistent with a barrel-shaped model of an initial fusion pore consisting of five to eight GP64 trimers that is lined with lipid.
Collapse
Affiliation(s)
- I Plonsky
- Laboratory of Cellular and Molecular Biosphysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-1855, USA
| | | |
Collapse
|
27
|
Linial M, Parnas D. Deciphering neuronal secretion: tools of the trade. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1286:117-52. [PMID: 8652611 DOI: 10.1016/0304-4157(96)00007-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- M Linial
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel.
| | | |
Collapse
|
28
|
Zhou Z, Misler S, Chow RH. Rapid fluctuations in transmitter release from single vesicles in bovine adrenal chromaffin cells. Biophys J 1996; 70:1543-52. [PMID: 8785312 PMCID: PMC1225082 DOI: 10.1016/s0006-3495(96)79718-7] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Single-vesicle release of catecholamines from chromaffin cells can be detected in real time as current spikes by the electrochemical method of amperometry. About 70% of spikes are preceded by a small "foot," the trickle of transmitter out of the early fusion pore. In addition, 20-50% of foot signals exhibit rapid fluctuations that we interpret as flickering of the fusion pore. There are also "stand-alone" foot signals, which may reflect transient fusions, in which the vesicles do not collapse completely into the plasma membrane. The number and frequency of the foot flickering are affected by intracellular Ca2+ concentration.
Collapse
Affiliation(s)
- Z Zhou
- Department of Physiology, Loyola University Medical Center, Maywood, Illinois 60153, USA.
| | | | | |
Collapse
|
29
|
Lindau M, Almers W. Structure and function of fusion pores in exocytosis and ectoplasmic membrane fusion. Curr Opin Cell Biol 1995; 7:509-17. [PMID: 7495570 DOI: 10.1016/0955-0674(95)80007-7] [Citation(s) in RCA: 194] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Several proteins involved in exocytosis have been identified recently, but it is still completely unclear which molecules perform the fusion event itself. Although in viral fusion the fusion proteins are known, even there the molecular mechanism remains controversial. Investigation of single fusion events by electrophysiological techniques together with fluorimetric measurements have now provided some insight into the properties of the first aqueous connection, the fusion pore. This pore has an initial size similar to an ion channel and allows movement of lipids only after it has substantially expanded, indicating that it is initially not a purely lipidic structure, but incorporates lipids when it expands. Although neurotransmitter release may occur through narrow transient fusion pores, the fusion pore of synaptic vesicles probably expands vey rapidly, making it unlikely that secretion is performed by rapid exo/endocytosis without full fusion under normal conditions. Recent recordings from small membrane patches have made it possible to resolve fusion events from vesicles as small as synaptic vesicles. Future experiments using excised patches may provide an approach to identify the molecular machinery of exocytotic membrane fusion.
Collapse
Affiliation(s)
- M Lindau
- Abteilung Molekulare Zellforschung, Max Planck Institut für medizinische Forschung, Heidelberg, Germany
| | | |
Collapse
|
30
|
Blumenthal R, Pak CC, Raviv Y, Krumbiegel M, Bergelson LD, Morris SJ, Lowy RJ. Transient domains induced by influenza haemagglutinin during membrane fusion. Mol Membr Biol 1995; 12:135-42. [PMID: 7767373 DOI: 10.3109/09687689509038509] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
During low pH-induced fusion of influenza virus with erythrocytes we have observed differential dispersion of viral lipid and haemagglutinin (HA) into the erythrocyte membrane, and viral RNA into the erythrocyte using fluorescence video microscopy. The movement of both viral lipid and HA from virus to cell was restricted during the initial stages of fusion relative to free diffusion. This indicates the existence of relatively long-lived barriers to diffusion subsequent to fusion pore formation. Fluorescence anisotropy of phospholipid analogues incorporated into the viral membrane decreased when the pH was lowered to levels required for optimum fusion. This indicates that the restricted motion of viral membrane components was not due to rigidification of membrane lipids. The movement of HA from the fusion site was also assessed by photosensitized labelling by means of a fluorescent substrate (NBD-taurine) passing through the band 3 sialoglycoprotein (the erythrocyte anion transporter). We also examined the flow of lipid and aqueous markers during fusion of HA-expressing cells with labelled erythrocytes. During this cell-cell fusion, movement of lipid between fusing membranes begins before the fusion pore is wide enough to allow diffusion of aqueous molecules (M(r) > 500). The data indicate that HA is capable of creating domains in the membrane and controlling continuity of aqueous compartments which are bounded by such domains.
Collapse
|
31
|
Zimmerberg J, Blumenthal R, Sarkar DP, Curran M, Morris SJ. Restricted movement of lipid and aqueous dyes through pores formed by influenza hemagglutinin during cell fusion. J Cell Biol 1994; 127:1885-94. [PMID: 7806567 PMCID: PMC2120276 DOI: 10.1083/jcb.127.6.1885] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The fusion of cells by influenza hemagglutinin (HA) is the best characterized example of protein-mediated membrane fusion. In simultaneous measurements of pairs of assays for fusion, we determined the order of detectable events during fusion. Fusion pore formation in HA-triggered cell-cell fusion was first detected by changes in cell membrane capacitance, next by a flux of fluorescent lipid, and finally by flux of aqueous fluorescent dye. Fusion pore conductance increased by small steps. A retardation of lipid and aqueous dyes occurred during fusion pore fluctuations. The flux of aqueous dye depended on the size of the molecule. The lack of movement of aqueous dyes while total fusion pore conductance increased suggests that initial HA-triggered fusion events are characterized by the opening of multiple small pores: the formation of a "sieve".
Collapse
Affiliation(s)
- J Zimmerberg
- Laboratory of Theoretical and Physical Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
32
|
Abstract
Poly(ethylene glycol) (PEG) is used widely to mediate cell-cell fusion in the production of somatic cell hybrids and in the fusion injection of macromolecules into cultured cells from erythrocytes or liposomes. However, little is known about the mechanisms by which PEG induces fusion of cell membranes, making its use much more an art than a science. This article considers possible molecular events involved in biomembrane fusion and summarizes what we have learned about these in recent years from studies of fusion of well-defined model membranes. In addition, it recounts observations made over the past several years about the process of PEG-mediated fusion of model membranes. These observations have defined the process to an extent sufficient to allow us to propose a model for the molecular events involved in the process. It is suggested that dehydration leads to asymmetry in the lipid packing pressure in the two leaflets of the membrane bilayer leading to formation of a single bilayer septum at a point of close apposition of two membranes. The single bilayer septum then decays during formation of the initial fusion pore. Agents that enhance or alleviate the dehydration-induced asymmetric packing stress will favor or inhibit fusion. Although the proposed picture is consistent with much accumulated data, it is not yet proven; experiments must now be devised to test its details. Finally, the proposed model is discussed in terms of potential implications for the mechanisms available to a cell in controlling more complex in vivo cell fusion processes such as endocytosis, exocytosis, protein sorting/transport, and viral budding/infection.
Collapse
Affiliation(s)
- B R Lentz
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill 27599-7260
| |
Collapse
|
33
|
Abstract
The development of micro-voltammetry to detect the release of secretory products from single cells has yielded surprising information, which suggests that the release of secretory products is regulated after the fusion of secretory vesicles with the plasma membrane. This technique has also been used to demonstrate that the release of secretory products can occur during transient fusion events, which leads one to question the current models for membrane recycling. In the past year, strong evidence has emerged in support of a role for rab3 and G alpha i3 proteins in regulating a putative scaffold of proteins that cause bilayer fusion during exocytosis. These findings parallel the biochemical identification of several new cytosolic, secretory vesicle and plasma membrane proteins that may also play a role in regulating fusion.
Collapse
Affiliation(s)
- I M Robinson
- Department of Physiology and Biophysics, Mayo Clinic, Rochester, Minnesota 55905
| | | |
Collapse
|
34
|
Abstract
Membrane fusion is ubiquitous in biological systems, occurring in the simplest of unicellular eukaryotes as well as higher eukaryotes. As soon as the first primitive eukaryotic cell utilized a lipid bilayer as an outer membrane, membrane fusion (and fission) became necessary for the traffic of material from the outside to the inside, the inside to the outside, and between different intracellular membrane-bounded compartments. The earliest cells would have made use of the intrinsic ability of lipid bilayers to fuse under certain conditions. Although this fusogenic property of bilayers has been known for some time, it is has become clear only relatively recently that two phospholipid bilayers will fuse spontaneously, owing to a hydrophobic force, when the bilayers are brought close together under conditions of membrane tension or high curvature (Helm and Israelachvili, 1993). The primeval cell would have used proteins to develop the appropriate architecture in which such fusion would occur in a regulated manner. During the course of evolution, ever more sophisticated ways of regulating this basic process would evolve, but the underlying fusion mechanism would remain unchanged. We have proposed that a macromolecular scaffold of proteins is responsible for bringing the plasma membrane close to the secretory granule membranes and creating the architecture that enables the hydrophobic force to cause fusion (Figure 1; Nanavati et al., 1992; Monck and Fernandez, 1992; Oberhauser and Fernandez, 1993). Evidence is now accumulating that there are several highly conserved families of proteins associated with vesicle fusion events, from yeast to mammalian cells, and with intracellular traffic, as well as with regulated exocytosis and synaptic transmission (Bennett and Scheller, 1993; Sollner et al., 1993; Südhof et al., 1993). The molecular structures (or scaffolds) that regulate membrane fusion are likely to contain related proteins and share certain fundamental properties.
Collapse
Affiliation(s)
- J R Monck
- Department of Physiology and Biophysics, Mayo Clinic, Rochester, Minnesota 55905
| | | |
Collapse
|
35
|
Robinson IM, Oberhauser AF, Fernandez JM. Is the activity of the fusion pore scaffold regulated by a coincidence detector? Ann N Y Acad Sci 1994; 710:168-78. [PMID: 7512315 DOI: 10.1111/j.1749-6632.1994.tb26625.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- I M Robinson
- Department of Physiology and Biophysics, Mayo Clinic, Rochester, Minnesota 55905
| | | | | |
Collapse
|
36
|
Walter A, Yeagle PL, Siegel DP. Diacylglycerol and hexadecane increase divalent cation-induced lipid mixing rates between phosphatidylserine large unilamellar vesicles. Biophys J 1994; 66:366-76. [PMID: 8161690 PMCID: PMC1275704 DOI: 10.1016/s0006-3495(94)80786-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Bovine brain phosphatidylserine (BBPS) vesicles were prepared with traces of dioleoylglycerol (18:1, 18:1 DAG) or hexadecane (HD) to determine the influence of changes in headgroup or acyl chain packing on divalent cation-induced lipid mixing rates. A stopped-flow apparatus was used to combine vesicles with 3 mM Ca2+ or Ba2+. Aggregation was monitored by light scattering and lipid mixing by lipid probe dilution. Neither 3-6 mol% 18:1, 18:1 DAG nor up to 10 mol % HD significantly altered the BBPS chain melting temperature, vesicle diameter, or vesicle aggregation rates. Lipid mixing rates doubled by adding either 3 mol % 18:1, 18:1 DAG or 6 mol % HD to BBPS with no change in the Ca2+ concentration threshold. The Arrhenius slopes of the lipid mixing rates for control, 3 mol % 18:1, 18:1 DAG, and 6 mol % HD vesicles were identical. 2H-nuclear magnetic resonance spectra of perdeuterated dipalmitoylglycerol and HD in BBPS in the absence and presence of Ca2+ and Ba2+ showed that the solutes occupied different time-averaged positions in the bilayer under each condition. These data suggest that: 1) the enhanced lipid mixing rate is related to the volume of the added alkyl chains; 2) 18:1, 18:1 DAG and HD may alter the activation entropy or the attempt frequency at one or more steps in the lipid mixing process; 3) 18:1, 18:1 DAG and HD are likely to act at a different spatial or temporal point than the divalent cation; and 4) it is unlikely that the effect of these solutes on lipid mixing is due to their equilibrium time-averaged positions in the bilayer. Others have shown that apolar lipids accelerate fusion in nonbilayer phase-forming systems, but BBPS does not form these phases under these conditions. Therefore, we propose that the effect of very small amounts of apolar substances may be very general, e.g., stabilizing the hydrophobic interstices associated with a variety of proposed intermediate structures.
Collapse
Affiliation(s)
- A Walter
- Department of Physiology and Biophysics, Wright State University, Dayton, Ohio 45435
| | | | | |
Collapse
|
37
|
Chanturiya AN, Nikoloshina HV. Correlations between changes in membrane capacitance induced by changes in ionic environment and the conductance of channels incorporated into bilayer lipid membranes. J Membr Biol 1994; 137:71-7. [PMID: 7516435 DOI: 10.1007/bf00234999] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The action of metal polycations and pH on ionic channels produced in bilayer lipid membranes (BLM) by three different toxins was studied by measuring membrane capacitance and channel conductance. Here, we show that critical concentrations of Cd2+, La3+ or Tb3+ induce complex changes in membrane capacitance. The time course of capacitance changes is similar to the time course of channel blocking by these ions at low concentration. No changes in BLM capacitance or conductance were observed in the range of pH 5.8-9.0. A pH shift from 7.4 to 3-4 or 11-12 induced large changes in BLM capacitance and channel conductance. For all studied channel-forming proteins, the initial capacitance increase preceded the conductance decrease caused by addition of polycations or by a change in pH. A close relationship between membrane lipid packing and ion channel protein is suggested.
Collapse
Affiliation(s)
- A N Chanturiya
- Department of Neurochemistry, A.V. Palladin Biochemistry Institute, Kiev, Ukraine
| | | |
Collapse
|
38
|
Affiliation(s)
- R D Burgoyne
- Physiological Laboratory, University of Liverpool, U.K
| | | |
Collapse
|
39
|
Affiliation(s)
- J R Monck
- Department of Physiology and Biophysics, Mayo Clinic, Rochester, Minnesota 55905
| | | |
Collapse
|
40
|
|
41
|
Abstract
Common themes are emerging from the study of viral, cell-cell, intracellular, and liposome fusion. Viral and cellular membrane fusion events are mediated by fusion proteins or fusion machines. Viral fusion proteins share important characteristics, notably a fusion peptide within a transmembrane-anchored polypeptide chain. At least one protein involved in a cell-cell fusion reaction resembles viral fusion proteins. Components of intracellular fusion machines are utilized in multiple membrane trafficking events and are conserved through evolution. Fusion pores develop during and intracellular fusion events suggesting similar mechanisms for many, if not all, fusion events.
Collapse
Affiliation(s)
- J M White
- Department of Pharmacology, University of California, San Francisco 94143-0450
| |
Collapse
|