1
|
Arakawa H, Higuchi Y. Exocrine scent marking: Coordinative role of arginine vasopressin in the systemic regulation of social signaling behaviors. Neurosci Biobehav Rev 2022; 136:104597. [PMID: 35248677 DOI: 10.1016/j.neubiorev.2022.104597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 12/25/2022]
Abstract
Arginine vasopressin (AVP) is a neurohypophysial hormone that coordinatively regulates central socio-emotional behavior and peripheral control of antidiuretic fluid homeostasis. Most mammals, including rodents, utilize exocrine or urine-contained scent marking as a social signaling tool that facilitates social adaptation. The exocrine scent marking behavior is postulated to fine-tune sensory and cognitive abilities to recognize key social features via exocrine/urinary olfactory cues and subsequently control exocrine deposition or urinary marking through the mediation of osmotic fluid balance. AVP is implicated as a major player in controlling both recognition and signaling responses. This review provides constructive hypotheses on the coordinative processes of the AVP neurohypophysial circuits in the systemic regulations of fluid control and social-communicative behavior, via the expression of exocrine scent marking, and further emphasizes a potential role of AVP in a common mechanism underlying social communication in rodents.
Collapse
Affiliation(s)
- Hiroyuki Arakawa
- Depertment of Systems Physiology, University of the Ryukyus School of Medicine, Okinawa, Japan.
| | - Yuki Higuchi
- Depertment of Systems Physiology, University of the Ryukyus School of Medicine, Okinawa, Japan
| |
Collapse
|
2
|
Anacker AM, Christensen JD, LaFlamme EM, Grunberg DM, Beery AK. Septal oxytocin administration impairs peer affiliation via V1a receptors in female meadow voles. Psychoneuroendocrinology 2016; 68:156-62. [PMID: 26974500 PMCID: PMC4851907 DOI: 10.1016/j.psyneuen.2016.02.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/23/2016] [Accepted: 02/23/2016] [Indexed: 11/28/2022]
Abstract
The peptide hormone oxytocin (OT) plays an important role in social behaviors, including social bond formation. In different contexts, however, OT is also associated with aggression, social selectivity, and reduced affiliation. Female meadow voles form social preferences for familiar same-sex peers under short, winter-like day lengths in the laboratory, and provide a means of studying affiliation outside the context of reproductive pair bonds. Multiple lines of evidence suggest that the actions of OT in the lateral septum (LS) may decrease affiliative behavior, including greater density of OT receptors in the LS of meadow voles that huddle less. We infused OT into the LS of female meadow voles immediately prior to cohabitation with a social partner to determine its effects on partner preference formation. OT prevented the formation of preferences for the partner female. Co-administration of OT with a specific OT receptor antagonist did not reverse the effect, but co-administration of OT with a specific vasopressin 1a receptor (V1aR) antagonist did, indicating that OT in the LS likely acted through V1aRs to decrease partner preference. Receptor autoradiography revealed dense V1aR binding in the LS of female meadow voles. These results suggest that the LS is a brain region that may be responsible for inhibitory effects of OT administration on affiliation, which will be important to consider in therapeutic administrations of OT.
Collapse
Affiliation(s)
- Allison M.J. Anacker
- Program in Neuroscience, Smith College, Clark Science Center, 44 College Lane, Northampton, MA 01063, United States
| | - Jennifer D. Christensen
- Program in Neuroscience, Smith College, Clark Science Center, 44 College Lane, Northampton, MA 01063, United States
| | - Elyssa M. LaFlamme
- Program in Neuroscience, Smith College, Clark Science Center, 44 College Lane, Northampton, MA 01063, United States
| | - Diana M. Grunberg
- Program in Neuroscience, Smith College, Clark Science Center, 44 College Lane, Northampton, MA 01063, United States
| | - Annaliese K. Beery
- Program in Neuroscience, Smith College, Clark Science Center, 44 College Lane, Northampton, MA 01063, United States,Department of Psychology, Department of Biology, Smith College, Clark Science Center, 44 College Lane, Northampton, MA 01063, United States,Corresponding author at: Smith College, Clark Science Center, 44 College Lane, Northampton, MA 01063, United States
| |
Collapse
|
3
|
Latzman RD, Hopkins WD, Keebaugh AC, Young LJ. Personality in chimpanzees (Pan troglodytes): exploring the hierarchical structure and associations with the vasopressin V1A receptor gene. PLoS One 2014; 9:e95741. [PMID: 24752497 PMCID: PMC3994157 DOI: 10.1371/journal.pone.0095741] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 03/30/2014] [Indexed: 11/19/2022] Open
Abstract
One of the major contributions of recent personality psychology is the finding that traits are related to each other in an organized hierarchy. To date, however, researchers have yet to investigate this hierarchy in nonhuman primates. Such investigations are critical in confirming the cross-species nature of trait personality helping to illuminate personality as neurobiologically-based and evolutionarily-derived dimensions of primate disposition. Investigations of potential genetic polymorphisms associated with hierarchical models of personality among nonhuman primates represent a critical first step. The current study examined the hierarchical structure of chimpanzee personality as well as sex-specific associations with a polymorphism in the promoter region of the vasopressin V1a receptor gene (AVPR1A), a gene associated with dispositional traits, among 174 chimpanzees. Results confirmed a hierarchical structure of personality across species and, despite differences in early rearing experiences, suggest a sexually dimorphic role of AVPR1A polymorphisms on hierarchical personality profiles at a higher-order level.
Collapse
Affiliation(s)
- Robert D. Latzman
- Department of Psychology, Georgia State University, Atlanta, Georgia, United States of America
| | - William D. Hopkins
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Alaine C. Keebaugh
- Center for Translational Social Neuroscience, Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center & Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Larry J. Young
- Center for Translational Social Neuroscience, Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center & Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
4
|
Genetic influences on receptive joint attention in chimpanzees (Pan troglodytes). Sci Rep 2014; 4:3774. [PMID: 24440967 PMCID: PMC3895903 DOI: 10.1038/srep03774] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 12/06/2013] [Indexed: 11/16/2022] Open
Abstract
Despite their genetic similarity to humans, our understanding of the role of genes on cognitive traits in chimpanzees remains virtually unexplored. Here, we examined the relationship between genetic variation in the arginine vasopressin V1a receptor gene (AVPR1A) and social cognition in chimpanzees. Studies have shown that chimpanzees are polymorphic for a deletion in a sequence in the 5′ flanking region of the AVPR1A, DupB, which contains the variable RS3 repetitive element, which has been associated with variation in social behavior in humans. Results revealed that performance on the social cognition task was significantly heritable. Furthermore, males with one DupB+ allele performed significantly better and were more responsive to socio-communicative cues than males homozygous for the DupB- deletion. Performance on a non-social cognition task was not associated with the AVPR1A genotype. The collective findings show that AVPR1A polymorphisms are associated with individual differences in performance on a receptive joint attention task in chimpanzees.
Collapse
|
5
|
Rood BD, Stott RT, You S, Smith CJ, Woodbury ME, De Vries GJ. Site of origin of and sex differences in the vasopressin innervation of the mouse (Mus musculus) brain. J Comp Neurol 2013; 521:2321-58. [DOI: 10.1002/cne.23288] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 05/11/2012] [Accepted: 12/11/2012] [Indexed: 01/14/2023]
|
6
|
Hopkins WD, Donaldson ZR, Young LJ. A polymorphic indel containing the RS3 microsatellite in the 5' flanking region of the vasopressin V1a receptor gene is associated with chimpanzee (Pan troglodytes) personality. GENES BRAIN AND BEHAVIOR 2012; 11:552-8. [PMID: 22520444 DOI: 10.1111/j.1601-183x.2012.00799.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Vasopressin is a neuropeptide that has been strongly implicated in the development and evolution of complex social relations and cognition in mammals. Recent studies in voles have shown that polymorphic variation in the promoter region of the arginine vasopressin V1a receptor gene (avpr1a) is associated with different dimensions of sociality. In humans, variation in a repetitive sequence element in the 5' flanking region of the AVPR1A, known as RS3, have also been associated with variation in AVPR1a gene expression, brain activity and social behavior. Here, we examined the association of polymorphic variation in this same 5' flanking region of the AVPR1A on subjective ratings of personality in a sample of 83 chimpanzees (Pan troglodytes). Initial analyses indicated that 34 females and 19 males were homozygous for the short allele, which lacks RS3 (DupB(-/-)), while 18 females and 12 males were heterozygous and thus had one copy of the long allele containing RS3 (DupB(+/-)), yielding overall allelic frequencies of 0.82 for the DupB(-) allele and 0.18 for the DupB(+) allele. DupB(+/+) chimpanzees were excluded from the analysis because of the limited number of individuals. Results indicated no significant sex difference in personality between chimpanzees homozygous for the deletion of the RS3-containing DupB region (DupB(-/-)); however, among chimpanzees carrying one allele with the DupB present (DupB(+/-)), males had significantly higher dominance and lower conscientiousness scores than females. These findings are the first evidence showing that the AVPR1A gene plays a role in different aspects of personality in male and female chimpanzees.
Collapse
Affiliation(s)
- W D Hopkins
- Neuroscience Institute and Language Research Center, Georgia State University, Atlanta, 30302, USA.
| | | | | |
Collapse
|
7
|
Neumann ID, Veenema AH, Beiderbeck DI. Aggression and anxiety: social context and neurobiological links. Front Behav Neurosci 2010; 4:12. [PMID: 20407578 PMCID: PMC2854527 DOI: 10.3389/fnbeh.2010.00012] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Accepted: 03/07/2010] [Indexed: 01/29/2023] Open
Abstract
Psychopathologies such as anxiety- and depression-related disorders are often characterized by impaired social behaviours including excessive aggression and violence. Excessive aggression and violence likely develop as a consequence of generally disturbed emotional regulation, such as abnormally high or low levels of anxiety. This suggests an overlap between brain circuitries and neurochemical systems regulating aggression and anxiety. In this review, we will discuss different forms of male aggression, rodent models of excessive aggression, and neurobiological mechanisms underlying male aggression in the context of anxiety. We will summarize our attempts to establish an animal model of high and abnormal aggression using rats selected for high (HAB) vs. low (LAB) anxiety-related behaviour. Briefly, male LAB rats and, to a lesser extent, male HAB rats show high and abnormal forms of aggression compared with non-selected (NAB) rats, making them a suitable animal model for studying excessive aggression in the context of extremes in innate anxiety. In addition, we will discuss differences in the activity of the hypothalamic–pituitary–adrenal axis, brain arginine vasopressin, and the serotonin systems, among others, which contribute to the distinct behavioural phenotypes related to aggression and anxiety. Further investigation of the neurobiological systems in animals with distinct anxiety phenotypes might provide valuable information about the link between excessive aggression and disturbed emotional regulation, which is essential for understanding the social and emotional deficits that are characteristic of many human psychiatric disorders.
Collapse
Affiliation(s)
- Inga D Neumann
- Department of Behavioural and Molecular Neuroendocrinology, University of Regensburg Regensburg, Germany
| | | | | |
Collapse
|
8
|
Tetel MJ, Pfaff DW. Contributions of estrogen receptor-α and estrogen receptor-ß to the regulation of behavior. Biochim Biophys Acta Gen Subj 2010; 1800:1084-9. [PMID: 20097268 DOI: 10.1016/j.bbagen.2010.01.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 01/15/2010] [Accepted: 01/16/2010] [Indexed: 01/02/2023]
Abstract
Studies of the mechanisms by which estrogens influence brain function and behavior have advanced from the explication of individual hormone receptors, neural circuitry and individual gene expression. Now, we can report patterns of estrogen receptor subtype contributions to patterns of behavior. Moreover, new work demonstrates important contributions of nuclear receptor coactivator expression in the central nervous system. In this paper, our current state of knowledge is reviewed.
Collapse
Affiliation(s)
- Marc J Tetel
- Neuroscience Program, Wellesley College, Wellesley, MA, USA
| | | |
Collapse
|
9
|
Rosen GJ, De Vries GJ, Goldman SL, Goldman BD, Forger NG. Distribution of vasopressin in the brain of the eusocial naked mole-rat. J Comp Neurol 2007; 500:1093-105. [PMID: 17183541 DOI: 10.1002/cne.21215] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Naked mole-rats are eusocial rodents that live in large subterranean colonies in which one queen breeds with one to three males. All other animals are nonbreeding subordinates. The external features of male and female subordinates, including their genitalia, are remarkably monomorphic, as is their behavior. Because vasopressin (VP) is associated with social behaviors and sex differences in other species, its distribution in naked mole-rats was of interest. We used immunohistochemistry to examine VP in the brains of subordinate and breeding naked mole-rats of both sexes. As in other mammals, VP-immunoreactive (-ir) somata were found in the paraventricular (PVN) and supraoptic nuclei (SON) and VP-ir projections from these nuclei ran through the internal and external zone of the median eminence. However, naked mole-rats had very few VP-ir cells in the bed nucleus of the stria terminalis (BST) and none in the suprachiasmatic nucleus (SCN); the extensive network of fine-caliber VP-ir fibers usually seen in projection sites of the BST and SCN were also absent. Equally unexpected was the abundance of large-caliber VP-ir fibers in the dorsomedial septum. VP immunoreactivity was generally similar in all groups, with the exception of VP-ir cell number in the dorsomedial hypothalamus (DMH). Breeders had a population of labeled cells in the DMH that was absent, or nearly absent, in subordinates. Future studies on the function of VP in these areas are needed to determine how the atypical distribution of VP immunoreactivity relates to eusociality and the unusual physiology of naked mole-rats.
Collapse
Affiliation(s)
- Greta J Rosen
- Department of Psychology and Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | | | | | | | | |
Collapse
|
10
|
Abstract
Because information about gender, kin, and social status are essential for reproduction and survival, it seems likely that specialized neural mechanisms have evolved to process social information. This review describes recent studies of four aspects of social information processing: (a) perception of social signals via the vomeronasal system, (b) formation of social memory via long-term filial imprinting and short-term recognition, (c) motivation for parental behavior and pair bonding, and (d) the neural consequences of social experience. Results from these studies and some recent functional imaging studies in human subjects begin to define the circuitry of a "social brain." Such neurodevelopmental disorders as autism and schizophrenia are characterized by abnormal social cognition and corresponding deficits in social behavior; thus social neuroscience offers an important opportunity for translational research with an impact on public health.
Collapse
Affiliation(s)
- Thomas R Insel
- National Institute of Mental Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
11
|
Hrabovszky E, Kalló I, Steinhauser A, Merchenthaler I, Coen CW, Petersen SL, Liposits Z. Estrogen receptor-β in oxytocin and vasopressin neurons of the rat and human hypothalamus: Immunocytochemical and in situ hybridization studies. J Comp Neurol 2004; 473:315-33. [PMID: 15116394 DOI: 10.1002/cne.20127] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Topographical distribution of estrogen receptor-beta (ER-beta)-synthesizing oxytocin (OT) and vasopressin (VP) neurons was studied in the hypothalamic paraventricular and supraoptic nuclei (PVH; SO) of ovariectomized rats. In distinct subregions, 45-98% of OT neurons and 88-99% of VP neurons exhibited ER-beta immunoreactivity that was confined to cell nuclei. Neuronal populations differed markedly with respect to the intensity of the ER-beta signal. Magnocellular OT neurons in the PVH, SO, and accessory cell groups typically contained low levels of the ER-beta signal; in contrast, robust receptor labeling was displayed by OT cells in the ventral subdivision of medial parvicellular subnucleus and in the caudal PVH (dorsal subdivision of medial parvicellular subnucleus and lateral parvicellular subnucleus). Estrogen receptor-beta signal was generally more intense and present in higher proportions of magnocellular and parvicellular VP vs. OT neurons of similar topography. Immunocytochemical observations were confirmed via triple-label in situ hybridization, an approach combining use of digoxigenin-, fluorescein-, and 35S-labeled cRNA hybridization probes. Further, ER-beta mRNA was also detectable in corticotropin-releasing hormone neurons in the parvicellular PVH. Finally, double-label immunocytochemical analysis of human autopsy samples showed that subsets of OT and VP neurons also express ER-beta in the human. These neuroanatomical studies provide detailed information about the topographical distribution and cellular abundance of ER-beta within subsets of hypothalamic OT and VP neurons in the rat. The variable receptor content may indicate the differential responsiveness to estrogen in distinct OT and VP neuronal populations. In addition, a relevance of these findings to the human hypothalamus is suggested.
Collapse
Affiliation(s)
- Erik Hrabovszky
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest 1083, Hungary
| | | | | | | | | | | | | |
Collapse
|
12
|
Absil P, Papello M, Viglietti-Panzica C, Balthazart J, Panzica G. The medial preoptic nucleus receives vasotocinergic inputs in male quail: a tract-tracing and immunocytochemical study. J Chem Neuroanat 2002; 24:27-39. [PMID: 12084409 DOI: 10.1016/s0891-0618(02)00017-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The sexually dimorphic testosterone-sensitive medial preoptic nucleus (POM) of quail can be identified by the presence of a dense network of vasotocinergic fibers. This innervation is sexually differentiated (present in males only) and testosterone sensitive. The origin of these fibers has never been formally identified although their steroid sensitivity suggests that they originate in parvocellular vasotocinergic neurons that are found in quail only in the medial part of the bed nucleus striae terminalis (BSTm) and in smaller numbers within the POM itself. We report here that following injections of a retrograde tracer into the POM of male quail, large populations of retrogradely labeled cells can be identified in the BSTm. The POM also receives afferent projections from magnocellular vasotocinergic nuclei, the supraoptic and paraventricular nuclei. Double labeling for vasotocin immunoreactivity of the retrogradely labeled sections failed however to clearly identify magnocellular vasotocin-immunoreactive cells that were retrogradely labeled from POM. In contrast a substantial population of vasotocin-immunoreactive neurons in the BSTm contained tracer retrogradely transported from the POM. These data therefore demonstrate that a significant part of the vasotocinergic innervation of the quail POM originates in the medial part of the BST. An intrinsic innervation could however also contribute to this network. This interaction between BSTm and POM could play a key role in the control of male-typical sexual behavior and in its sex dimorphism in quail.
Collapse
Affiliation(s)
- Philippe Absil
- Center for Cellular and Molecular Neurobiology, Research Group in Behavioral Neuroendocrinology, University of Liège, 17 Place Delcour, B-4020 Liege, Belgium
| | | | | | | | | |
Collapse
|
13
|
Burmeister S, Somes C, Wilczynski W. Behavioral and hormonal effects of exogenous vasotocin and corticosterone in the green treefrog. Gen Comp Endocrinol 2001; 122:189-97. [PMID: 11316424 DOI: 10.1006/gcen.2001.7625] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vasotocin (AVT) promotes courtship in a wide range of vertebrates. However, this effect is not independent of steroid hormones. For example, androgens may work in concert with AVT and corticosterone (CORT) may work to oppose AVT action. In frogs, AVT promotes calling, and in some species, CORT inhibits calling. In addition, androgens are known to modulate AVT in the brain, and CORT may depress androgen secretion. Previous work in amphibians has suggested that AVT promotes courtship by overcoming a CORT-mediated stress response. Possible behavioral and hormonal interactions among AVT, CORT, and androgens were investigated in wild, free-living green treefrogs (Hyla cinerea). Saline, AVT, CORT, or a combination of AVT and CORT were administered to calling males, and several measures of spontaneous calling were evaluated for 1.5 h following injection. Plasma testosterone, dihydrotestosterone, and CORT were also measured. Saline-injected males had low CORT levels, and AVT and CORT injection elevated plasma CORT levels. AVT increased the likelihood of calling, but, in males who did call, AVT did not influence latency to call or how often they were observed calling. Very few saline-injected males resumed calling after injection, and therefore a CORT effect was only detectable in AVT-injected males. CORT inhibited calling in AVT-injected males only at the highest dose of CORT (40 microg); lower levels of CORT were unsuccessful at inhibiting AVT-induced calling. AVT appeared to have a specific effect on calling motivation. Further, the data suggest that disinhibition of a CORT response is not the primary mechanism by which AVT increases calling. In addition, CORT injection reduced endogenous androgen levels. Finally, endogenous androgens were negatively correlated with latency to begin calling, suggesting that they may have a positive effect on calling. These data indicate that AVT has positive effects on calling but provide only weak evidence that CORT inhibits courtship in this species.
Collapse
Affiliation(s)
- S Burmeister
- Institute for Neuroscience, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | |
Collapse
|
14
|
|
15
|
Shapiro RA, Xu C, Dorsa DM. Differential transcriptional regulation of rat vasopressin gene expression by estrogen receptor alpha and beta. Endocrinology 2000; 141:4056-64. [PMID: 11089536 DOI: 10.1210/endo.141.11.7796] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neuronal expression of vasopressin messenger RNA (mRNA) and peptide has been shown to be estrogen dependent. A 5.5-kb genomic DNA fragment, 5' of the AVP coding region, was used in luciferase reporter assays to measure transcriptional activation by either estrogen receptor alpha or beta in response to various treatments. ER alpha and ER beta displayed differential regulation of the AVP promoter. SK-N-SH cells transfected with ER alpha exhibited increased luciferase activity in response to estrogen, and the selective estrogen receptor modulators (SERMs), Tamoxifen, and ICI 182,780. Cells transfected with ER beta exhibited a high constitutive activity, which is unchanged by exposure to SERMs but can be inhibited by estrogen. Deletion of 1.5 kb from the 5' end or mutation of a single estrogen response element (ERE)-like sequence resulted in loss of estrogen-dependent induction by ER alpha and increased the ability of estrogen to inhibit the high constitutive activity of ER beta. The distal ERE-containing 1.5-kb fragment, when coupled to luciferase, is able to support both ER alpha and ER beta mediated activation of transcription by estrogen. These results suggest that a single ERE in the distal 1.5-kb portion of the 5.5-kb fragment contains the primary positive estrogen responsive sequences for ER alpha and ER beta. The data also suggest that sequences proximal to this element serve to inhibit transcription mediated by ER beta.
Collapse
Affiliation(s)
- R A Shapiro
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle 98195, USA.
| | | | | |
Collapse
|
16
|
Panzica G, Pessatti M, Viglietti-Panzica C, Grossmann R, Balthazart J. Effects of testosterone on sexually dimorphic parvocellular neurons expressing vasotocin mRNA in the male quail brain. Brain Res 1999; 850:55-62. [PMID: 10629748 DOI: 10.1016/s0006-8993(99)02098-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In situ hybridization with a P33-labelled cDNA probe was used to analyze the effects of castration and replacement therapy by testosterone on the number of neurons expressing vasotocin mRNA in the male quail brain. Castration completely eliminated neurons expressing vasotocin mRNA in the previously described parvocellular vasotocin cell groups, located in the medial preoptic nucleus and in the anterior and posterior part of the medial subdivision of the bed nucleus of the stria terminalis. These effects were completely reversed by a 3-week treatment with exogenous testosterone. No marked change in vasotocin expression could be detected in the magnocellular cell groups located in the paraventricular and supraoptic nuclei. These data indicate that the testosterone-induced changes in the vasotocinergic innervation of the quail medial preoptic region and bed nucleus of the stria terminalis result from controlling mechanisms at the pretranslational, presumably transcriptional level. These control mechanisms are therefore very similar to those described for the rat brain despite the existence of major differences in the neuroanatomical organization of this peptidergic system in the two species.
Collapse
Affiliation(s)
- G Panzica
- Department of Anatomy, Pharmacology, and Forensic Medicine, University of Torino, Turin, Italy.
| | | | | | | | | |
Collapse
|
17
|
Rhodes ME, Rubin RT. Functional sex differences ('sexual diergism') of central nervous system cholinergic systems, vasopressin, and hypothalamic-pituitary-adrenal axis activity in mammals: a selective review. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1999; 30:135-52. [PMID: 10525171 DOI: 10.1016/s0165-0173(99)00011-9] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Sexual dimorphism of the mammalian central nervous system (CNS) has been widely documented. Morphological sex differences in brain areas underlie sex differences in function. To distinguish sex differences in physiological function from underlying sexual dimorphisms, we use the term, sexual diergism, to encompass differences in function between males and females. Whereas the influence of sex hormones on CNS morphological characteristics and function of the hypothalamic-pituitary-gonadal axis has been well-documented, little is known about sexual diergism of CNS control of the hypothalamic-pituitary-adrenal (HPA) axis. Many studies have been conducted on both men and women but have not reported comparisons between them, and many animal studies have used males or females, but not both. From a diergic standpoint, the CNS cholinergic system appears to be more responsive to stress and other stimuli in female than in male mammals; but from a dimorphic standpoint, it is anatomically larger, higher in cell density, and more stable with age in males than in females. Dimorphism often produces diergism, but age, hormones, environment and genetics contribute differentially. This review focuses on the sexual diergism of CNS cholinergic and vasopressinergic systems and their relationship to the HPA axis, with resulting implications for the study of behavior, disease, and therapeutics.
Collapse
Affiliation(s)
- M E Rhodes
- Center for Neurosciences Research, MCP-Hahnemann School of Medicine, Pittsburgh, PA, USA.
| | | |
Collapse
|
18
|
Kelly PH. Defective inhibition of dream event memory formation: a hypothesized mechanism in the onset and progression of symptoms of schizophrenia. Brain Res Bull 1998; 46:189-97. [PMID: 9667811 DOI: 10.1016/s0361-9230(98)00011-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
An average person normally spends at least 90 min to 2 h per night dreaming. Nevertheless, memories of dream events are not retrieved while awake unless the person awoke shortly after a dream. It is hypothesized here that schizophrenic delusions initially arise because a system that normally inhibits the formation of memories of dream events is defective. Therefore, memories of dream events or fragments would be occasionally made and placed in the normal memory store. The only reason that we really know anything happened to us in the past is that we have a memory of it, and having a memory of an event is sufficient to really believe it. Therefore, the schizophrenic would believe that the dream events actually happened. It is proposed that this is the basis of primary delusions. Because memories are represented by strengthened neural connections there will be an accumulation of connections that do not correspond to reality. This accumulation may account for other symptoms of schizophrenia such as thought disorder, loosening of associations, and hallucinations. The brain trying to draw conclusions from several memories may be the basis of secondary delusions. Evidence is presented for the ideas that primary delusions are due to memories of dream events, that a substance, with vasotocin-like bioactivity, is released in the brain during dreaming and inhibits memory formation, that the lateral habenula is a brain area involved in vasotocin actions and is affected by neuroleptics, and that brain mechanisms involved in vasotocin actions show pathological alterations in schizophrenia.
Collapse
Affiliation(s)
- P H Kelly
- Preclinical Research, Novartis Pharma AG, Basel, Switzerland.
| |
Collapse
|
19
|
Balthazart J, Absil P, Viglietti-Panzica C, Panzica GC. Vasotocinergic innervation of areas containing aromatase-immunoreactive cells in the quail forebrain. ACTA ACUST UNITED AC 1997. [DOI: 10.1002/(sici)1097-4695(199707)33:1<45::aid-neu5>3.0.co;2-d] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Balthazart J, Absil P. Identification of catecholaminergic inputs to and outputs from aromatase-containing brain areas of the Japanese quail by tract tracing combined with tyrosine hydroxylase immunocytochemistry. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19970609)382:3<401::aid-cne7>3.0.co;2-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Balthazart J, Foidart A, Absil P, Harada N. Effects of testosterone and its metabolites on aromatase-immunoreactive cells in the quail brain: relationship with the activation of male reproductive behavior. J Steroid Biochem Mol Biol 1996; 56:185-200. [PMID: 8603040 DOI: 10.1016/0960-0760(95)00236-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The enzyme aromatase converts testosterone (T) into 17 beta-estradiol and plays a pivotal role in the control of reproduction. In particular, the aromatase activity (AA) located in the preoptic area (POA) of male Japanese quail is a limiting step in the activation by T of copulatory behavior. Aromatase-immunoreactive (ARO-ir) cells of the POA are specifically localized within the cytoarchitectonic boundaries of the medial preoptic nucleus(POM), a sexually dimorphic and steroid-sensitive structure that is a necessary and sufficient site of steroid action in the activation of behavior. Stereotaxic implantation of aromatase inhibitors in but not around the POM strongly decreases the behavioral effects of a systemic treatment with T of castrated males. AA is decreased by castration and increased by aromatizable androgens and by estrogens. These changes have been independently documented at three levels of analysis: the enzymatic activity measured by radioenzymatic assays in vitro, the enzyme concentration evaluated semi-quantitatively by immunocytochemistry and the concentration of its messenger RNA quantified by reverse transcription-polymerase chain reaction (RT-PCR). These studies demonstrate that T acting mostly through its estrogenic metabolites regulates brain aromatase by acting essentially at the transcriptional level. Estrogens produced by central aromatization of T therefore have two independent roles: they activate male copulatory behavior and they regulate the synthesis of aromatase. Double label immunocytochemical studies demonstrate that estrogen receptors(ER) are found in all brain areas containing ARO-ir cells but the extent to which these markers are colocalized varies from one brain region to the other. More than 70% of ARO-ir cells contain detectable ER in the tuberal hypothalamus but less than 20% of the cells display this colocalization in the POA. This absence of ER in ARO-ir cells is also observed in the POA of the rat brain. This suggests that locally formed estrogens cannot control the behavior and the aromatase synthesis in an autocrine fashion in the cells where they were formed. Multi-neuronal networks need therefore to be considered. The behavioral activation could result from the action of estrogens in ER-positive cells located in the vicinity of the ARO-ir cells where they were produced (paracrine action). Alternatively, actions that do not involve the nuclear ER could be important. Immunocytochemical studies at the electron microscope level and biochemical assays of AA in purified synaptosomes indicate the presence of aromatase in presynaptic boutons. Estrogens formed at this level could directly affect the pre-and post-synaptic membrane or could directly modulate neurotransmission namely through their metabolization into catecholestrogens (CE) which are known to be powerful inhibitors of the catechol- omicron - methyl transferase (COMT). The inhibition of COMT should increase the catecholaminergic transmission. It is significant to note, in this respect, that high levels of 2-hydroxylase activity, the enzyme that catalyzes the transformation of estrogens in CE, are found in all brain areas that contain aromatase. On the other hand, the synthesis of aromatase should also be controlled by estrogens in an indirect, transynaptic manner very reminiscent of the way in which steroids indirectly control the production of LHRH. Fibers that are immunoreactive for tyrosine hydroxylase (synthesis of dopamine), dopamine beta-hydroxylase (synthesis of norepinephrine) or vasotocine have been identified in the close vicinity of ARO-ir cells in the POM and retrograde tracing has identified the origin of the dopaminergic and noradrenergic innervation of these areas. A few preliminary physiological experiments suggest that these catecholaminergic inputs regulate AA and presumably synthesis.
Collapse
Affiliation(s)
- J Balthazart
- Laboratory of Biochemistry, University of Liege, Belgium
| | | | | | | |
Collapse
|
22
|
Engelmann M, Wotjak CT, Neumann I, Ludwig M, Landgraf R. Behavioral consequences of intracerebral vasopressin and oxytocin: focus on learning and memory. Neurosci Biobehav Rev 1996; 20:341-58. [PMID: 8880728 DOI: 10.1016/0149-7634(95)00059-3] [Citation(s) in RCA: 213] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Since the pioneering work of David de Wied and his colleagues, the neuropeptides arginine vasopressin and oxytocin have been thought to play a pivotal role in behavioral regulation in general, and in learning and memory in particular. The present review focuses on the behavioral effects of intracerebral arginine vasopressin and oxytocin, with particular emphasis on the role of these neuropeptides as signals in interneuronal communication. We also discuss several methodological approaches that have been used to reveal the importance of these intracerebral neuropeptides as signals within signaling cascades. The literature suggests that arginine vasopressin improves, and oxytocin impairs, learning and memory. However, a critical analysis of the subject indicates the necessity for a revision of this generalized concept. We suggest that, depending on the behavioral test and the brain area under study, these endogenous neuropeptides are differentially involved in behavioral regulation; thus, generalizations derived from a single behavioral task should be avoided. In particular, recent studies on rodents indicate that socially relevant behaviors triggered by olfactory stimuli and paradigms in which the animals have to cope with an intense stressor (e.g., foot-shock motivated active or passive avoidance) are controlled by both arginine vasopressin and oxytocin released intracerebrally.
Collapse
Affiliation(s)
- M Engelmann
- Department of Neuroendocrinology, Clinical Institute, Max Planck Institute of Psychiatry, Munich, Germany
| | | | | | | | | |
Collapse
|
23
|
Albers HE, Cooper TT. Effects of testosterone on the behavioral response to arginine vasopressin microinjected into the central gray and septum. Peptides 1995; 16:269-73. [PMID: 7784257 DOI: 10.1016/0196-9781(94)00188-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Arginine vasopressin (AVP) plays an important role in the control of a gonadal hormone-dependent communicative behavior in the Syrian hamster (Mesocricetus auratus) called flank marking. Previous studies have shown that gonadal hormones alter the amount of flank marking stimulated by the microinjection of AVP into the medial preoptic area-anterior hypothalamus (MPOA-AH). The purpose of the present study was to determine if testicular hormones alter the amount of flank marking stimulated by the microinjection of AVP into two other sites involved in the control of flank marking, the lateral septum-bed nucleus of the stria terminalis (LS-BNST) and the central gray. The data of the present study indicate that testicular hormones may influence the amount of AVP-stimulated marking in the central gray and LS-BNST; however, these effects are subtle and appear to occur primarily at high concentrations of AVP. When taken together with previous studies, these data indicate that gonadal hormones have greater effects on AVP-stimulated marking in the MPOA-AH than in the LS-BNST or central gray.
Collapse
Affiliation(s)
- H E Albers
- Department of Biology, Georgia State University, Atlanta 30303, USA
| | | |
Collapse
|
24
|
Abstract
Vasopressin (AVP) within the medial preoptic-anterior hypothalamic continuum (MPOA-AH) plays an essential role in the control of flank marking in Syrian hamsters. Sex differences are found in the scent marking of many mammalian species, including hamsters. The first two experiments tested the hypothesis that sex differences in flank marking are the result of sex differences in the availability of AVP for release in several CNS sites. No support for this hypothesis was provided because neither immunohistochemical analysis nor radioimmunoassay of tissue punches revealed sex differences in AVP immunoreactivity in the MPOA-AH or other sites likely to be involved in flank marking. The third experiment, which tested the hypothesis that sex differences in flank marking are the result of sex differences in the sensitivity or response of the MPOA-AH to AVP, found no sex differences in the amount of flank marking stimulated by microinjection of AVP in the MPOA-AH. These data provide no support for the hypothesis that sex differences in vasopressinergic activity are responsible for sex differences in flank marking.
Collapse
Affiliation(s)
- A C Hennessey
- Department of Biology, Georgia State University, Atlanta 30303
| | | | | |
Collapse
|
25
|
Huhman KL, Albers HE. Estradiol increases the behavioral response to arginine vasopressin (AVP) in the medial preoptic-anterior hypothalamus. Peptides 1993; 14:1049-54. [PMID: 8284255 DOI: 10.1016/0196-9781(93)90085-u] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Flank marking, a form of hamster scent marking controlled by arginine vasopressin (AVP) in the medial preoptic-anterior hypothalamus (MPOA-AH), is altered by circulating levels of gonadal hormones. We hypothesized that gonadal hormones influence flank marking either by altering the availability of AVP for release in the MPOA-AH or by altering the sensitivity or responsiveness of MPOA-AH neurons to AVP. We examined the levels of AVP immunoreactivity (AVP-IR) over the estrous cycle in the MPOA-AH and other areas. Arginine vasopressin immunoreactivity did not vary in the areas examined as a function of the stage of the estrous cycle. In Experiment 2 we measured flank marking after MPOA-AH microinjection of AVP in ovariectomized hamsters receiving estradiol or empty Silastic capsules. Hamsters implanted with estradiol capsules marked significantly more in response to AVP than did hamsters receiving no hormone replacement. These results support the hypothesis that estradiol influences flank marking by altering the sensitivity or responsiveness of the MPOA-AH or its efferents to AVP. Additionally, we observed an unexpected effect of AVP in estradiol-treated hamsters. After microinjection with 90 microM AVP, lordosis occurred spontaneously in 60% of the hamsters even though no male was present. We suggest that female hamsters may be a useful model to further investigate the role of AVP and AVP-like peptides in female sexual behavior.
Collapse
Affiliation(s)
- K L Huhman
- Department of Biology, Georgia State University, Atlanta 30303
| | | |
Collapse
|