1
|
Hemanth M, Venugopal S, Devaraj C, Shashank CG, Ponnuvel P, Mandal PK, Sejian V. Comparative assessment of climate resilient potential in four poultry genotypes reared in hot-humid tropical environment: a preliminary evaluation. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:2267-2279. [PMID: 39085661 DOI: 10.1007/s00484-024-02744-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/20/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024]
Abstract
The general objective of this study is to comparatively assess the climate-resilient potential of four different poultry genotypes-Giriraja (n = 8), Country chicken (n = 8), Naked neck (n = 8), and Kadaknath (n = 8)-reared in a hot-humid tropical environment. Birds from all genotypes had ad libitum access to feed and water and were exposed to identical environmental temperatures in the experimental shed. Diurnal meteorological data were recorded inside and outside the shed daily. Blood biochemical, hormonal, and endocrine variables were monitored monthly until the birds reached 12 weeks of age. Significant variations (P < 0.01) were observed at different intervals in variables, including total protein, albumin, globulin, triglycerides, and cholesterol. Genotype-specific differences were noted in triglycerides (P < 0.01), albumin (P < 0.01), total protein (P < 0.05), and cholesterol (P < 0.05). Inter-genotype variations (P < 0.05) were also observed in serum cortisol, T3, and T4 levels. Distinct variations (P < 0.05) were also observed during specific intervals, particularly in cortisol and T3 levels. The study of hepatic mRNA expression of HSPs and HSF-1 revealed a significant breed difference (P < 0.05) in the expression pattern of HSP60, HSP70, HSP90, and HSP110, while no difference was observed between genotypes for HSP40 and HSF-1. The study highlights the Naked Neck breed as an exemplar of resilience, showcasing its distinctive ability to maintain homeostasis under heat stress compared to other genotypes. The genetic and physiological insights gained from this investigation offer prospective pathways for aligning sustainable poultry farming with environmental exigencies.
Collapse
Affiliation(s)
- M Hemanth
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry, 605009, India
| | - S Venugopal
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry, 605009, India
| | - C Devaraj
- ICAR-National Institute of Animal Nutrition and Physiology, Audugodi, Bangalore, Karnataka, 560030, India
| | - C G Shashank
- ICAR-National Institute of Animal Nutrition and Physiology, Audugodi, Bangalore, Karnataka, 560030, India
| | - P Ponnuvel
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry, 605009, India
| | - P K Mandal
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry, 605009, India
| | - V Sejian
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry, 605009, India.
- ICAR-National Institute of Animal Nutrition and Physiology, Audugodi, Bangalore, Karnataka, 560030, India.
| |
Collapse
|
2
|
Khondowe P, Mutayoba B, Muhairwa A, Phiri E. Effects of heat stress and a low energy diet on blood parameters and liver hsp70 and iNOS gene expressions in local chickens. Vet Anim Sci 2021; 14:100221. [PMID: 34877436 PMCID: PMC8633373 DOI: 10.1016/j.vas.2021.100221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 11/24/2022] Open
Abstract
Two experiments were conducted to compare effects of heat stress and its combination with low dietary energy on blood indices, liver hsp70 and iNOS gene expressions in three Tanzanian local chicken ecotypes. In experiment one, five weeks old Kuchi (K), Ching'wekwe (C) and Morogoro medium (M) were randomly allocated to separate pens in a 3 × 2 factorial design in two adjacent rooms with controlled temperature. The study had three replicates consisting of 39 chickens per room, 13 per ecotype per pen making a total of 234 chickens. In one room, temperature was maintained at 26.5 ± 0.5 °C while in another it was maintained at 32±1 °C for 7 days and thereafter 37±1 °C for 10 days. A similar design was used in experiment two except that chickens were fed 55% less energy. In experiment one, serum corticosterone levels increased (p<0.05) in C and K. Gene expressions for hsp70 and iNOS were unchanged though hsp70 levels for K were higher (p<0.05). In experiment two, corticosterone levels were significantly elevated (p<0.05) in all ecotypes. Heterophil/lymphocyte ratios were markedly increased and changes in Hb and Hct at higher temperatures showed ecotype differences. Serum triglycerides were significantly reduced in all ecotypes. Hsp70 and iNOS levels were up-regulated in all ecotypes with levels in K higher (p<0.05) than in M. In both experiments, there were marked reductions in serum total protein. These results suggest that ecotype-based differences exist in local chickens’ responses to heat stress and its combination with low energy diets. M and C demonstrated better tolerance than K when only heat stress was applied but a synergistic effect of heat stress and low dietary energy suggested M is more tolerant.
Collapse
Affiliation(s)
- Paul Khondowe
- College of Veterinary Medicine and Biomedical Sciences, Department of Veterinary Physiology, Biochemistry and Pharmacology, Sokoine University of Agriculture, P.O. Box 3017, Morogoro, Tanzania.,Department of Biological Sciences, School of Natural Sciences, The University of Zambia, P.O. Box 32379, Lusaka, Zambia
| | - Benezeth Mutayoba
- College of Veterinary Medicine and Biomedical Sciences, Department of Veterinary Physiology, Biochemistry and Pharmacology, Sokoine University of Agriculture, P.O. Box 3017, Morogoro, Tanzania
| | - Amandus Muhairwa
- Department of Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Elliot Phiri
- College of Veterinary Medicine and Biomedical Sciences, Department of Veterinary Physiology, Biochemistry and Pharmacology, Sokoine University of Agriculture, P.O. Box 3017, Morogoro, Tanzania
| |
Collapse
|
3
|
Delorme NJ, Frost EJ, Sewell MA. Effect of acclimation on thermal limits and hsp70 gene expression of the New Zealand sea urchin Evechinus chloroticus. Comp Biochem Physiol A Mol Integr Physiol 2020; 250:110806. [DOI: 10.1016/j.cbpa.2020.110806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022]
|
4
|
Li L, Su S, Perry CJ, Elphick MR, Chittka L, Søvik E. Large-scale transcriptome changes in the process of long-term visual memory formation in the bumblebee, Bombus terrestris. Sci Rep 2018; 8:534. [PMID: 29323174 PMCID: PMC5765018 DOI: 10.1038/s41598-017-18836-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/14/2017] [Indexed: 01/05/2023] Open
Abstract
Many genes have been implicated in mechanisms of long-term memory formation, but there is still much to be learnt about how the genome dynamically responds, transcriptionally, during memory formation. In this study, we used high-throughput sequencing to examine how transcriptome profiles change during visual memory formation in the bumblebee (Bombus terrestris). Expression of fifty-five genes changed immediately after bees were trained to associate reward with a single coloured chip, and the upregulated genes were predominantly genes known to be involved in signal transduction. Changes in the expression of eighty-one genes were observed four hours after learning a new colour, and the majority of these were upregulated and related to transcription and translation, which suggests that the building of new proteins may be the predominant activity four hours after training. Several of the genes identified in this study (e.g. Rab10, Shank1 and Arhgap44) are interesting candidates for further investigation of the molecular mechanisms of long-term memory formation. Our data demonstrate the dynamic gene expression changes after associative colour learning and identify genes involved in each transcriptional wave, which will be useful for future studies of gene regulation in learning and long-term memory formation.
Collapse
Affiliation(s)
- Li Li
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK.
| | - Songkun Su
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Clint J Perry
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Maurice R Elphick
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Lars Chittka
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
- Institute for Advanced Study, Wallotstrasse 19, D-14193, Berlin, Germany
| | - Eirik Søvik
- Department of Science and Mathematics, Volda University College, 6100, Volda, Norway
| |
Collapse
|
5
|
Cedraz H, Gromboni JGG, Garcia AAP, Farias Filho RV, Souza TM, de Oliveira ER, de Oliveira EB, do Nascimento CS, Meneghetti C, Wenceslau AA. Heat stress induces expression of HSP genes in genetically divergent chickens. PLoS One 2017; 12:e0186083. [PMID: 29020081 PMCID: PMC5636143 DOI: 10.1371/journal.pone.0186083] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/25/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Chickens are animals that are sensitive to thermal stress, which may decrease their production level in terms that it affects feed intake and thus, decreasing body weight gain. The Heat Shock Factors (HSF) and Heat Shock Proteins (HSP) genes are involved in the key cellular defense mechanisms during exposure in hot environments. Aimed with this study to analyze the expression of HSF1, HSF3, HSP70 and HSP90 genes in two local breeds (Peloco and Caneluda) and a commercial broiler line (Cobb 500®) to verify differences in resistance of these chicken to Heat stress treatment. Chicken were submitted to heat stress under an average temperature of 39°C ± 1. RESULTS Under stress environment, the HSP70 and HSP90 genes were more expressed in backyard chickens than in broiler. There was a difference in HSP70 and HSP90 expression between Caneluda and Cobb and between Peloco and Cobb under stress and comfort environment respectively. HSP70 expression is higher in local breeds during heat stress than in a commercial broiler line. No significant differences were observed in the expression of HSF1 and HSF3 genes between breeds or environments. CONCLUSIONS HSP70 and HSP90 genes are highly expressed, HSF1 and HSF3 genes did not have high expression in all genetic groups. HSP70 and HSP90 are highly expressed in Peloco and Caneluda within heat stress, these breeds proved to be very resistant to high temperature.
Collapse
Affiliation(s)
- Haniel Cedraz
- Universidade Estadual de Santa Cruz - UESC, Ilhéus, Bahia, Brazil
| | | | | | - Ronaldo Vasconcelos Farias Filho
- Departament of Rural and Animal Technology - Universidade Estadual do Sudoeste da Bahia – Campus Itapetinga – UESB, Itapetinga, Bahia, Brazil
| | | | | | - Elizangela Bonfim de Oliveira
- Departament of Rural and Animal Technology - Universidade Estadual do Sudoeste da Bahia – Campus Itapetinga – UESB, Itapetinga, Bahia, Brazil
| | | | | | | |
Collapse
|
6
|
Becirovic L, Brown IR. Targeting of Heat Shock Protein HSPA6 (HSP70B') to the Periphery of Nuclear Speckles is Disrupted by a Transcription Inhibitor Following Thermal Stress in Human Neuronal Cells. Neurochem Res 2016; 42:406-414. [PMID: 27743288 DOI: 10.1007/s11064-016-2084-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 12/21/2022]
Abstract
Heat shock proteins (Hsps) are a set of highly conserved proteins involved in cellular repair and protective mechanisms. The intracellular localization of inducible members of the HSPA (HSP70) family can be used as an index to identify stress-sensitive sites in differentiated human neuronal cells. Following thermal stress, the little studied HSPA6 (HSP70B') was targeted to the periphery of nuclear speckles (perispeckles) that are sites of transcription factories. Triptolide, a fast-acting transcription inhibitor, knocked down levels of the large subunit of RNA polymerase II, RPB1, during the time-frame when HSPA6 associated with perispeckles. Administration of triptolide to heat shocked human neuronal SH-SY5Y cells, disrupted HSPA6 localization to perispeckles, suggesting the involvement of HSPA6 in transcriptional recovery after stress. The HSPA6 gene is present in the human genome but is not found in the genomes of the mouse and rat. Hence current animal models of neurodegenerative diseases lack a member of the HSPA family that exhibits the feature of stress-induced targeting to perispeckles.
Collapse
Affiliation(s)
- Larissa Becirovic
- Department of Biological Sciences, Centre for the Neurobiology of Stress, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Ian R Brown
- Department of Biological Sciences, Centre for the Neurobiology of Stress, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada.
| |
Collapse
|
7
|
Khalouei S, Chow AM, Brown IR. Localization of heat shock protein HSPA6 (HSP70B') to sites of transcription in cultured differentiated human neuronal cells following thermal stress. J Neurochem 2014; 131:743-54. [DOI: 10.1111/jnc.12970] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 10/05/2014] [Accepted: 10/06/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Sam Khalouei
- Centre for the Neurobiology of Stress; Department of Biological Sciences; University of Toronto Scarborough; Toronto Ontario Canada
| | - Ari M. Chow
- Centre for the Neurobiology of Stress; Department of Biological Sciences; University of Toronto Scarborough; Toronto Ontario Canada
| | - Ian R. Brown
- Centre for the Neurobiology of Stress; Department of Biological Sciences; University of Toronto Scarborough; Toronto Ontario Canada
| |
Collapse
|
8
|
Differential expression of heat shock transcription factors and heat shock proteins after acute and chronic heat stress in laying chickens (Gallus gallus). PLoS One 2014; 9:e102204. [PMID: 25072282 PMCID: PMC4114549 DOI: 10.1371/journal.pone.0102204] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 06/17/2014] [Indexed: 12/23/2022] Open
Abstract
Heat stress due to high environmental temperature negatively influences animal performances. To better understand the biological impact of heat stress, laying broiler breeder chickens were subjected either to acute (step-wisely increasing temperature from 21 to 35°C within 24 hours) or chronic (32°C for 8 weeks) high temperature exposure. High temperature challenges significantly elevated body temperature of experimental birds (P<0.05). However, oxidation status of lipid and protein and expression of heat shock transcription factors (HSFs) and heat shock proteins (HSPs) 70 and 90 were differently affected by acute and chronic treatment. Tissue-specific responses to thermal challenge were also found among heart, liver and muscle. In the heart, acute heat challenge affected lipid oxidation (P = 0.05) and gene expression of all 4 HSF gene expression was upregulated (P<0.05). During chronic heat treatment, the HSP 70 mRNA level was increased (P<0.05) and HSP 90 mRNA (P<0.05) was decreased. In the liver, oxidation of protein was alleviated during acute heat challenge (P<0.05), however, gene expression HSF2, 3 and 4 and HSP 70 were highly induced (P<0.05). HSP90 expression was increased by chronic thermal treatment (P<0.05). In the muscle, both types of heat stress increased protein oxidation, but HSFs and HSPs gene expression remained unaltered. Only tendencies to increase were observed in HSP 70 (P = 0.052) and 90 (P = 0.054) gene expression after acute heat stress. The differential expressions of HSF and HSP genes in different tissues of laying broiler breeder chickens suggested that anti-heat stress mechanisms might be provoked more profoundly in the heart, by which the muscle was least protected during heat stress. In addition to HSP, HSFs gene expression could be used as a marker during acute heat stress.
Collapse
|
9
|
Villar M, Popara M, Ayllón N, Fernández de Mera IG, Mateos-Hernández L, Galindo RC, Manrique M, Tobes R, de la Fuente J. A systems biology approach to the characterization of stress response in Dermacentor reticulatus tick unfed larvae. PLoS One 2014; 9:e89564. [PMID: 24586875 PMCID: PMC3931811 DOI: 10.1371/journal.pone.0089564] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 01/21/2014] [Indexed: 11/19/2022] Open
Abstract
Background Dermacentor reticulatus (Fabricius, 1794) is distributed in Europe and Asia where it infests and transmits disease-causing pathogens to humans, pets and other domestic and wild animals. However, despite its role as a vector of emerging or re-emerging diseases, very little information is available on the genome, transcriptome and proteome of D. reticulatus. Tick larvae are the first developmental stage to infest hosts, acquire infection and transmit pathogens that are transovarially transmitted and are exposed to extremely stressing conditions. In this study, we used a systems biology approach to get an insight into the mechanisms active in D. reticulatus unfed larvae, with special emphasis on stress response. Principal Findings The results support the use of paired end RNA sequencing and proteomics informed by transcriptomics (PIT) for the analysis of transcriptomics and proteomics data, particularly for organisms such as D. reticulatus with little sequence information available. The results showed that metabolic and cellular processes involved in protein synthesis were the most active in D. reticulatus unfed larvae, suggesting that ticks are very active during this life stage. The stress response was activated in D. reticulatus unfed larvae and a Rickettsia sp. similar to R. raoultii was identified in these ticks. Significance The activation of stress responses in D. reticulatus unfed larvae likely counteracts the negative effect of temperature and other stress conditions such as Rickettsia infection and favors tick adaptation to environmental conditions to increase tick survival. These results show mechanisms that have evolved in D. reticulatus ticks to survive under stress conditions and suggest that these mechanisms are conserved across hard tick species. Targeting some of these proteins by vaccination may increase tick susceptibility to natural stress conditions, which in turn reduce tick survival and reproduction, thus reducing tick populations and vector capacity for tick-borne pathogens.
Collapse
Affiliation(s)
- Margarita Villar
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Marina Popara
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Nieves Ayllón
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | | | - Lourdes Mateos-Hernández
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Ruth C. Galindo
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Marina Manrique
- Oh no sequences! Research group, Era7 Bioinformatics, Granada, Spain
| | - Raquel Tobes
- Oh no sequences! Research group, Era7 Bioinformatics, Granada, Spain
| | - José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
10
|
Belay HT, Brown IR. Cell death and expression of heat-shock protein Hsc70 in the hyperthermic rat brain. J Neurochem 2006; 97 Suppl 1:116-9. [PMID: 16635260 DOI: 10.1111/j.1471-4159.2005.03591.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Stressful stimuli induce two distinct cellular reactions, the heat-shock (stress) response and programmed cell death. This study utilizes a dual procedure involving immunocytochemistry for heat-shock protein localization and the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) assay for localization of cell death at the cellular level. Whole-body hyperthermia resulted in cell death in the adult rat thymus and testis with a robust signal seen in the testis. Distinct populations of constitutively expressed Hsc70-positive cells and TUNEL-positive cells were apparent. Cellular layers that exhibited high levels of Hsc70 were not triggered into cell death by the thermal stress. High expression of Hsc70 was observed in neuronal populations in the dentate gyrus, CA1 and CA2 region of the hippocampus and Purkinje neurons of the cerebellum. Hyperthermia-induced cell death was not observed in these neuronal cell types, suggesting that neuronal expression of constitutive Hsc70 may play roles in preprotecting neurons from stressful stimuli.
Collapse
Affiliation(s)
- Hiwote T Belay
- Center for the Neurobiology of Stress, University of Toronto at Scarborough, Toronto, Ontario, Canada
| | | |
Collapse
|
11
|
Belay HT, Brown IR. Spatial analysis of cell death and Hsp70 induction in brain, thymus, and bone marrow of the hyperthermic rat. Cell Stress Chaperones 2004; 8:395-404. [PMID: 15115291 PMCID: PMC514910 DOI: 10.1379/1466-1268(2003)008<0395:saocda>2.0.co;2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Heat shock response and programmed cell death are cellular reactions to stressful stimuli. Previous studies have not correlated these responses in vivo at the spatial level in mammalian tissues. This study uses a dual procedure involving immunocytochemistry for Hsp70 localization and the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end-labeling (TUNEL) assay for cell death to correlate the pattern of stress-inducible Hsp70 and cell death at the cellular level. After whole-body hyperthermia in the rat, an increase in Hsp70-positive cells and TUNEL-positive cells was noted in brain, thymus, and bone marrow. However, 2 populations of cells were apparent in the tissues examined, those inducing Hsp70 and those triggered into programmed cell death. Cells that were both Hsp70 positive and TUNEL positive were rarely detected. In tissues of the intact mammal, cells that induce Hsp70 after whole-body hyperthermia were not triggered into programmed cell death.
Collapse
Affiliation(s)
- Hiwote T Belay
- Centre for the Neurobiology of Stress, Department of Life Sciences, University of Toronto at Scarborough, Toronto, Ontario, Canada M1C 1A4
| | | |
Collapse
|
12
|
Khan VR, Brown IR. The effect of hyperthermia on the induction of cell death in brain, testis, and thymus of the adult and developing rat. Cell Stress Chaperones 2002. [PMID: 11892990 DOI: 10.1379/1466-1268(2002)007<0073:teohot>2.0.co;2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Stressful stimuli can elicit 2 distinct reactive cellular responses, the heat shock (stress) response and the activation of cell death pathways. Most studies on the effects of hyperthermia on the mammalian nervous system have focused on the heat shock response, characterized by the transient induction of Hsps, which play roles in repair and protective mechanisms. This study examines the effect of hyperthermia on the induction of cell death via apoptosis, assayed by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling and active caspase 3 cytochemistry, in the adult rat brain, testis, and thymus. Results show that a fever-like increase in temperature triggered apoptosis in dividing cell populations of testis and thymus, but not in mature, postmitotic cells of the adult cerebellum. These differential apoptotic responses did not correlate with whole-tissue levels of Hsp70 induction. We further investigated whether dividing neural cells were more sensitive to heat-induced apoptosis by examining the external granule cell layer of the cerebellum at postnatal day 7 and the neuroepithelial layers of the neocortex and tectum at embryonic day 17. These proliferative neural regions were highly susceptible to hyperthermia-induced apoptosis, suggesting that actively dividing cell populations are more prone to cell death induced by hyperthermia than fully differentiated postmitotic neural cells.
Collapse
Affiliation(s)
- Vania R Khan
- Centre for the Neurobiology of Stress, Division of Life Sciences, University of Toronto at Scarborough, Ontario, Canada
| | | |
Collapse
|
13
|
Khan VR, Brown IR. The effect of hyperthermia on the induction of cell death in brain, testis, and thymus of the adult and developing rat. Cell Stress Chaperones 2002; 7:73-90. [PMID: 11892990 PMCID: PMC514805 DOI: 10.1379/1466-1268(2002)007<0073:teohot>2.0.co;2] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Stressful stimuli can elicit 2 distinct reactive cellular responses, the heat shock (stress) response and the activation of cell death pathways. Most studies on the effects of hyperthermia on the mammalian nervous system have focused on the heat shock response, characterized by the transient induction of Hsps, which play roles in repair and protective mechanisms. This study examines the effect of hyperthermia on the induction of cell death via apoptosis, assayed by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling and active caspase 3 cytochemistry, in the adult rat brain, testis, and thymus. Results show that a fever-like increase in temperature triggered apoptosis in dividing cell populations of testis and thymus, but not in mature, postmitotic cells of the adult cerebellum. These differential apoptotic responses did not correlate with whole-tissue levels of Hsp70 induction. We further investigated whether dividing neural cells were more sensitive to heat-induced apoptosis by examining the external granule cell layer of the cerebellum at postnatal day 7 and the neuroepithelial layers of the neocortex and tectum at embryonic day 17. These proliferative neural regions were highly susceptible to hyperthermia-induced apoptosis, suggesting that actively dividing cell populations are more prone to cell death induced by hyperthermia than fully differentiated postmitotic neural cells.
Collapse
Affiliation(s)
- Vania R Khan
- Centre for the Neurobiology of Stress, Division of Life Sciences, University of Toronto at Scarborough, Ontario, Canada
| | | |
Collapse
|
14
|
Moore SA, Lopez A, Richardson A, Pahlavani MA. Effect of age and dietary restriction on expression of heat shock protein 70 in rat alveolar macrophages. Mech Ageing Dev 1998; 104:59-73. [PMID: 9751432 DOI: 10.1016/s0047-6374(98)00052-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dietary restriction (DR) is the only effective experimental manipulation known to retard aging in rodents, and this manipulation has been shown to alter a variety of processes that change with age. However, there is no information on the effect of DR on macrophage Function. In the present study, the effect of aging and DR on the ability of alveolar macrophages (AMs) to express the heat shock gene, hsp70 was studied. AMs were isolated by lavage from the lungs of young (4-6 months) and old (24-26 months) rats fed either ad libitum (AL) or a restricted diet (60% of AL). There was no age-related change in the number of cells recovered from young and old rats fed AL. However, the number of cells recovered from the lungs of the DR rats was reduced, and this decrease was statistically significant in young rats. The expression of heat shock protein 70 (hsp70) was measured by the level of the hsp70 mRNA transcript in total RNA isolated from AMs cultured under two conditions: in suspension and after adherence to plastic. When AMs were incubated at 37 degrees C in suspension, no detectable hsp70 expression was observed; however, hsp70 expression was induced at 37 degrees C when the AMs adhered to the plastic culture dishes. Hsp70 mRNA levels were rapidly induced by heat shock (43 degrees C, 1 h) in AMs cultured both in suspension and on plastic. The induction of hsp70 expression did not change significantly with either age or DR in AMs cultured in suspension. In contrast, the induction of hsp70 mRNA levels by AMs adherent to plastic culture plates decreased approximately 70% with age, and hsp70 induction was greater in AMs isolated from DR rats; this difference was statistically significant in young rats. The induction of hsp70 by heat shock (43 degrees C, 1 h) also decreased with age in the adherent AMs, and DR increased the induction of hsp70 expression three- to fourfold in adherent AMs from both young and old rats.
Collapse
Affiliation(s)
- S A Moore
- Geriatric Research, Education, and Clinical Center, South Texas Veterans Health Care System, Audie Murphy VA Hospital, San Antonio, TX 78284, USA
| | | | | | | |
Collapse
|
15
|
Moerman AM, de Maria AC, Gomes SL, Klein C. Heat shock alters poly(A) tail length of Dictyostelium discoideum hsp32 RNA. DNA Cell Biol 1998; 17:635-41. [PMID: 9703022 DOI: 10.1089/dna.1998.17.635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hsp32 is a heat shock gene in D. discoideum. We have previously observed that heat stress-induced change produces a broad band on Northern blots, suggesting that more than one population of mRNA is present under those conditions. This was not the result of a defect in the splicing of the hsp32 mRNA, nor did it result from the use of a different transcription start site under heat shock conditions. Here, we show that the broad banding pattern reflects the appearance of a transcript with a poly(A) tail that is approximately 100 nt longer than that seen in unstressed cells. Experiments indicated that this tail was not a property of newly synthesized mRNA but rather a response to heat stress. This response appeared to be specific to the hsp32 transcript and did not result in the retention of the RNA in the nucleus. These results document a relatively unusual heat shock response and also indicate that the nature of the response differs among RNAs and has selective consequences.
Collapse
Affiliation(s)
- A M Moerman
- E.A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, MO 63104, USA
| | | | | | | |
Collapse
|
16
|
Lakhotia SC, Sharma A. The 93D (hsr-omega) locus of Drosophila: non-coding gene with house-keeping functions. Genetica 1996; 97:339-48. [PMID: 9081862 DOI: 10.1007/bf00055320] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The 93D, or hsr-omega (heat-shock RNA-omega), locus of Drosophila melanogaster and other species of Drosophila, besides being induced as a member of the heat shock gene family, is also selectively and singularly inducible by a variety of agents, notably benzamide, colchicine and vitamin B6 (in species other than D. melanogaster). The genomic structure of this locus is highly conserved in all species, although the primary base sequence has diverged rapidly between species. Three transcripts (two nuclear and one cytoplasmic) are produced by this locus but none of them has any significant protein coding capacity. The profile of the three transcripts varies in a developmental and inducer-specific manner. This locus is developmentally active in nearly all cell types and is essential for viability of flies. Its induction during heat shock is independent of the other members of the heat shock gene family. The other selective inducers act on this locus through separate response elements. hsr-omega activity has a characteristic effect on transcription/turnover of the heat shock induced hsp70 and the alpha-beta transcripts in D. melanogaster. It appears that the hsr-omega locus has important house-keeping functions in transport and turnover of some transcripts and in monitoring the 'health' of the translational machinery of the cell.
Collapse
Affiliation(s)
- S C Lakhotia
- Department of Zoology, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
17
|
Fukudo S, Abe K, Hongo M, Utsumi A, Itoyama Y. Psychophysiological stress induces heat shock cognate protein (HSC) 70 mRNA in the cerebral cortex and stomach of rats. Brain Res 1995; 675:98-102. [PMID: 7796158 DOI: 10.1016/0006-8993(95)00044-q] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Families of 70 kDa heat shock proteins have essential roles in cellular coping to noxious stimuli. However, their roles in psychophysiological stress have not been precisely clarified. We tested our hypothesis that heat shock cognate protein (HSC)70 messenger RNA would increase in stress-vulnerable organs under psychophysiological stress. In control rats, cerebral HSC70 mRNAs were constitutively expressed while gastric HSC70 mRNAs were scarcely identified. Restraint-water immersion stress significantly increased the level of cerebral HSC70 mRNAs for 6 h and 12 h. Stress for 6 h with recovery for 6 h induced more gastric HSC70 mRNA levels than that without recovery, while stress for 12 h expressed the highest gastric HSC70 mRNA levels. Hypothermia, induced by water immersion, excluded a possible role of hyperthermia in inducing HSC70 mRNA. Our results point to a crucial cytoprotective role for families of heat shock proteins in stress-vulnerable brain-gut link in mammals under psychophysiological stress.
Collapse
Affiliation(s)
- S Fukudo
- Department of Psychosomatic Medicine, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | | | |
Collapse
|
18
|
Ishibashi T, Bottaro D, Michieli P, Kelley CA, Aaronson SA. A novel dual specificity phosphatase induced by serum stimulation and heat shock. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)43965-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|