1
|
Malerba A, Sidoli C, Lu-Nguyen N, Herath S, Le Heron A, Abdul-Razak H, Jarmin S, VandenDriessche T, Chuah MK, Dickson G, Popplewell L. Dose-Dependent Microdystrophin Expression Enhancement in Cardiac Muscle by a Cardiac-Specific Regulatory Element. Hum Gene Ther 2021; 32:1138-1146. [PMID: 33765840 DOI: 10.1089/hum.2020.325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive disease that affects 1:5,000 live male births and is characterized by muscle wasting. By the age of 13 years, affected individuals are often wheelchair bound and suffer from respiratory and cardiac failure, which results in premature death. Although the administration of corticosteroids and ventilation can relieve the symptoms and extend the patients' lifespan, currently no cure exists for DMD. Among the different approaches under preclinical and clinical testing, gene therapy, using adeno-associated viral (AAV) vectors, is one of the most promising. In this study, we delivered intravenously AAV9 vectors expressing the microdystrophin MD1 (ΔR4-R23/ΔCT) under control of the synthetic muscle-specific promoter Spc5-12 and assessed the effect of adding a cardiac-specific cis-regulatory module (designated as CS-CRM4) on its expression profile in skeletal and cardiac muscles. Results show that Spc5-12 promoter, in combination with an AAV serotype that has high tropism for the heart, drives high MD1 expression levels in cardiac muscle in mdx mice. The additional regulatory element CS-CRM4 can further improve MD1 expression in cardiac muscles, but its effect is dose dependent and enhancement becomes evident only at lower vector doses.
Collapse
Affiliation(s)
- Alberto Malerba
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Chiara Sidoli
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Ngoc Lu-Nguyen
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Shan Herath
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Anita Le Heron
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Hayder Abdul-Razak
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Susan Jarmin
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Thierry VandenDriessche
- Department of Gene Therapy and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Marinee K Chuah
- Department of Gene Therapy and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - George Dickson
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Linda Popplewell
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey, United Kingdom
| |
Collapse
|
2
|
Affiliation(s)
- Jeanne James
- From the Department of Pediatrics, Heart Institute, The Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Jeffrey Robbins
- From the Department of Pediatrics, Heart Institute, The Cincinnati Children's Hospital Medical Center, Cincinnati, OH.
| |
Collapse
|
3
|
100-fold but not 50-fold dystrophin overexpression aggravates electrocardiographic defects in the mdx model of Duchenne muscular dystrophy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16045. [PMID: 27419194 PMCID: PMC4934459 DOI: 10.1038/mtm.2016.45] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 12/18/2022]
Abstract
Dystrophin gene replacement holds the promise of treating Duchenne muscular dystrophy. Supraphysiological expression is a concern for all gene therapy studies. In the case of Duchenne muscular dystrophy, Chamberlain and colleagues found that 50-fold overexpression did not cause deleterious side effect in skeletal muscle. To determine whether excessive dystrophin expression in the heart is safe, we studied two lines of transgenic mdx mice that selectively expressed a therapeutic minidystrophin gene in the heart at 50-fold and 100-fold of the normal levels. In the line with 50-fold overexpression, minidystrophin showed sarcolemmal localization and electrocardiogram abnormalities were corrected. However, in the line with 100-fold overexpression, we not only detected sarcolemmal minidystrophin expression but also observed accumulation of minidystrophin vesicles in the sarcoplasm. Excessive minidystrophin expression did not correct tachycardia, a characteristic feature of Duchenne muscular dystrophy. Importantly, several electrocardiogram parameters (QT interval, QRS duration and the cardiomyopathy index) became worse than that of mdx mice. Our data suggests that the mouse heart can tolerate 50-fold minidystrophin overexpression, but 100-fold overexpression leads to cardiac toxicity.
Collapse
|
4
|
Wang H, Sreenivasan U, Gong DW, O'Connell KA, Dabkowski ER, Hecker PA, Ionica N, Konig M, Mahurkar A, Sun Y, Stanley WC, Sztalryd C. Cardiomyocyte-specific perilipin 5 overexpression leads to myocardial steatosis and modest cardiac dysfunction. J Lipid Res 2013; 54:953-65. [PMID: 23345411 DOI: 10.1194/jlr.m032466] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Presence of ectopic lipid droplets (LDs) in cardiac muscle is associated to lipotoxicity and tissue dysfunction. However, presence of LDs in heart is also observed in physiological conditions, such as when cellular energy needs and energy production from mitochondria fatty acid β-oxidation are high (fasting). This suggests that development of tissue lipotoxicity and dysfunction is not simply due to the presence of LDs in cardiac muscle but due at least in part to alterations in LD function. To examine the function of cardiac LDs, we obtained transgenic mice with heart-specific perilipin 5 (Plin5) overexpression (MHC-Plin5), a member of the perilipin protein family. Hearts from MHC-Plin5 mice expressed at least 4-fold higher levels of plin5 and exhibited a 3.5-fold increase in triglyceride content versus nontransgenic littermates. Chronic cardiac excess of LDs was found to result in mild heart dysfunction with decreased expression of peroxisome proliferator-activated receptor (PPAR)α target genes, decreased mitochondria function, and left ventricular concentric hypertrophia. Lack of more severe heart function complications may have been prevented by a strong increased expression of oxidative-induced genes via NF-E2-related factor 2 antioxidative pathway. Perilipin 5 regulates the formation and stabilization of cardiac LDs, and it promotes cardiac steatosis without major heart function impairment.
Collapse
Affiliation(s)
- Hong Wang
- Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Thymidylate kinase (TMPK) is a nucleoside monophosphate kinase that catalyzes phosphorylation of thymidine monophosphate to thymidine diphosphate. TMPK also mediates phosphorylation of monophosphates of thymidine nucleoside analog (NA) prodrugs on the pathway to their active triphosphate antiviral or antitumor moieties. Novel transgenic mice (TG) expressing human (h) TMPK were genetically engineered using the alpha-myosin heavy chain promoter to drive its cardiac-targeted overexpression. In '2 by 2' protocols, TMPK TGs and wild-type (WT) littermates were treated with the NA zidovudine (a deoxythymidine analog, 3'-azido-3'deoxythymidine (AZT)) or vehicle for 35 days. Alternatively, TGs and WTs were treated with a deoxycytidine NA (racivir, RCV) or vehicle. Changes in mitochondrial DNA (mtDNA) abundance and mitochondrial ultrastructure were defined quantitatively by real-time PCR and transmission electron microscopy, respectively. Cardiac performance was determined echocardiographically. Results showed TMPK TGs treated with either AZT or RCV exhibited decreased cardiac mtDNA abundance. Cardiac ultrastructural changes were seen only with AZT. AZT-treated TGs exhibited increased left ventricle (LV) mass. In contrast, LV mass in RCV-treated TGs and WTs remained unchanged. In all cohorts, LV end-diastolic dimension remained unchanged. This novel cardiac-targeted overexpression of hTMPK helps define the role of TMPK in mitochondrial toxicity of antiretrovirals.
Collapse
|
6
|
Genetic approaches for changing the heart and dissecting complex syndromes. J Mol Cell Cardiol 2008; 45:148-55. [PMID: 18601931 DOI: 10.1016/j.yjmcc.2008.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 05/21/2008] [Accepted: 06/03/2008] [Indexed: 01/18/2023]
Abstract
The genetic, biochemical and molecular bases of human cardiac disease have been the focus of extensive research efforts for many years. Early animal models of cardiovascular disease used pharmacologic or surgical interventions, or took advantage of naturally occurring genetic abnormalities and the data obtained were largely correlative. The inability to directly alter an organism's genetic makeup and cellular protein content and accurately measure the results of that manipulation precluded rigorous examination of true cause-effect and structure-function relationships. Directed genetic manipulation in the mouse gave researchers the ability to modify and control the mammalian heart's protein content, resulting in the rational design of models that could provide critical links between the mutated or absent protein and disease. Two techniques that have proven particularly useful are transgenesis, which involves the random insertion of ectopic genetic material of interest into a "host" genome, and gene targeting, which utilizes homologous recombination at a pre-selected locus. Initially, transgenesis and gene targeting were used to examine systemic loss-of-function and gain-of-function, respectively, but further refinements in both techniques have allowed for investigations of organ-specific, cell type-specific, developmental stage-sensitive and dose-dependent effects. Genetically engineered animal models of pediatric and adult cardiac disease have proven that, when used appropriately, these tools have the power to extend mere observation to the establishment of true causative proof. We illustrate the power of the general approach by showing how genetically engineered mouse models can define the precise signaling pathways that are affected by the gain-of-function mutation that underlies Noonan syndrome. Increasingly precise and modifiable animal models of human cardiac disease will allow researchers to determine not only pathogenesis, but also guide treatment and the development of novel therapies.
Collapse
|
7
|
Gulick J, Robbins J. Regulation of transgene expression using tetracycline. ACTA ACUST UNITED AC 2008; Chapter 23:Unit 23.12. [PMID: 18265363 DOI: 10.1002/0471142727.mb2312s71] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transgenesis has proven useful in creating animal models that mimic certain disease states, providing a mechanistic approach for understanding the underlying disease mechanisms at the molecular and cellular levels. With traditional transgenics, the gene of interest is cloned behind a promoter that has the desired expression pattern, allowing the gene to be expressed in those tissues at the developmental times that the promoter is active. In order to more precisely control gene expression both in vitro and in vivo, inducible systems that use pharmacologic intervention to control transgene expression have been developed (UNIT 16.14). As previously described, the system consists of two components, an activator that is regulated by tetracycline and a responder that is dependent upon the activator. Both limbs of the system will be discussed in the context of inducible and reversible transgene expression that is cell type- or organ-specific, with particular attention paid to the cardiovascular system.
Collapse
Affiliation(s)
- James Gulick
- Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, Ohio, USA
| | | |
Collapse
|
8
|
Heydemann A, Demonbreun A, Hadhazy M, Earley JU, McNally EM. Nuclear sequestration of δ-sarcoglycan disrupts the nuclear localization of lamin A/C and emerin in cardiomyocytes. Hum Mol Genet 2006; 16:355-63. [PMID: 17164264 DOI: 10.1093/hmg/ddl453] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sarcoglycan is a membrane-associated protein complex found at the plasma membrane of cardiomyocytes and skeletal myofibers. Recessive mutations of delta-sarcoglycan that eliminate expression, and therefore function, lead to cardiomyopathy and muscular dystrophy by producing instability of the plasma membrane. A dominant missense mutation in the gene encoding delta-sarcoglycan was previously shown to associate with dilated cardiomyopathy in humans. To investigate the mechanism of dominantly inherited cardiomyopathy, we generated transgenic mice that express the S151A delta-sarcoglycan mutation in the heart using the alpha-myosin heavy-chain gene promoter. Similar to the human delta-sarcoglycan gene mutation, S151A delta-sarcoglycan transgenic mice developed dilated cardiomyopathy at a young age with enhanced lethality. Instead of placement at the plasma membrane, delta-sarcoglycan was found in the nucleus of S151A delta-sarcoglycan cardiomyocytes. Retention of delta-sarcoglycan in the nucleus was accompanied by partial nuclear sequestration of beta- and gamma-sarcoglycan. Additionally, the nuclear-membrane-associated proteins, lamin A/C and emerin, were mislocalized throughout the nucleoplasm. Therefore, the S151A delta-sarcoglycan gene mutation acts in a dominant negative manner to produce trafficking defects that disrupt nuclear localization of lamin A/C and emerin, thus linking together two common mechanisms of inherited cardiomyopathy.
Collapse
Affiliation(s)
- Ahlke Heydemann
- Department of Medicine, Section of Cardiology, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
9
|
Yanazume T, Hasegawa K, Morimoto T, Kawamura T, Wada H, Matsumori A, Kawase Y, Hirai M, Kita T. Cardiac p300 is involved in myocyte growth with decompensated heart failure. Mol Cell Biol 2003; 23:3593-606. [PMID: 12724418 PMCID: PMC154243 DOI: 10.1128/mcb.23.10.3593-3606.2003] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A variety of stresses on the heart initiate a number of subcellular signaling pathways, which finally reach the nuclei of cardiac myocytes and cause myocyte hypertrophy with heart failure. However, common nuclear pathways that lead to this state are unknown. A zinc finger protein, GATA-4, is one of the transcription factors that mediate changes in gene expression during myocardial-cell hypertrophy. p300 not only acts as a transcriptional coactivator of GATA-4, but also possesses an intrinsic histone acetyltransferase activity. In primary cardiac myocytes derived from neonatal rats, we show that stimulation with phenylephrine increased an acetylated form of GATA-4 and its DNA-binding activity, as well as expression of p300. A dominant-negative mutant of p300 suppressed phenylephrine-induced nuclear acetylation, activation of GATA-4-dependent endothelin-1 promoters, and hypertrophic responses, such as increase in cell size and sarcomere organization. In sharp contrast to the activation of cardiac MEK-1, which phosphorylates GATA-4 and causes compensated hypertrophy in vivo, p300-mediated acetylation of mouse cardiac nuclear proteins, including GATA-4, results in marked eccentric dilatation and systolic dysfunction. These findings suggest that p300-mediated nuclear acetylation plays a critical role in the development of myocyte hypertrophy and represents a pathway that leads to decompensated heart failure.
Collapse
Affiliation(s)
- Tetsuhiko Yanazume
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Heger J, Gödecke A, Flögel U, Merx MW, Molojavyi A, Kühn-Velten WN, Schrader J. Cardiac-specific overexpression of inducible nitric oxide synthase does not result in severe cardiac dysfunction. Circ Res 2002; 90:93-9. [PMID: 11786524 DOI: 10.1161/hh0102.102757] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nitric oxide (NO), a potent regulator of myocardial contractility, has been implicated in the development of heart failure; however, no study exists describing the relation between expression of inducible nitric oxide synthase (iNOS), formation of NO in vivo, and cardiac contractility. We have therefore generated transgenic (TG) mice overexpressing iNOS under the cardiospecific alpha-myosin heavy chain (alpha-MHC) promoter. In vitro, iNOS activity in hearts of two transgenic lines was 260- to 400-fold above controls (wild type [WT]), but TG mice were viable and appeared normal. Ventricular mass/body weight ratio did not differ; heart rate and cardiac output as well as mean arterial blood pressure were decreased by 10%. NO(x) levels of hearts and blood of TG mice were 2.5- and 2-fold above WT controls, respectively. In the isolated heart, release of the NO oxidation products nitrate and nitrite, an index of in vivo NOS activity, was 40-fold over WT. However, cardiac hemodynamics and levels of ATP and phosphocreatine were unaltered. The high iNOS activity was associated with reduced cardiac L-arginine in TG hearts to only 15% of the WT, indicating limited substrate availability, whereas L-citrulline was 20-fold elevated. Our findings demonstrate that the heart can tolerate high levels of iNOS activity without detrimental functional consequences. The concept that iNOS-derived NO is the triggering factor in the pathomechanism leading to heart failure therefore needs to be reevaluated.
Collapse
Affiliation(s)
- Jacqueline Heger
- Institut für Herz- und Kreislaufphysiologie, Heinrich-Heine Universität Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
James J, Zhang Y, Osinska H, Sanbe A, Klevitsky R, Hewett TE, Robbins J. Transgenic modeling of a cardiac troponin I mutation linked to familial hypertrophic cardiomyopathy. Circ Res 2000; 87:805-11. [PMID: 11055985 DOI: 10.1161/01.res.87.9.805] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Multiple mutations in cardiac troponin I (cTnI) have been associated with familial hypertrophic cardiomyopathy. Two mutations are located in the cTnI inhibitory domain, a highly negatively charged region that alternately binds to either actin or troponin C, depending on the intracellular concentration of calcium. This region is critical to the inhibition of actin-myosin crossbridge formation when intracellular calcium is low. We modeled one of the inhibitory domain mutations, arginine145-->glycine (TnI(146Gly) in the mouse sequence), by cardiac-specific expression of the mutated protein in transgenic mice. Multiple lines were generated with varying degrees of expression to establish a dose relationship; the severity of phenotype could be correlated directly with transgene expression levels. Transgenic mice overexpressing wild-type cTnI were generated as controls and analyzed in parallel with the TnI(146Gly) animals. The control mice showed no abnormalities, indicating that the phenotype of TnI(146Gly) was not simply an artifact of transgenesis. In contrast, TnI(146Gly) mice showed cardiomyocyte disarray and interstitial fibrosis and suffered premature death. The functional alterations that seem to be responsible for the development of cardiac disease include increased skinned fiber sensitivity to calcium and, at the whole organ level, hypercontractility with diastolic dysfunction. Severely affected lines develop a pathology similar to human familial hypertrophic cardiomyopathy but within a dramatically shortened time frame. These data establish the causality of this mutation for cardiac disease, provide an animal model for understanding the resultant pathogenic structure-function relationships, and highlight the differences in phenotype severity of the troponin mutations between human and mouse hearts.
Collapse
Affiliation(s)
- J James
- Department of Pediatrics, Division of Molecular Cardiovascular Biology, The Children's Hospital Research Foundation, Cincinnati, Ohio, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Sanbe A, Gulick J, Hayes E, Warshaw D, Osinska H, Chan CB, Klevitsky R, Robbins J. Myosin light chain replacement in the heart. Am J Physiol Heart Circ Physiol 2000; 279:H1355-64. [PMID: 10993803 DOI: 10.1152/ajpheart.2000.279.3.h1355] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myosin-actin cross-bridge kinetics are an important determinant for cardiac systolic and diastolic function. We compared the effects of myosin light chain substitutions on the ability of the fibers to contract in response to calcium and in their ability to produce power. Transgenesis was used to effect essentially complete replacement of the target contractile protein isoform specifically in the heart. Atrial and ventricular fibers derived from the various transgenic (TG) lines were skinned, and the force-velocity relationships, unloaded shortening velocities, and Ca(2+)-stimulated Mg(2+)-ATPase activities were determined. Replacement with an ectopic isoform resulted in significant changes in cross-bridge cycling kinetics but without any overt effects on morbidity or mortality. To confirm that this result was not light chain specific, a modified alpha-myosin heavy chain isoform that resulted in significant changes in force development was also engineered. The animals appeared healthy and have normal lifespans, and the changes in force development did not result in significant remodeling or overt hypertrophy. We conclude that myosin light chains can control aspects of cross-bridge cycling and alter force development. The myosin heavy chain data also show that changes in the kinetics of force development and power output do not necessarily lead to activation of the hypertrophic response or significant cardiac remodeling.
Collapse
Affiliation(s)
- A Sanbe
- The Children's Hospital Research Foundation, Department of Pediatrics, Division of Molecular Cardiovascular Biology, Cincinnati, Ohio 45229-3039, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
James J, Sanbe A, Yager K, Martin L, Klevitsky R, Robbins J. Genetic manipulation of the rabbit heart via transgenesis. Circulation 2000; 101:1715-21. [PMID: 10758055 DOI: 10.1161/01.cir.101.14.1715] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Transgenesis using cardiac-specific expression has been valuable in exploring cardiac structure-function relationships. To date, cardiac-selective studies have been confined to the mouse. However, the utility of the mouse is limited in certain, possibly critical, aspects with respect to cardiovascular function. METHODS AND RESULTS To establish the potential validity of transgenic methodology for remodeling a larger mammalian heart, we explored cardiac-selective expression in transgenic rabbits. The murine alpha- and beta-cardiac myosin heavy chain gene promoters were used to express a reporter gene, and transgene expression was quantified in cardiac, skeletal, and smooth muscles as well as in nonmuscle tissues. Although neither promoter exactly mimics endogenous patterns of myosin heavy chain expression, both are able to drive high levels of transgene expression in the cardiac compartment. Neither promoter is active in smooth muscle or nonmuscle tissues. CONCLUSIONS Directed organ-specific expression is feasible in a larger animal with existing reagents, and cardiac-selective transgenic manipulation is possible in the rabbit.
Collapse
Affiliation(s)
- J James
- Children's Hospital Research Foundation, Cincinnati, Ohio, USA
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Actin capping protein (CP) binds barbed ends of actin filaments to regulate actin assembly. CP is an alpha/beta heterodimer. Vertebrates have conserved isoforms of each subunit. Muscle cells contain two beta isoforms. beta1 is at the Z-line; beta2 is at the intercalated disc and cell periphery in general. To investigate the functions of the isoforms, we replaced one isoform with another using expression in hearts of transgenic mice. Mice expressing beta2 had a severe phenotype with juvenile lethality. Myofibril architecture was severely disrupted. The beta2 did not localize to the Z-line. Therefore, beta1 has a distinct function that includes interactions at the Z-line. Mice expressing beta1 showed altered morphology of the intercalated disc, without the lethality or myofibril disruption of the beta2-expressing mice. The in vivo function of CP is presumed to involve binding barbed ends of actin filaments. To test this hypothesis, we expressed a beta1 mutant that poorly binds actin. These mice showed both myofibril disruption and intercalated disc remodeling, as predicted. Therefore, CPbeta1 and CPbeta2 each have a distinct function that cannot be provided by the other isoform. CPbeta1 attaches actin filaments to the Z-line, and CPbeta2 organizes the actin at the intercalated discs.
Collapse
Affiliation(s)
- Marilyn C. Hart
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - John A. Cooper
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
15
|
Sanbe A, Fewell JG, Gulick J, Osinska H, Lorenz J, Hall DG, Murray LA, Kimball TR, Witt SA, Robbins J. Abnormal cardiac structure and function in mice expressing nonphosphorylatable cardiac regulatory myosin light chain 2. J Biol Chem 1999; 274:21085-94. [PMID: 10409661 DOI: 10.1074/jbc.274.30.21085] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A role for myosin phosphorylation in modulating normal cardiac function has long been suspected, and we hypothesized that changing the phosphorylation status of a cardiac myosin light chain might alter cardiac function in the whole animal. To test this directly, transgenic mice were created in which three potentially phosphorylatable serines in the ventricular isoform of the regulatory myosin light chain were mutated to alanines. Lines were obtained in which replacement of the endogenous species in the ventricle with the nonphosphorylatable, transgenically encoded protein was essentially complete. The mice show a spectrum of cardiovascular changes. As previously observed in skeletal muscle, Ca(2+) sensitivity of force development was dependent upon the phosphorylation status of the regulatory light chain. Structural abnormalities were detected by both gross histology and transmission electron microscopic analyses. Mature animals showed both atrial hypertrophy and dilatation. Echocardiographic analysis revealed that as a result of chamber enlargement, severe tricuspid valve insufficiency resulted in a detectable regurgitation jet. We conclude that regulated phosphorylation of the regulatory myosin light chains appears to play an important role in maintaining normal cardiac function over the lifetime of the animal.
Collapse
Affiliation(s)
- A Sanbe
- Department of Pediatrics, Division of Molecular Cardiovascular Biology, Children's Hospital Research Foundation, Cincinnati, Ohio 45229-3039, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Fewell JG, Hewett TE, Sanbe A, Klevitsky R, Hayes E, Warshaw D, Maughan D, Robbins J. Functional significance of cardiac myosin essential light chain isoform switching in transgenic mice. J Clin Invest 1998; 101:2630-9. [PMID: 9637696 PMCID: PMC508853 DOI: 10.1172/jci2825] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The different functions of the ventricular- and atrial-specific essential myosin light chains are unknown. Using transgenesis, cardiac-specific overexpression of proteins can be accomplished. The transgenic paradigm is more useful than originally expected, in that the mammalian heart rigorously controls sarcomeric protein stoichiometries. In a clinical subpopulation suffering from heart disease caused by congenital malformations of the outflow tract, an ELC1v-->ELC1a isoform shift correlated with increases in cross-bridge cycling kinetics as measured in skinned fibers derived from the diseased muscle. We have used transgenesis to replace the ventricular isoform of the essential myosin light chain with the atrial isoform. The ELC1v--> ELC1a shift in the ventricle resulted in similar functional alterations. Unloaded velocities as measured by the ability of the myosin to translocate actin filaments in the in vitro motility assay were significantly increased as a result of the isoform substitution. Unloaded shortening velocity was also increased in skinned muscle fibers, and at the whole organ level, both contractility and relaxation were significantly increased. This increase in cardiac function occurred in the absence of a hypertrophic response. Thus, ELC1a expression in the ventricle appears to be advantageous to the heart, resulting in increased cardiac function.
Collapse
Affiliation(s)
- J G Fewell
- Department of Pediatrics, Division of Molecular Cardiovascular Biology, Children's Hospital Research Foundation, Cincinnati, Ohio 45229-3039, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Beohar N, Kawamoto S. Transcriptional regulation of the human nonmuscle myosin II heavy chain-A gene. Identification of three clustered cis-elements in intron-1 which modulate transcription in a cell type- and differentiation state-dependent manner. J Biol Chem 1998; 273:9168-78. [PMID: 9535907 DOI: 10.1074/jbc.273.15.9168] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In an attempt to identify cis-acting elements for transcriptional regulation of the human nonmuscle myosin II heavy chain (MHC)-A gene, the region extending 20 kilobases (kb) upstream and 40 kb downstream from the transcription start sites, which includes the entire 37-kb intron 1, was examined. Using transient transfection analysis of luciferase reporter constructs, a 100-base pair (bp) region (N2d) in intron 1, located 23 kb downstream from the transcriptional start sites, has been found to activate transcription in a cell type- and differentiation state-dependent manner. Maximum activity (approximately 20-fold) is seen in NIH 3T3 fibroblasts and intermediate activity (7-fold) in proliferating and undifferentiated C2C12 myoblasts. In contrast, this region is almost inactive in terminally differentiated C2C12 myotubes, in which endogenous nonmuscle MHC-A expression is down-regulated. Gel mobility shift assays and methylation interference analyses were performed using NIH 3T3 nuclear extracts to determine the protein-binding elements for transcription factors. Three binding elements have been identified within the N2d region. Antibody-supershift experiments, as well as competition experiments using consensus binding sequences for specific transcription factors, revealed that the most 5'-element, C (GGGAGGGGCC) is recognized specifically and exclusively by Sp1 and Sp3 transcriptional factors. Element C is immediately followed by a novel element, A (GTGACCC). A third element, F (GTGTCAGGTG), which contains an E-box, is located 50 bp 3' to element A. Element F can be recognized partially by upstream stimulatory factors, USF1 and/or USF2. Transfection studies with luciferase reporter constructs which include mutations in all three elements in various combinations demonstrate that the A and C binding factors cooperatively activate transcriptional activity in NIH 3T3 cells. The F binding factor shows an additive effect on transcription.
Collapse
Affiliation(s)
- N Beohar
- Laboratory of Molecular Cardiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
18
|
|
19
|
Becker KD, Gottshall KR, Chien KR. Strategies for studying cardiovascular phenotypes in genetically manipulated mice. Hypertension 1996; 27:495-501. [PMID: 8613192 DOI: 10.1161/01.hyp.27.3.495] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Unraveling the pathogenesis of complex cardiovascular diseases, such as hypertension, requires the development of in vivo animal model systems. Although large-animal models have long served as the gold standard, recent advances in transgenic and gene-targeting approaches, mouse genetics, and microsurgical technology are initiating a revolution that has led to the unexpected coupling of in vivo molecular physiology with genetically engineered mice. This article discusses the design of strategies to study complex cardiovascular phenotypes in genetically modified mice, including both transgenic and gene-targeted animals. At this time, a number of strategies are used to address specific molecular or physiological questions, and examples are briefly highlighted. In addition, a number of potential problems in the generation and use of transgenic mice in the study of cardiovascular biology are presented.
Collapse
Affiliation(s)
- K D Becker
- Department of Medicine, University of California, San Diego, La Jolla, 92093, USA
| | | | | |
Collapse
|
20
|
Knotts S, Rindt H, Robbins J. Position independent expression and developmental regulation is directed by the beta myosin heavy chain gene's 5' upstream region in transgenic mice. Nucleic Acids Res 1995; 23:3301-9. [PMID: 7667107 PMCID: PMC307192 DOI: 10.1093/nar/23.16.3301] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Transgenic mice generated with constructs containing 5.6 kb of the beta myosin heavy chain (MyHC) gene's 5' flanking region linked to the cat reporter gene express the transgene at high levels. In all 47 lines analyzed, tissue-specific accumulation of chloramphenicol acetyltransferase was found at levels proportional to the number of integrated transgene copies. Deletion constructs containing only 0.6 kb of 5' upstream region showed position effects in transgenic mice and did not demonstrate copy number dependence although transgene expression remained muscle-specific. The 5.6 kb 5' upstream region conferred appropriate developmental control of the transgene to the cardiac compartment and directs copy number dependent and position independent expression. Lines generated with a construct in which three proximal cis-acting elements were mutated showed reduced levels of transgene expression, but all maintained their position independence and copy number dependence, suggesting the presence of distinct regulatory mechanisms.
Collapse
Affiliation(s)
- S Knotts
- Department of Pediatrics, Children's Hospital Research Foundation, Cincinnati, OH 45229-3039, USA
| | | | | |
Collapse
|