1
|
Hassanzadeh A, Shomali N, Kamrani A, Soltani-Zangbar MS, Nasiri H, Akbari M. Cancer therapy by cyclin-dependent kinase inhibitors (CDKIs): bench to bedside. EXCLI JOURNAL 2024; 23:862-882. [PMID: 38983782 PMCID: PMC11231458 DOI: 10.17179/excli2024-7076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 03/06/2024] [Indexed: 07/11/2024]
Abstract
A major characteristic of cancer is dysregulated cell division, which results in aberrant growth of cells. Consequently, medicinal targets that prevent cell division would be useful in the fight against cancer. The primary regulator of proliferation is a complex consisting of cyclin and cyclin-dependent kinases (CDKs). The FDA has granted approval for CDK inhibitors (CDKIs) to treat metastatic hormone receptor-positive breast cancer. Specifically, CDK4/6 CDKIs block the enzyme activity of CDK4 and CDK6. Unfortunately, the majority of first-generation CDK inhibitors, also known as pan-CDK inhibitors because they target multiple CDKs, have not been authorized for clinical use owing to their serious side effects and lack of selection. In contrast to this, significant advancements have been created to permit the use of pan-CDK inhibitors in therapeutic settings. Notably, the toxicity and negative consequences of pan-CDK inhibitors have been lessened in recent years thanks to the emergence of combination therapy tactics. Therefore, pan-CDK inhibitors have renewed promise for clinical use when used in a combination regimen. The members of the CDK family have been reviewed and their primary roles in cell cycle regulation were covered in this review. Next, we provided an overview of the state of studies on CDK inhibitors.
Collapse
Affiliation(s)
- Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Navid Shomali
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Kamrani
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Sadegh Soltani-Zangbar
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Nasiri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Guruvaiah P, Chava S, Sun CW, Singh N, Penn CA, Gupta R. ATAD2 is a driver and a therapeutic target in ovarian cancer that functions by upregulating CENPE. Cell Death Dis 2023; 14:456. [PMID: 37479754 PMCID: PMC10362061 DOI: 10.1038/s41419-023-05993-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
Ovarian cancer is a complex disease associated with multiple genetic and epigenetic alterations. The emergence of treatment resistance in most patients causes ovarian cancer to become incurable, and novel therapies remain necessary. We identified epigenetic regulator ATPase family AAA domain-containing 2 (ATAD2) is overexpressed in ovarian cancer and is associated with increased incidences of metastasis and recurrence. Genetic knockdown of ATAD2 or its pharmacological inhibition via ATAD2 inhibitor BAY-850 suppressed ovarian cancer growth and metastasis in both in vitro and in vivo models. Transcriptome-wide mRNA expression profiling of ovarian cancer cells treated with BAY-850 revealed that ATAD2 inhibition predominantly alters the expression of centromere regulatory genes, particularly centromere protein E (CENPE). In ovarian cancer cells, changes in CENPE expression following ATAD2 inhibition resulted in cell-cycle arrest and apoptosis induction, which led to the suppression of ovarian cancer growth. Pharmacological CENPE inhibition phenotypically recapitulated the cellular changes induced by ATAD2 inhibition, and combined pharmacological inhibition of both ATAD2 and CENPE inhibited ovarian cancer cell growth more potently than inhibition of either alone. Thus, our study identified ATAD2 as regulators of ovarian cancer growth and metastasis that can be targeted either alone or in combination with CENPE inhibitors for effective ovarian cancer therapy.
Collapse
Affiliation(s)
- Praveen Guruvaiah
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Suresh Chava
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Chiao-Wang Sun
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Nirupama Singh
- Department of Pathology, Division of Laboratory Medicine, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Courtney A Penn
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Romi Gupta
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
- O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
| |
Collapse
|
3
|
Takahashi K, Yoneyama Y, Koizumi N, Utoguchi N, Kanayama N, Higashi N. Expression of p57 KIP2 reduces growth and invasion, and induces syncytialization in a human placental choriocarcinoma cell line, BeWo. Placenta 2020; 104:168-178. [PMID: 33360007 DOI: 10.1016/j.placenta.2020.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Syncytiotrophoblasts are the major components of the human placenta involved in fetal maternal exchange and hormone secretion. The syncytiotrophoblasts arise from the fusion of villous cytotrophoblasts. The cell cycle suppressor p57KIP2 is known to be an essential molecule for proper trophoblast differentiation during placental formation. METHODS We generated p57KIP2-expressing BeWo transfectant cells. Proliferation assay and matrigel invasion assay were used to characterize p57KIP2-expressing BeWo transfectant cells. To reveal the role of p57KIP2 in syncytialization, we proceeded syncytium formation analysis and qRT-PCR for detection of the expression levels Syncytin-1, Syncytin-2 and their receptors. RESULTS The human choriocarcinoma cell line, BeWo has undetectable levels of p57KIP2 expression. Expression of p57KIP2 reduced cell proliferation rate and extracellular matrix invasion activity. p57KIP2 expressing cells displayed multinucleated cells associated with syncytiotrophoblast differentiation. In the syncytialization event, p57KIP2 was found to potentiate forskolin-induced upregulation of Syncytin-2 in a cAMP-independent manner. DISCUSSION These results indicate that the expression of p57KIP2 may act on the proliferation/invasion inhibitory factor and enhance the expression of Syncytin-2, which are associated with syncytialization in cytotrophoblasts.
Collapse
Affiliation(s)
- Katsuhiko Takahashi
- Department of Biochemistry, Hoshi University, 2-4-41, Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan; Department of Anatomy, Showa Univerisity School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
| | - Yui Yoneyama
- Department of Biochemistry, Hoshi University, 2-4-41, Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| | - Naoya Koizumi
- Department of Pharmaceutics and Biopharmaceutics, Showa Pharmaceutical University, 3-3165 Higashitamagawagakuen, Machida, Tokyo, 194-8543, Japan.
| | - Naoki Utoguchi
- Department of Pharmaceutics and Biopharmaceutics, Showa Pharmaceutical University, 3-3165 Higashitamagawagakuen, Machida, Tokyo, 194-8543, Japan.
| | - Naohiro Kanayama
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, 3600, Handa-cho, Hamamatsu, Shizuoka, 431-3192, Japan.
| | - Nobuaki Higashi
- Department of Biochemistry, Hoshi University, 2-4-41, Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| |
Collapse
|
4
|
Wu D, Jia H, Zhang Z, Li S. Capsaicin suppresses breast cancer cell viability by regulating the CDK8/PI3K/Akt/Wnt/β‑catenin signaling pathway. Mol Med Rep 2020; 22:4868-4876. [PMID: 33173974 PMCID: PMC7646934 DOI: 10.3892/mmr.2020.11585] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/04/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer displays high morbidity and mortality. Despite exerting certain effects, traditional treatments cannot eliminate every cancer cell and may kill normal cells due to inaccurate targeting. However, as a traditional Chinese medicine, capsaicin, an active compound extracted from chili peppers, has displayed potent anticarcinogenic activities in vitro and in vivo, but the underlying mechanism is not completely understood. The pharmacological effects of capsaicin on tumors was evaluated in MDA MB 231 breast cancer cells. The MTT, cell scratch assay, cell cycle analysis, cell transfection, reverse transcription‑quantitative PCR and western blotting were performed to investigate the potential antitumor mechanisms of capsaicin. In the present study, the potential anticancer mechanism underlying capsaicin in MDA‑MB‑231 cells in vitro was investigated. Capsaicin significantly inhibited MDA‑MB‑231 breast cancer cell viability and migration compared with the control group. The flow cytometry results indicated that capsaicin induced G2/M cell cycle arrest in MDA‑MB‑231 cells. In addition, capsaicin significantly reduced the expression of cyclin‑dependent kinase 8 (CDK8) in breast cancer cells compared with the control group. Moreover, LV‑CDK8 small interfering RNA‑transduced MDA‑MB‑231 cells displayed lower CDK8 mRNA and protein expression levels compared with LV‑negative control‑shRNA‑transduced cells. Furthermore, capsaicin significantly reduced the expression levels of phosphorylated (p)‑PI3K, p‑Akt, Wnt and β‑catenin in vitro compared with the control group. Collectively, the results of the present study suggested that capsaicin inhibited breast cancer cell viability, induced G2/M cell cycle arrest, reduced CDK8 expression levels, decreased the phosphorylation of PI3K and Akt and downregulated Wnt and β‑catenin expression levels in MDA‑MB‑231 cells.
Collapse
Affiliation(s)
- Di Wu
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hongyao Jia
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhiru Zhang
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Sijie Li
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
5
|
Urbaniak A, Jousheghany F, Piña-Oviedo S, Yuan Y, Majcher-Uchańska U, Klejborowska G, Moorjani A, Monzavi-Karbassi B, Huczyński A, Chambers TC. Carbamate derivatives of colchicine show potent activity towards primary acute lymphoblastic leukemia and primary breast cancer cells-in vitro and ex vivo study. J Biochem Mol Toxicol 2020; 34:e22487. [PMID: 32141170 DOI: 10.1002/jbt.22487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 12/18/2022]
Abstract
Colchicine (COL) shows strong anticancer activity but due to its toxicity towards normal cells its wider application is limited. To address this issue, a library of 17 novel COL derivatives, namely N-carbamates of N-deacetyl-4-(bromo/chloro/iodo)thiocolchicine, has been tested against two types of primary cancer cells. These included acute lymphoblastic leukemia (ALL) and human breast cancer (BC) derived from two different tumor subtypes, ER+ invasive ductal carcinoma grade III (IDCG3) and metastatic carcinoma (MC). Four novel COL derivatives showed higher anti-proliferative activity than COL (IC50 = 8.6 nM) towards primary ALL cells in cell viability assays (IC50 range of 1.1-6.4 nM), and several were more potent towards primary IDCG3 (IC50 range of 0.1 to 10.3 nM) or MC (IC50 range of 2.3-9.1 nM) compared to COL (IC50 of 11.1 and 11.7 nM, respectively). In addition, several derivatives were selectively active toward primary breast cancer cells compared to normal breast epithelial cells. The most promising derivatives were subsequently tested against the NCI panel of 60 human cancer cell lines and seven derivatives were more potent than COL against leukemia, non-small-cell lung, colon, CNS and prostate cancers. Finally, COL and two of the most active derivatives were shown to be effective in killing BC cells when tested ex vivo using fresh human breast tumor explants. The present findings indicate that the select COL derivatives constitute promising lead compounds targeting specific types of cancer.
Collapse
Affiliation(s)
- Alicja Urbaniak
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Fariba Jousheghany
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sergio Piña-Oviedo
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Youzhong Yuan
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Urszula Majcher-Uchańska
- Department of Bioorganic Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | - Greta Klejborowska
- Department of Bioorganic Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | - Anika Moorjani
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Adam Huczyński
- Department of Bioorganic Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | - Timothy C Chambers
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
6
|
Kim MS, Kim D, Kim JR. Stage-Dependent Gene Expression Profiling in Colorectal Cancer. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 16:1685-1692. [PMID: 29994071 DOI: 10.1109/tcbb.2018.2814043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Temporal gene expression profiles have been widely considered to uncover the mechanism of cancer development and progression. Gene expression patterns, however, have been analyzed for limited stages with small samples, without proper data pre-processing, in many cases. With those approaches, it is difficult to unveil the mechanism of cancer development over time. In this study, we analyzed gene expression profiles of two independent colorectal cancer sample datasets, each of which contained 556 and 566 samples, respectively. To find specific gene expression changes according to cancer stage, we applied the linear mixed-effect regression model (LMER) that controls other clinical variables. Based on this methodology, we found two types of gene expression patterns: continuously increasing and decreasing genes as cancer develops. We found that continuously increasing genes are related to the nervous and developmental system, whereas the others are related to the cell cycle and metabolic processes. We further analyzed connected sub-networks related to the two types of genes. From these results, we suggest that the gene expression profile analysis can be used to understand underlying the mechanisms of cancer development such as cancer growth and metastasis. Furthermore, our approach can provide a good guideline for advancing our understanding of cancer developmental processes.
Collapse
|
7
|
Unlü A, Leake RE. The Effect of EGFR-Related Tyrosine Kinase Activity Inhibition on the Growth and Invasion Mechanisms of Prostate Carcinoma Cell Lines. Int J Biol Markers 2018; 18:139-46. [PMID: 12841683 DOI: 10.1177/172460080301800207] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Increased urokinase plasminogen activator (uPA) levels and epidermal growth factor receptor (EGFR)-related tyrosine kinase activity are associated with poor prognosis in several cancers. We studied the effect of epidermal growth factor (EGF) and a specific inhibitor of EGFR, ZM252868, on the growth and invasiveness of the prostate cancer cell lines PC3 and DU145. PC3 cell growth was stimulated by exogenous EGF but DU145 cell growth was not. EGFR-specific tyrosine kinase inhibitor significantly inhibited the growth of both cell types. EGF increased uPA protein level and uPA activity in both cell types. EGF stimulation also resulted in increased uPAR transcript in both cell lines. uPA production and activity were suppressed by the inhibitor to well below the levels in control cells. Matrigel invasion of PC3 cells was increased by EGF. ZM252868 also reversed the EGF-stimulated matrigel invasion by PC3 cells. Our results indicate that EGF is a potent stimulative agent for both growth and invasion in prostate cancer cells, and that targeting the EGFR function inhibits not only tumor growth but also invasiveness.
Collapse
Affiliation(s)
- A Unlü
- Department of Biochemistry, Faculty of Medicine, University of Mersin, Mersin, Turkey.
| | | |
Collapse
|
8
|
Pastukhov O, Schwalm S, Zangemeister-Wittke U, Fabbro D, Bornancin F, Japtok L, Kleuser B, Pfeilschifter J, Huwiler A. The ceramide kinase inhibitor NVP-231 inhibits breast and lung cancer cell proliferation by inducing M phase arrest and subsequent cell death. Br J Pharmacol 2015; 171:5829-44. [PMID: 25134723 DOI: 10.1111/bph.12886] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 07/08/2014] [Accepted: 08/13/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Ceramide kinase (CerK) catalyzes the generation of ceramide-1-phosphate which may regulate various cellular functions, including inflammatory reactions and cell growth. Here, we studied the effect of a recently developed CerK inhibitor, NVP-231, on cancer cell proliferation and viability and investigated the role of cell cycle regulators implicated in these responses. EXPERIMENTAL APPROACH The breast and lung cancer cell lines MCF-7 and NCI-H358 were treated with increasing concentrations of NVP-231 and DNA synthesis, colony formation and cell death were determined. Flow cytometry was performed to analyse cell cycle distribution of cells and Western blot analysis was used to detect changes in cell cycle regulator expression and activation. KEY RESULTS In both cell lines, NVP-231 concentration-dependently reduced cell viability, DNA synthesis and colony formation. Moreover it induced apoptosis, as measured by increased DNA fragmentation and caspase-3 and caspase-9 cleavage. Cell cycle analysis revealed that NVP-231 decreased the number of cells in S phase and induced M phase arrest with an increased mitotic index, as determined by increased histone H3 phosphorylation. The effect on the cell cycle was even more pronounced when NVP-231 treatment was combined with staurosporine. Finally, overexpression of CerK protected, whereas down-regulation of CerK with siRNA sensitized, cells for staurosporine-induced apoptosis. CONCLUSIONS AND IMPLICATIONS Our data demonstrate for the first time a crucial role for CerK in the M phase control in cancer cells and suggest its targeted inhibition, using drugs such as NVP-231, in combination with conventional pro-apoptotic chemotherapy.
Collapse
|
9
|
Terpinen-4-ol Induces Apoptosis in Human Nonsmall Cell Lung Cancer In Vitro and In Vivo. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2012:818261. [PMID: 21760828 PMCID: PMC3133878 DOI: 10.1155/2012/818261] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 04/18/2011] [Indexed: 01/11/2023]
Abstract
Terpinen-4-ol, a monoterpene component of the essential oils of several aromatic plants, exhibits antitumor effects. In this study, the antitumor effects of terpinen-4-ol and the cellular and molecular mechanisms responsible for it were evaluated and studied, respectively on human nonsmall cell lung cancer (NSCLC) cells. Our results indicated that terpinen-4-ol elicited a dose-dependent cytotoxic effect, as determined by MTT assay. Increased sub-G1 population and annexin-V binding, activation of caspases 9 and 3, cleavage of poly(ADPribose) polymerase (PARP), and a decrease of mitochondrial membrane potential (MMP) indicated involvement of the mitochondrial apoptotic pathway in terpinen-4-ol-treated A549 and CL1-0 cells. Elevation of the Bax/Bcl-2 ratio and a decrease in IAP family proteins XIAP and survivin were also observed following terpinen-4-ol treatment. Notably, terpinen-4-ol was able to increase p53 levels in A549 and CL1-0 cells. Diminution of p53 by RNA interference induced necrosis instead of apoptosis in A549 cells following terpinen-4-ol treatment, indicating that terpinen-4-ol-elicited apoptosis is p53-dependent. Moreover, intratumoral administration of terpinen-4-ol significantly suppressed the growth of s.c. A549 xenografts by inducing apoptosis, as confirmed by TUNEL assay. Collectively, these data provide insight into the molecular mechanisms underlying terpinen-4-ol-induced apoptosis in NSCLC cells, rendering this compound a potential anticancer drug for NSCLC.
Collapse
|
10
|
Ouyang W, Ma Q, Li J, Zhang D, Ding J, Huang Y, Xing MM, Huang C. Benzo[a]pyrene diol-epoxide (B[a]PDE) upregulates COX-2 expression through MAPKs/AP-1 and IKKbeta/NF-kappaB in mouse epidermal Cl41 cells. Mol Carcinog 2007; 46:32-41. [PMID: 16921490 DOI: 10.1002/mc.20260] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Benzo[alpha]pyrene-7,8-diol-9,10-epoxide (B[a]PDE), the major metabolite of benzo[a]pyrene (B[a]P), shows an ultimate complete carcinogen in various animals and is a causative agent for human cancers. However, its effects on the activation of signal pathways and the expression of genes involved in its carcinogenic effect remain largely unknown. In this study, the effects of B[a]PDE on induction of cyclooxygenase (COX)-2 and the signal pathways leading to the induction were investigated. Treatment of mouse epidermal Cl41 cells with B[a]PDE caused an increase in the expression of COX-2 at both transcription and protein levels, while its parental compound B[a]P did not show significant inductive effect. The COX-2 induction by B[a]PDE was dependent on the activation of mitogen-activated protein kinases (MAPK)s/activation protein (AP)-1 pathway, because inhibition of AP-1 by either overexpression of TAM67 (dominant negative mutant of c-jun), or pretreatment of cells with PD98059 (MEK1/2-ERKs pathway inhibitor) or SB202190 (p38K inhibitor), markedly inhibited B[a]PDE-induced COX-2 expression. In addition, impairment of NF-kappaB pathway by either NEMO-BDBP (an NF-kappaB specific inhibitor) or IkappaB kinase (IKK)beta-KM (dominant negative mutant of IKKbeta) also caused marked reduction of COX-2 induction by B[a]PDE. In contrast, inhibition of nuclear factor of activated T cells (NFAT) with FK506, did not show any effect on B[a]PDE-induced COX-2 expression. Collectively, these data indicate that exposure of Cl41 cells to B[a]PDE can induce COX-2 expression by increasing its transcription, which requires the activation of MAPKs/AP-1 and IKKbeta/NF-kappaB pathways, but not NFAT pathway. In view of the importance of COX-2 in carcinogenesis, we anticipate that the induction of COX-2 by B[a]PDE may coordinate its mutagenic effects to facilitate the development of skin cancer.
Collapse
Affiliation(s)
- Weiming Ouyang
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, Tuxedo, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Field CJ, Schley PD. Evidence for potential mechanisms for the effect of conjugated linoleic acid on tumor metabolism and immune function: lessons from n-3 fatty acids. Am J Clin Nutr 2004; 79:1190S-1198S. [PMID: 15159256 DOI: 10.1093/ajcn/79.6.1190s] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Conjugated linoleic acid (CLA) and the long-chain polyunsaturated n-3 fatty acids have been shown in vivo and in vitro to reduce tumor growth. Tumor growth could occur by slowing or stopping cell replication (by interfering with transition through the cell cycle), increasing cell death (via necrosis and/or apoptosis), or both. The anticancer effects of fatty acids, shown in vivo, could also be mediated by effects on the host's immune system. Although it is widely recognized that n-3 fatty acids can alter immune and inflammatory responses, considerably less is known about CLA. For n-3 fatty acids, several candidate mechanisms have been proposed for their immune effects, including changes in 1) membrane structure and composition, 2) membrane-mediated functions and signals (eg, proteins, eicosanoids), 3) gene expression, and 4) immune development. Considerable work has been done that shows the potential importance of CLA as an anticancer treatment; however, many questions remain as to how this effect occurs. This review summarizes the CLA and cancer literature and then uses the evidence for the anticancer immune and tumor properties of the long-chain n-3 fatty acids docosahexaenoic and eicosapentaenoic acids to suggest future research directions for mechanistic studies on CLA and cancer.
Collapse
Affiliation(s)
- Catherine J Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada.
| | | |
Collapse
|
12
|
Klein BY, Rojansky N, Ben-Yehuda A, Abou-Atta I, Abedat S, Friedman G. Cell death in cultured human Saos2 osteoblasts exposed to low-density lipoprotein. J Cell Biochem 2003; 90:42-58. [PMID: 12938155 DOI: 10.1002/jcb.10603] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Osteoporosis (OP) and atherosclerotic-cardiovascular diseases (and possibly dementia) constitute emerging age-related co-morbidity states that might share risk factors. Blood-born lipids, like LDL involved in atherosclerosis and apolipoprotein-E4 (ApoE4) involved in dementia, may also be implicated in development of OP. We examined osteoblast cell lines as a culture model for OP by exposure to lipoproteins. ApoE expression in Saos2 and U2OS osteoblasts was confirmed by PCR. ApoE4 did decrease cell counts relatively to ApoE3, especially in Saos2 cells in which it was less selective for cells with higher alkaline phosphatase (ALP, an osteoblast marker) activity than ApoE3. This associates with ApoE4, being a risk factor for both dementia and OP. Saos2, but not U2OS, showed a decrease in cell counts after 48 h exposure to native LDL (NLDL). Both cell lines had decreased cell counts already after 24 h when exposed to oxidized-LDL (OxLDL) for which Saos2 also showed a higher sensitivity than U2OS. Exposure of Saos2 to both, OxLDL at low concentration (5 microg/ml) and NLDL revealed a shrunken size cell fraction of 17-23% on the fluorescence-activated cell sorter (FACS) analysis. Such shrunken cell fraction was not seen when Saos2 cells were exposed to 50 microg/ml of OxLDL or to OxLDL combined with 10 nM dexamethasone (DEX, a stimulator of osteoprogenitor differentiation). DEX treatment has lysed the cells earlier than 24 h post exposure and has selected more resistant cells that did not show apoptotic shrinkage in the FACS analysis done after 24 h. We interpret this as a failure to detect the apoptotic cell fraction due to their lysis prior to the FACS analysis. Western blots performed at different time points (10 min, 30 min, 4 h, 24 h, and 48 h) under OxLDL + DEX revealed a fall in the positive regulator of pp60Src-kinase phosphotyrosine (pY)418 relative to the DEX controls during the first 4 h. This is consistent with DEX osteogenic induction, known to be negatively regulated by c-Src, although the pY418/pY529 ratios (negative/positive kinase regulation) fell only at the 10 min time point. Contrarily the pY418/pY529 ratio increased, relative to untreated controls, under 5 microg/ml and 50 microg/ml of NLDL at the 4 h time point and under 50 microg/ml NLDL only at the 10 min time point, being consistent with the ability of a higher dose of LDL to antagonize osteoblast differentiation. This could be even more acceptable if the NLDL would have become minimally oxidized during its long purification procedure. Under NLDL, the Bcl-2/Bax ratio was pro-apoptotic at 10 min, 30 min, and 4 h only under 50 microg/ml, whereas under OxLDL + DEX it was pro-apoptotic only after 4 h suggesting that additional pathways contribute to cell death. These results indicate that lipid effects on human osteoblast lines in culture may be used as a model to identify molecular targets shared between OP and atherosclerosis for intervention in this co-morbidity.
Collapse
Affiliation(s)
- Benjamin Y Klein
- Laboratory of Experimental Surgery, Hadassah University Hospital, Jerusalem 91120, Israel.
| | | | | | | | | | | |
Collapse
|
13
|
Weinstein-Oppenheimer CR, Blalock WL, Steelman LS, Chang F, McCubrey JA. The Raf signal transduction cascade as a target for chemotherapeutic intervention in growth factor-responsive tumors. Pharmacol Ther 2000; 88:229-79. [PMID: 11337027 DOI: 10.1016/s0163-7258(00)00085-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This review focuses on the Ras-Raf-mitogen-activated protein kinase kinase (MEK)-extracellular signal-regulated kinase (ERK) signal transduction pathway and the consequences of its unregulation in the development of cancer. The roles of some of the cell membrane receptors involved in the activation of this pathway, the G-protein Ras, the Raf, MEK and ERK kinases, the phosphatases that regulate these kinases, as well as the downstream transcription factors that become activated, are discussed. The roles of the Ras-Raf-MEK-ERK pathway in the regulation of apoptosis and cell cycle progression are also analyzed. In addition, potential targets for pharmacological intervention in growth factor-responsive cells are evaluated.
Collapse
Affiliation(s)
- C R Weinstein-Oppenheimer
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Brody Building of Medical Sciences 5N98C, Greenville, NC 27858, USA
| | | | | | | | | |
Collapse
|
14
|
Lee SW, Reimer CL, Fang L, Iruela-Arispe ML, Aaronson SA. Overexpression of kinase-associated phosphatase (KAP) in breast and prostate cancer and inhibition of the transformed phenotype by antisense KAP expression. Mol Cell Biol 2000; 20:1723-32. [PMID: 10669749 PMCID: PMC85355 DOI: 10.1128/mcb.20.5.1723-1732.2000] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/1999] [Accepted: 11/19/1999] [Indexed: 11/20/2022] Open
Abstract
Accumulating evidence suggests that phosphatases play an important role in regulating a variety of signal transduction pathways that have a bearing on cancer. The kinase-associated phosphatase (KAP) is a human dual-specificity protein phosphatase that was identified as a Cdc2- or Cdk2-interacting protein by a yeast two-hybrid screening, yet the biological significance of these interactions remains elusive. We have identified the KAP gene as an overexpressed gene in breast and prostate cancer by using a phosphatase domain-specific differential-display PCR strategy. Here we report that breast and prostate malignancies are associated with high levels of KAP expression. The sublocalization of KAP is variable. In normal cells, KAP is primarily found in the perinuclear region, but in tumor cells, a significant portion of KAP is found in the cytoplasm. Blocking KAP expression by antisense KAP in a tetracycline-regulatable system results in a reduced population of S-phase cells and reduced Cdk2 kinase activity. Furthermore, lowering KAP expression led to inhibition of the transformed phenotype, with reduced anchorage-independent growth and tumorigenic potential in athymic nude mice. These findings suggest that therapeutic intervention might be aimed at repression of KAP gene overexpression in human breast and prostate cancer.
Collapse
Affiliation(s)
- S W Lee
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | |
Collapse
|
15
|
Nabeyrat E, Corroyer S, Epaud R, Besnard V, Cazals V, Clement A. Retinoic acid-induced proliferation of lung alveolar epithelial cells is linked to p21(CIP1) downregulation. Am J Physiol Lung Cell Mol Physiol 2000; 278:L42-50. [PMID: 10645889 DOI: 10.1152/ajplung.2000.278.1.l42] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Retinoids, including retinol and retinoic acid (RA) derivatives, have been shown to be involved in the processes of lung development as well as of lung repair after injury. Recently, we have provided evidence that RA could stimulate proliferation of lung alveolar type 2 epithelial cells (E. Nabeyrat, V. Besnard, S. Corroyer, V. Cazals, and A. Clement. Am. J. Physiol. Lung Cell. Mol. Physiol. 275: L71-L79, 1998). To gain some insight into the mechanisms involved in the mitogenic action of RA, we focused in the present study on the effects of RA on the expression of G(1) phase cyclins and their cell cycle-dependent kinases (Cdks). Experiments were performed with serum-deprived cells cultured in the absence and presence of RA. The results showed no effects of RA on the expression of either cyclins or Cdks. In contrast, RA treatment was found to prevent the decrease in cyclin E-Cdk2 activity observed when cells were growth arrested by serum deprivation. The observation that changes in cyclin E-Cdk2 activity were not associated with modifications in the amount of complexes formed led to the suggestion that the Cdk inhibitory protein (CKI) was involved. Study of the CKI p21(CIP1) revealed marked differences in its expression in the absence and presence of RA, with a dramatic downregulation observed in RA-treated cells. Interestingly, immunoprecipitation experiments provided evidence that the decreased levels of p21(CIP1) were associated with a reduced interaction of this CKI with cyclin E-Cdk2 complexes. These data together with previous results obtained in various situations of type 2 cell growth arrest emphasize the role of p21(CIP1) in the control of lung alveolar epithelial cell proliferation.
Collapse
Affiliation(s)
- E Nabeyrat
- Departement de Pneumologie Pediatrique, Institut National de la Santé et de la Recherche Médicale Unité 515, Hôpital Trousseau Assistance Publique-Hôpitaux de Paris, Université Paris VI, 75012 Paris, France
| | | | | | | | | | | |
Collapse
|
16
|
Kashanchi F, Agbottah ET, Pise-Masison CA, Mahieux R, Duvall J, Kumar A, Brady JN. Cell cycle-regulated transcription by the human immunodeficiency virus type 1 Tat transactivator. J Virol 2000; 74:652-60. [PMID: 10623726 PMCID: PMC111584 DOI: 10.1128/jvi.74.2.652-660.2000] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyclin-dependent kinases are required for the Tat-dependent transition from abortive to productive elongation. Further, the human immunodeficiency virus type 1 (HIV-1) Vpr protein prevents proliferation of infected cells by arresting them in the G(2) phase of the cell cycle. These findings suggest that the life cycle of the virus may be integrally related to the cell cycle. We now demonstrate by in vitro transcription analysis that Tat-dependent transcription takes place in a cell cycle-dependent manner. Remarkably, Tat activates gene expression in two distinct stages of the cell cycle. Tat-dependent long terminal repeat activation is observed in G(1). This activation is TAR dependent and requires a functional Sp1 binding site. A second phase of transactivation by Tat is observed in G(2) and is TAR independent. This later phase of transcription is enhanced by a natural cell cycle blocker of HIV-1, vpr, which arrests infected cells at the G(2)/M boundary. These studies link the HIV-1 Tat protein to cell cycle-specific biological functions.
Collapse
Affiliation(s)
- F Kashanchi
- Virus Tumor Biology Section, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Liu G, Schwartz JA, Brooks SC. p53 down-regulates ER-responsive genes by interfering with the binding of ER to ERE. Biochem Biophys Res Commun 1999; 264:359-64. [PMID: 10529369 DOI: 10.1006/bbrc.1999.1525] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Overexpression of the tumor suppressor p53 in HeLa cells leads to loss of the estradiol- and genistein-induced human estrogen receptor (ERalpha) transactivity. The coactivator p300, which binds to both ERalpha and p53, does not prevent this loss of hERalpha function. In this report we demonstrate that p53 physically binds to multiple domains of the hERalpha. This binding did not interfere with either the ERalpha dimerization or the interaction between hERalpha and its coactivator SRC-1. However, p53 did interfere with the hERalpha-ERE binding. These results may explain how p53 down-regulates the expression of some estrogen-responsive genes such as c-fos, c-jun, TPA, and bcl-2. This study supports the cross-talk between the p53 and the ERalpha signaling pathways.
Collapse
Affiliation(s)
- G Liu
- Graduate Program in Cancer Biology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | | | | |
Collapse
|
18
|
De Marzo AM, Coffey DS, Nelson WG. New concepts in tissue specificity for prostate cancer and benign prostatic hyperplasia. Urology 1999; 53:29-39; discussion 39-42. [PMID: 10094098 DOI: 10.1016/s0090-4295(98)00536-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Of the hundreds of species of mammals, all of which have prostate glands, only humans and dogs are known to suffer from benign prostatic hyperplasia (BPH) and prostate carcinoma. In humans, prostate carcinoma is common, yet carcinomas of other sex accessory tissues are rare. In addition, different anatomic regions within the prostate gland have very different rates of BPH and carcinoma. In this article, we explore ideas and potential mechanisms relating to these paradoxical findings that may help explain the species, organ, and zone specificity of BPH and prostate cancer. We present an evolutionary argument that attempts to relate a high-fat diet, with its potential for generating oxidative DNA damage, to the species selectivity of prostate cancer. In addition, we outline an argument based on our preliminary studies indicating that chronic inflammation and the associated increase in cell turnover in the setting of increased oxidative stress may help to account for the organ selectivity of genitourinary carcinomas.
Collapse
Affiliation(s)
- A M De Marzo
- Department of Pathology, The Johns Hopkins University Medical Institutions, Baltimore, Maryland, USA
| | | | | |
Collapse
|
19
|
De Marzo AM, Nelson WG, Meeker AK, Coffey DS. Stem cell features of benign and malignant prostate epithelial cells. J Urol 1998; 160:2381-92. [PMID: 9817389 DOI: 10.1097/00005392-199812020-00004] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE We present a new hypothesis suggesting that the different malignant potential of benign prostatic hyperplasia (BPH) and high grade prostatic intraepithelial neoplasia may be explained by distinct alterations in stem cell-like properties. MATERIALS AND METHODS We used our results and the recent literature to develop this hypothesis in the context of an updated prostate stem cell model. RESULTS While high grade prostatic intraepithelial neoplasia is a likely precursor lesion to many prostatic adenocarcinomas, BPH rarely if ever progresses directly to carcinoma. Prostate epithelium contains basal and secretory compartments. Secretory cells appear to differentiate from basal cells. Thus, prostatic stem cells most likely reside in the basal compartment. In BPH there is a slight increase in epithelial proliferation, yet most replicating epithelial cells within BPH maintain their normal restriction to the basal compartment. In high grade prostatic intraepithelial neoplasia there is a marked increase in cell proliferation. In contrast to BPH, the majority of proliferating cells in high grade prostatic intraepithelial neoplasia reside in the secretory compartment. The biological significance of this topographic infidelity of proliferation in high grade prostatic intraepithelial neoplasia remains unclear but may relate mechanistically to down regulation of the cyclin dependent kinase inhibitor, p27kip1. Normal basal cells express GSTP1, an enzyme that inactivates reactive electrophiles and organic hydroperoxides, and that may protect cells from deoxyribonucleic acid damaging agents. In contrast, normal secretory cells and high grade prostatic intraepithelial neoplasia cells do not express this enzyme. CONCLUSIONS We propose that topographic infidelity of proliferation produces a population of secretory cells replicating in the absence of key genome protective mechanisms, thus setting the stage for an accumulation of genomic alterations and instability in high grade prostatic intraepithelial neoplasia. This action occurs along with activation of telomerase, resulting in an immortal clone capable of developing into invasive carcinoma. The model predicts that genome protection remains intact in BPH, minimizing its malignant potential.
Collapse
Affiliation(s)
- A M De Marzo
- Department of Pathology, James Buchanan Brady Urological Institute, The Johns Hopkins University Medical Institutions, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
20
|
DE MARZO ANGELOM, NELSON WILLIAMG, MEEKER ALANK, COFFEY DONALDS. STEM CELL FEATURES OF BENIGN AND MALIGNANT PROSTATE EPITHELIAL CELLS. J Urol 1998. [DOI: 10.1016/s0022-5347(01)62196-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Abstract
This article reviews the biology of chronic myelogenous leukemia (CML) and its effect on the process of hematopoiesis. The relevance of the BCR-ABL fusion protein as well as murine models are also discussed. CML has been studied more extensively than any other malignancy, yet the correlation between the clinical symptoms of chronic phase CML and the BCR-ABL oncoprotein is poorly understood. Insights from recent efforts both to develop a good in vivo animal model and to characterize the effect of the BCR-ABL oncoprotein on relevant signal molecules may lead to a better understanding of the pathophysiology of chronic phase CML and, thereby, to the development of targeted therapeutic approaches.
Collapse
Affiliation(s)
- C M Verfaillie
- Department of Medicine, University of Minnesota, Minneapolis, USA
| |
Collapse
|
22
|
Ullrich N, Sontheimer H. Cell cycle-dependent expression of a glioma-specific chloride current: proposed link to cytoskeletal changes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:C1290-7. [PMID: 9357773 DOI: 10.1152/ajpcell.1997.273.4.c1290] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We recently demonstrated expression of a novel, glioma-specific Cl- current in glial-derived tumor cells (gliomas), including stable cell lines such as STTG1, derived from a human anaplastic astrocytoma. We used STTG1 cells to study whether glioma Cl- channel (GCC) activity is regulated during cell cycle progression. Cells were arrested in defined stages of cell cycle (G0, G1, G1/S, S, and M phases) using serum starvation, mevastatin, hydroxyurea, demecolcine, and cytosine beta-D-arabinofuranoside. Cell cycle arrest was confirmed by measuring [3H]thymidine incorporation and by DNA flow cytometry. Using whole cell patch-clamp recordings, we demonstrate differential changes in GCC activity after cell proliferation and cell cycle progression was selectively altered; specifically, channel expression was low in serum-starved, G0-arrested cells, increased significantly in early G1, decreased during S phase, and increased after arrest in M phase. Although the link between the cell cycle and GCC activity is not yet clear, we speculate that GCCs are linked to the cytoskeleton and that cytoskeletal rearrangements associated with cell division lead to the observed changes in channel activity. Consistent with this hypothesis, we demonstrate the activation of GCC by disruption of F-actin using cytochalasin D or osmotic cell swelling.
Collapse
Affiliation(s)
- N Ullrich
- Department of Neurobiology, University of Alabama at Birmingham, 35294, USA
| | | |
Collapse
|