1
|
Vickers AEM. Characterization of hepatic mitochondrial injury induced by fatty acid oxidation inhibitors. Toxicol Pathol 2009; 37:78-88. [PMID: 19234235 DOI: 10.1177/0192623308329285] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Impairment of liver mitochondrial beta-oxidation is an important mechanism of drug-induced liver injury. Four inhibitors of fatty acid oxidation were compared in short-term rat in vivo studies in which the rats were administered one or four doses. The hepatocellular vacuolation represented ultra-structural mitochondrial changes. Urine nuclear magnetic resonance (NMR) spectroscopy revealed that both FOX988 and SDZ51-641 induced a persistent dicarboxylic aciduria, suggesting an inhibition of mitochondrial beta-oxidation and incomplete fatty acid metabolism. Etomoxir caused minimal mitochondrial ultrastructural changes and induced only transient dicarboxylic aciduria. CPI975 served as a negative control, in that there were no significant perturbations to the mitochondrial ultrastructural morphology or in the urine NMR composition; however, compound exposure was confirmed by the up-regulation of liver gene expression compared to vehicle control. The liver gene expression changes that were altered by the compounds were indicative of mitochondria, general and oxidative stress, and peroxisomal enzymes involved in beta-oxidation, suggestive of a compensatory response to the inhibition in the mitochondria. In addition, both FOX988 and SDZ51-641 up-regulated ribosomal genes associated with apoptosis, as well as p53 pathways linked with apoptosis. In summary, metabonomics and liver gene expression provided mechanistic information on mitochondrial dysfunction and impaired fatty acid oxidation to further define the clinical pathology and histopathology findings of hepatotoxicity.
Collapse
|
2
|
Dhalla AK, Chisholm JW, Reaven GM, Belardinelli L. A1 adenosine receptor: role in diabetes and obesity. Handb Exp Pharmacol 2009:271-295. [PMID: 19639285 DOI: 10.1007/978-3-540-89615-9_9] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Adenosine mediates its diverse effects via four subtypes (A(1), A(2A), A(2B) and A(3)) of G-protein-coupled receptors. The A(1) adenosine receptor (A(1)AR) subtype is the most extensively studied and is well characterized in various organ systems. The A(1)ARs are highly expressed in adipose tissue, and endogenous adenosine has been shown to tonically activate adipose tissue A(1)ARs. Activation of the A(1)ARs in adipocytes reduces adenylate cyclase and cAMP content and causes inhibition of lipolysis. The role of A(1)ARs in lipolysis has been well characterized by using several selective A(1)AR agonists as well as A(1)AR knockout mice. However, the contribution of A(1)ARs to the regulation of lipolysis in pathological conditions like insulin resistance, diabetes and dyslipidemia, where free fatty acids (FFA) play an important role, has not been well characterized. Pharmacological agents that reduce the release of FFA from adipose tissue and thus the availability of circulating FFA have the potential to be useful for insulin resistance and hyperlipidemia. Toward this goal, several selective and efficacious agonists of the A(1)ARs are now available, and some have entered early-phase clinical trials; however, none have received regulatory approval yet. Here we review the existing knowledge on the role of A(1)ARs in insulin resistance, diabetes and obesity, and the progress made in the development of A(1)AR agonists as antilipolytic agents, including the challenges associated with this approach.
Collapse
Affiliation(s)
- Arvinder K Dhalla
- Department of Pharmacological Sciences, CV Therapeutics Inc., Palo Alto, CA 94304, USA.
| | | | | | | |
Collapse
|
3
|
Vickers AEM, Bentley P, Fisher RL. Consequences of mitochondrial injury induced by pharmaceutical fatty acid oxidation inhibitors is characterized in human and rat liver slices. Toxicol In Vitro 2006; 20:1173-82. [PMID: 16545538 DOI: 10.1016/j.tiv.2006.01.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2005] [Revised: 01/03/2006] [Accepted: 01/24/2006] [Indexed: 11/29/2022]
Abstract
Inhibition of liver mitochondrial beta-oxidation by pharmaceuticals may lead to safety concerns including mitochondrial dysfunction, lipid accumulation, inflammation and necrosis. In this study, the consequences of mitochondrial beta-oxidation inhibition by pharmaceuticals is investigated in human and rat liver slices. The fatty acid oxidation inhibitors Etomoxir and CPI975, inhibit the rate limiting mitochondrial beta-oxidation enzyme carnitine palmitoyltransferase I, while FOX988 and SDZ51-641, sequester mitochondrial coenzyme A to inhibit carnitine palmitoyltransferase II. Mitochondrial dysfunction was evident by a significant decrease of liver slice ATP levels and mitochondrial injury was verified by ultrastructural changes in morphology, manifested as enlarged mitochondria, C- or O-shaped mitochondria, and granular or crystalline inclusions. Gene expression changes were evident prior to changes in mitochondrial morphology. Time- and concentration dependent changes in mitochondrial genes linked with respiration and mitochondrial fatty acid beta-oxidation were associated with an up-regulation of peroxisome fatty acid oxidation genes, likely as a compensatory mechanism for the inhibition of the mitochondrial pathways. Gene expression changes preceding the decline of liver slice ATP and GSH levels included an up-regulation of stress response and oxidative stress gene expression, as well as genes linked with transcription, transporters, proliferation, cell matrix and signaling. In association with the decline of liver slice ATP and GSH was increased apoptosis and inflammation. Caspase activity, a functional indicator of apoptosis, was significantly increased as well as an up-regulation of genes linked with apoptosis. The increased gene and protein expression of the pro-inflammatory cytokine IL-8, produced by endothelial cells, is likely in response to the manifestation of oxidative stress and GSH depletion; further amplifying the oxidative stress response induced by the fatty acid oxidation inhibitors and triggering an inflammatory response. In summary, human and rat liver slices exhibited similar effects to the inhibitors of mitochondrial beta-oxidation, and the mitochondrial injury is associated with apoptosis and inflammation in the liver slices.
Collapse
Affiliation(s)
- A E M Vickers
- Novartis Pharmaceuticals Corporation, One Health Plaza, E. Hanover, NJ 07936, United States.
| | | | | |
Collapse
|
4
|
Abstract
Many cell types in the kidney express adenosine receptors, and adenosine has multiple effects on renal function. Although adenosine is produced within the kidney by several biochemical reactions, recent studies support a novel mechanism for renal adenosine production, the extracellular cAMP-adenosine pathway. This extracellular cAMP-adenosine pathway is initiated by efflux of cAMP from cells following activation of adenylyl cyclase. Extracellular cAMP is then converted to adenosine by the serial actions of ecto-phosphodiesterase and ecto-5'-nucleotidase. When extracellular cAMP is converted to adenosine near the biophase of cAMP production and efflux, this local extracellular cAMP-adenosine pathway permits tight coupling of the site of adenosine production to the site of adenosine receptors. cAMP in renal compartments may also be formed by tissues/organs remote from the kidney. For example, stimulation of hepatic adenylyl cyclase by the pancreatic hormone glucagon increases circulating cAMP, which is filtered at the glomerulus and concentrated in the tubular lumen as water is extracted from the ultrafiltrate. Conversion of hepatic-derived cAMP to adenosine in the kidney completes a pancreatohepatorenal cAMP-adenosine pathway that may serve as an endocrine link between the pancreas, liver, and kidney.
Collapse
Affiliation(s)
- Edwin K Jackson
- Center for Clinical Pharmacology, Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA. edj+@pitt.edu
| | | |
Collapse
|
5
|
Stefan N, Kovacs P, Stumvoll M, Hanson RL, Lehn-Stefan A, Permana PA, Baier LJ, Tataranni PA, Silver K, Bogardus C. Metabolic effects of the Gly1057Asp polymorphism in IRS-2 and interactions with obesity. Diabetes 2003; 52:1544-50. [PMID: 12765968 DOI: 10.2337/diabetes.52.6.1544] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Insulin receptor substrate (IRS)-2 plays an important role in insulin signaling and its disruption results in diabetes in mice. In humans, the IRS-2 Gly1057Asp substitution was associated with lower risk of type 2 diabetes in lean individuals, but with a higher risk in obese individuals. To clarify the role of IRS-2 on the development of type 2 diabetes and obesity in Pima Indians, and particularly to investigate whether the effects of the Gly1057Asp polymorphism on metabolism are mediated by obesity, molecular scanning of the gene for mutations was performed and interaction of the polymorphism with obesity was tested. We identified the previously described Gly1057Asp mutation as well as a rare Asp819His mutation and four silent polymorphisms. The effect of the Gly1057Asp mutation on type 2 diabetes and obesity was tested in a large cohort of Pima Indians (n = 998). A subgroup of nondiabetic full-heritage Pima Indians (n = 233) had measurements of body composition, glucose tolerance, insulin action (M), endogenous glucose production (EGP; hyperinsulinemic clamp), acute insulin response (AIR, 25-g intravenous glucose tolerance test, n = 118 normal glucose-tolerant subjects), and percutaneous fat biopsy specimens from the periumbilical region (n = 160). A total of 132 nondiabetic subjects were included in longitudinal analyses. The frequency of the Asp1057 allele was 0.6. In cross-sectional analyses, subjects homozygous for the Asp1057 allele (Asp/Asp) had a higher prevalence of type 2 diabetes than heterozygote individuals and subjects homozygous for the Gly1057 allele (X/Gly, P = 0.04). There was no effect on BMI (P = 0.78) or gene-BMI interaction on the prevalence of type 2 diabetes (P = 0.57). In the nondiabetic subgroup, subjects with Asp/Asp had higher percent body fat (P = 0.01), BMI (P = 0.02), and waist circumference (P = 0.004), but there was no difference in metabolic characteristics (all P > 0.2). However, the relationship between percent body fat and fasting glucose, basal EGP, EGP during the clamp, AIR, and subcutaneous abdominal adipocyte size was significantly different in the Asp/Asp group (P for interaction = 0.02, 0.06, 0.0007, 0.08, and 0.006, respectively) compared with the X/Gly group, suggesting a more detrimental effect of Asp homozygosity on these traits with increasing percent body fat. In longitudinal analyses, among subjects in the upper tertile of change in percent body fat, those with Asp/Asp had a larger increase in fasting and postprandial glycemia and basal EGP and a larger decrease in M and AIR than subjects with X/Gly, independent of change in obesity (all P < 0.05). In conclusion, our findings suggest that the association of homozygosity for the Asp1057 allele in IRS-2 with type 2 diabetes in Pima Indians may be mediated by interaction of the polymorphism with obesity on several diabetes-related traits.
Collapse
Affiliation(s)
- Norbert Stefan
- Clinical Diabetes and Nutrition Section, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 4212 N. 16th Street, Room 5-41, Phoenix, AZ 85016, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Mine T, Miura K, Kitahara Y, Okano A, Kawamori R. Nateglinide suppresses postprandial hypertriglyceridemia in Zucker fatty rats and Goto-Kakizaki rats: comparison with voglibose and glibenclamide. Biol Pharm Bull 2002; 25:1412-6. [PMID: 12419950 DOI: 10.1248/bpb.25.1412] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Postprandial hypertriglyceridemia, as well as postprandial hyperglycemia, are important factors contributing to the development of cardiovascular disease in patients with type 2 diabetes. Nateglinide is a recently approved antidiabetic that suppresses postprandial hyperglycemia by stimulating the early phase of insulin secretion. In the present study, we investigated the effects of nateglinide on postprandial hypertriglyceridemia in obese Zucker fatty (ZF) rats and non-obese diabetic Goto-Kakizaki (GK) rats. Administration of an oral fat load caused marked hypertriglyceridemia with a peak at 2 h in ZF and GK rats. Nateglinide (50 mg/kg) significantly suppressed the increase of plasma triglycerides after fat loading in both types of rat (delta AUC [0-4 h]: 15+/-69 mg.h/dl for nateglinide vs. 838+/-100 mg.h/dl for vehicle in ZF rats; p<0.01, 81+/-22 mg x h/dl for nateglinide vs. 164+/-17 mg.h/dl for vehicle in GK rats; p<0.01). In contrast, other antidiabetic agents (voglibose and glibenclamide) did not show a significant effect on the increase of triglycerides after fat loading. The triglyceride components suppressed by nateglinide were mainly at the origin and in the pre beta subfraction on agarose gel electrophoresis, suggesting that chylomicrons and very low density lipoproteins were decreased. Plasma insulin levels were significantly increased at 30 min in nateglinide-treated rats, but not in voglibose- or glibenclamide-treated rats. These results suggest that nateglinide not only suppresses postprandial hyperglycemia, but also suppresses postprandial hypertriglyceridemia, by promoting rapid and pulsatile insulin secretion in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Tomoyuki Mine
- Pharmaceutical Research Laboratories, Ajinomoto Co, Inc, Kawasaki, Japan
| | | | | | | | | |
Collapse
|
7
|
Seböková E, Kürthy M, Mogyorosi T, Nagy K, Demcáková E, Ukropec J, Koranyi L, Klimes I. Comparison of the extrapancreatic action of BRX-220 and pioglitazone in the high-fat diet-induced insulin resistance. Ann N Y Acad Sci 2002; 967:424-30. [PMID: 12079870 DOI: 10.1111/j.1749-6632.2002.tb04298.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
UNLABELLED A new Biorex molecule, BRX-220, has been shown to be effective in animal models of diabetic neuro- and retinopathy. Recent in vitro studies showed that it might also have an insulin-sensitizing action. Therefore, the effect of BRX-220 on insulin sensitivity was compared with the action of pioglitazone (PGZ) in high fat (HF) diet-induced insulin resistance (IR) of rats. METHODS Male Wistar rats were fed for 3 weeks a standard chow (PD) or the HF (70-cal%) diet. The HF-fed rats were also given daily BRX-220 (20 mg/kg BW) or PGZ (6 mg/kg BW) by gavage. In vivo insulin action was assessed by the euglycemic hyperinsulinemic clamp. Glucose, insulin, FFA, triglyceride (TG), and glycerol levels in blood were also measured, as well as tissue TG content. RESULTS Increased levels of fed TG in circulation after HF diet (PD: 2.0+/-0.2 vs. HF: 5.0+/-0.8 mmol/L) were partially corrected by BRX-220 (HF + BRX: 3.8+/-0.3) and normalized by PGZ (HF + PGZ: 2.6+/-0.3). Both molecules prevented the increase in fed serum FFA levels after HF diet (PD: 0.5+/-0.06; HF: 1.8+/-0.2 mmol/L), with a more pronounced effect of PGZ (HF + BRX: 1.2+/-0.1; HF + PGZ: 0.7+/-0.06). Tissue TG levels increased significantly in response to HF feeding in both liver (HF: 16+/-3.0; PD: 6.4+/-1.1 micromol/g) and skeletal muscle (HF: 7.7+/-1.2; PD: 2.4+/-0.4). This increase was completely normalized by both agents in the liver (HF + BRX: 8.8+/-0.8; HF + PGZ: 8.8+/-1.0), and only partially in the skeletal muscles. HF diet-induced in vivo IR (PD: 25.4+/-0.5; HF: 15.7+/-0.5 mg/kg/min) was significantly reduced by BRX-220 (HF + BRX: 18.7+/-0.3) and PGZ (HF + PGZ: 22.8+/-0.4) treatment. CONCLUSIONS (1) Subchronic administration of BRX-220 leads to an improvement of in vivo insulin action. (2) This insulin-sensitizing effect is, however, not as pronounced as that of PGZ. (3) It is accompanied by a decrease of circulating TG and FFA levels in the postprandial state and (4) by lower TG content in liver and skeletal muscle.
Collapse
Affiliation(s)
- Elena Seböková
- Diabetes and Nutrition Research Laboratory, Institute of Experimental Endocrinology, Slovak Academy of Sciences, SK-83306 Bratislava, Slovak Republic
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Londos C, Brasaemle DL, Schultz CJ, Adler-Wailes DC, Levin DM, Kimmel AR, Rondinone CM. On the control of lipolysis in adipocytes. Ann N Y Acad Sci 1999; 892:155-68. [PMID: 10842661 DOI: 10.1111/j.1749-6632.1999.tb07794.x] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The lipolytic reaction in adipocytes is one of the most important reactions in the management of bodily energy reserves, and dysregulation of this reaction may contribute to the symptoms of Type 2 diabetes mellitus. Yet, progress on resolving the molecular details of this reaction has been relatively slow. However, recent developments at the molecular level begin to paint a clearer picture of lipolysis and point to a number of unanswered questions. While HSL has long been known to be the rate-limiting enzyme of lipolysis, the mechanism by which HSL attacks the droplet lipids is not yet firmly established. Certainly, the immunocytochemical evidence showing the movement of HSL to the lipid droplet upon stimulation leaves little doubt that this translocation is a key aspect of the lipolytic reaction, but whether or not HSL phosphorylation contributes to the translocation, and at which site(s), is as yet unresolved. It will be important to establish whether there is an activation step in addition to the translocation reaction. The participation of perilipin A is indicated by the findings that this protein can protect neutral lipids within droplets from hydrolysis, but active participation in the lipolytic reaction is yet to be proved. Again, it will be important to determine whether mutations of serine residues of PKA phosphorylation sites of perilipins prevent lipolysis, and whether such modifications abolish the physical changes in the droplet surfaces that accompany lipolysis.
Collapse
Affiliation(s)
- C Londos
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-2715, USA.
| | | | | | | | | | | | | |
Collapse
|