1
|
Barnett LMA, Cummings BS. Nephrotoxicity and Renal Pathophysiology: A Contemporary Perspective. Toxicol Sci 2019; 164:379-390. [PMID: 29939355 DOI: 10.1093/toxsci/kfy159] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The kidney consists of numerous cell types organized into the nephron, which is the basic functional unit of the kidney. Any stimuli that induce loss of these cells can induce kidney damage and renal failure. The cause of renal failure can be intrinsic or extrinsic. Extrinsic causes include cardiovascular disease, obesity, diabetes, sepsis, and lung and liver failure. Intrinsic causes include glomerular nephritis, polycystic kidney disease, renal fibrosis, tubular cell death, and stones. The kidney plays a prominent role in mediating the toxicity of numerous drugs, environmental pollutants and natural substances. Drugs known to be nephrotoxic include several cancer therapeutics, drugs of abuse, antibiotics, and radiocontrast agents. Environmental pollutants known to target the kidney include cadmium, mercury, arsenic, lead, trichloroethylene, bromate, brominated-flame retardants, diglycolic acid, and ethylene glycol. Natural nephrotoxicants include aristolochic acids and mycotoxins such as ochratoxin, fumonisin B1, and citrinin. There are several common characteristics between mechanisms of renal failure induced by nephrotoxicants and extrinsic causes. This common ground exists primarily due to similarities in the molecular mechanisms mediating renal cell death. This review summarizes the current state of the field of nephrotoxicity. It emphasizes integrating our understanding of nephrotoxicity with pathological-induced renal failure. Such approaches are needed to address major questions in the field, which include the diagnosis, prognosis and treatment of both acute and chronic renal failure, and the progression of acute kidney injury to chronic kidney disease.
Collapse
Affiliation(s)
| | - Brian S Cummings
- Interdisciplinary Toxicology Program.,Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
2
|
Sanz-Nogués C, Horan J, Thompson K, Howard L, Ryan G, Kassem M, O'Brien T. Inefficiency in macromolecular transport of SCS-based microcapsules affects viability of primary human mesenchymal stem cells but not of immortalized cells. J Biomed Mater Res A 2015; 103:3676-88. [DOI: 10.1002/jbm.a.35493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/10/2015] [Accepted: 04/28/2015] [Indexed: 01/27/2023]
Affiliation(s)
- Clara Sanz-Nogués
- Regenerative Medicine Institute (REMEDI), Bioscience Research Building, National University of Ireland Galway; Newcastle Road Galway Ireland
| | - Jason Horan
- Ziel Biopharma Ltd., Unit 4 Castletroy Park Business Centre; Castletroy Ireland
| | - Kerry Thompson
- Centre for Microscopy and Imaging; Anatomy; National University of Ireland Galway; Newcastle Road Galway Ireland
| | - Linda Howard
- Regenerative Medicine Institute (REMEDI), Bioscience Research Building, National University of Ireland Galway; Newcastle Road Galway Ireland
| | - Gerard Ryan
- Ziel Biopharma Ltd., Unit 4 Castletroy Park Business Centre; Castletroy Ireland
| | - Moustapha Kassem
- Department of Endocrinology and Metabolism; University Hospital of Odense and University of Southern Denmark; Winsløwparken 25 DK-5000 Odense C Denmark
- Stem Cell Unit, Department of Anatomy, King Saud University (KSA); Riyadh 12372 Saudi Arabia
| | - Timothy O'Brien
- Regenerative Medicine Institute (REMEDI), Bioscience Research Building, National University of Ireland Galway; Newcastle Road Galway Ireland
| |
Collapse
|
3
|
Encapsulated cells expressing a chemotherapeutic activating enzyme allow the targeting of subtoxic chemotherapy and are safe and efficacious: data from two clinical trials in pancreatic cancer. Pharmaceutics 2014; 6:447-66. [PMID: 25116885 PMCID: PMC4190529 DOI: 10.3390/pharmaceutics6030447] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/02/2014] [Accepted: 07/30/2014] [Indexed: 02/07/2023] Open
Abstract
Despite progress in the treatment of pancreatic cancer, there is still a need for improved therapies. In this manuscript, we report clinical experience with a new therapy for the treatment of pancreatic cancer involving the implantation of encapsulated cells over-expressing a cytochrome P450 enzyme followed by subsequent low-dose ifosfamide administrations as a means to target activated ifosfamide to the tumor. The safety and efficacy of the angiographic instillation of encapsulated allogeneic cells overexpressing cytochrome P450 in combination with low-dose systemic ifosfamide administration has now been evaluated in 27 patients in total. These patients were successfully treated in four centers by three different interventional radiologists, arguing strongly that the treatment can be successfully used in different centers. The safety of the intra-arterial delivery of the capsules and the lack of evidence that the patients developed an inflammatory or immune response to the encapsulated cells or encapsulation material was shown in all 27 patients. The ifosfamide dose of 1 g/m2/day used in the first trial was well tolerated by all patients. In contrast, the ifosfamide dose of 2 g/m2/day used in the second trial was poorly tolerated in most patients. Since the median survival in the first trial was 40 weeks and only 33 weeks in the second trial, this strongly suggests that there is no survival benefit to increasing the dose of ifosfamide, and indeed, a lower dose is beneficial for quality of life and the lack of side effects. This is supported by the one-year survival rate in the first trial being 38%, whilst that in the second trial was only 23%. However, taking the data from both trials together, a total of nine of the 27 patients were alive after one year, and two of these nine patients were alive for two years or more.
Collapse
|
4
|
Wang C, Varshney RR, Wang DA. Therapeutic cell delivery and fate control in hydrogels and hydrogel hybrids. Adv Drug Deliv Rev 2010; 62:699-710. [PMID: 20138940 DOI: 10.1016/j.addr.2010.02.001] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 01/29/2010] [Accepted: 02/01/2010] [Indexed: 11/18/2022]
Abstract
Hydrogels are synthetic or natural polymer networks that closely mimic native extracellular matrices. As hydrogel-based vehicles are being increasingly employed in therapeutic cell delivery, two inherent traits of most common hydrogels, namely low cell affinity and high cell constraint, have significantly drawn the attention of biomedical community. These two properties lead to the unfavourable settlement of anchorage-dependent cells (ADCs) and unsatisfactory cell delivery or tissue formation in hydrogel matrices. Tissue engineers have correspondingly made many efforts involving chemical modification or physical hybridisation to facilitate ADC settlement and promote tissue formation. On the other hand, these two 'bio-inert' characteristics have particularly favoured oncological cell therapists, who expect to utilize hydrogels to provide sufficiently high confinement of the delivered cells for anti-cancer purposes. In general, control of cell fate and behaviours in these three-dimensional (3D) microenvironments has become the central aim for hydrogel-mediated cell delivery, towards which various models based on hydrogels and their hybrids have emerged. In this paper, we will first review the development of strategies aiming to overcome the aforementioned two 'shortcomings' by (i) establishing ADC survival and (ii) creating space for tissue formation respectively, and then introduce how people take advantage of these 'disadvantages' of hydrogel encapsulation for (iii) an enhanced confinement of cell motion.
Collapse
Affiliation(s)
- Chunming Wang
- Nanyang Technological University, Singapore, Republic of Singapore
| | | | | |
Collapse
|
5
|
Shen F, Mazumder MAJ, Burke NAD, Stöver HDH, Potter MA. Mechanically enhanced microcapsules for cellular gene therapy. J Biomed Mater Res B Appl Biomater 2009; 90:350-61. [PMID: 19090494 DOI: 10.1002/jbm.b.31292] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Microcapsules bearing a covalently cross-linked coating have been developed for cellular gene therapy as an improvement on alginate-poly(L-lysine)-alginate (APA) microcapsules that only have ionic cross-linking. In this study, two mutually reactive polyelectrolytes, a polycation (designated C70), poly([2-(methacryloyloxy)ethyl]trimethylammonium chloride-co-2-aminoethyl methacrylate hydrochloride) and a polyanion (designated A70), poly(sodium methacrylate-co-2-(methacryloyloxy)ethyl acetoacetate), were used during the microcapsule fabrication. Ca-alginate beads were sequentially laminated with C70, A70, poly(L-lysine) (PLL), and alginate. The A70 reacts with both C70 and PLL to form a approximately 30 microm thick covalently cross-linked interpenetrating polymer network on the surface of the capsules. Confocal images confirmed the location of the C70/A70/PLL network and the stability of the network after 4 weeks implantation in mice. The mechanical and chemical resistance of the capsules was tested with a "stress test" where microcapsules were gently shaken in 0.003% EDTA for 15 min. APA capsules disappeared during this treatment, whereas the modified capsules, even those that had been retrieved from mice after 4-weeks implantation, remained intact. Analysis of solutions passing through model flat membranes showed that the molecular weight cut-off of alginate-C70-A70-PLL-alginate is similar to that of alginate-PLL-alginate. Recombinant cells encapsulated in APA and modified capsules were able to secrete luciferase into culture media. The modified capsules were found to capture some components of regular culture media used during preparation, causing an immune reaction in implanted mice, but use of UltraCulture serum-free medium was found to prevent this immune reaction. In vivo biocompatibility of the new capsules was similar to the APA capsules, with no sign of clinical toxicity on complete blood counts and liver function tests. The increased stability of the covalently modified microcapsules coupled with the acceptable biocompatibility and permeability demonstrated their potential for use as immunoisolation devices in gene therapy.
Collapse
Affiliation(s)
- F Shen
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
6
|
Leung A, Trau M, Nielsen LK. Assembly of multilayer PSS/PAH membrane on coherent alginate/PLO microcapsule for long-term graft transplantation. J Biomed Mater Res A 2009; 88:226-37. [DOI: 10.1002/jbm.a.31891] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
7
|
|
8
|
Portsmouth D, Hlavaty J, Renner M. Suicide genes for cancer therapy. Mol Aspects Med 2007; 28:4-41. [PMID: 17306358 DOI: 10.1016/j.mam.2006.12.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 12/18/2006] [Indexed: 12/31/2022]
Abstract
The principle of using suicide genes for gene directed enzyme prodrug therapy (GDEPT) of cancer has gained increasing significance during the 20 years since its inception. The astute application of suitable GDEPT systems should permit tumour ablation in the absence of off-target toxicity commonly associated with classical chemotherapy, a hypothesis which is supported by encouraging results in a multitude of pre-clinical animal models. This review provides a clear explanation of the rationale behind the GDEPT principle, outlining the advantages and limitations of different GDEPT strategies with respect to the roles of the bystander effect, the immune system and the selectivity of the activated prodrug in contributing to their therapeutic efficacy. An in-depth analysis of the most widely used suicide gene/prodrug combinations is presented, including details of the latest advances in enzyme and prodrug optimisation and results from the most recent clinical trials.
Collapse
Affiliation(s)
- Daniel Portsmouth
- Research Institute for Virology and Biomedicine, University of Veterinary Medicine, Vienna, Austria
| | | | | |
Collapse
|
9
|
POTTER M, LI A, CIRONE P, SHEN F, CHANG P. Artificial cells as a novel approach to gene therapy. ARTIFICIAL CELLS, CELL ENGINEERING AND THERAPY 2007:236-291. [DOI: 10.1533/9781845693077.3.236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
10
|
Huch M, Abate-Daga D, Roig JM, González JR, Fabregat J, Sosnowski B, Mazo A, Fillat C. Targeting the CYP2B1/Cyclophosphamide Suicide System to Fibroblast Growth Factor Receptors Results in a Potent Antitumoral Response in Pancreatic Cancer Models. Hum Gene Ther 2006; 17:1187-200. [PMID: 17069538 DOI: 10.1089/hum.2006.17.1187] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The CYP2B1/cyclophosphamide (CPA) suicide gene therapy approach has been shown to be highly promising in clinical trials for the treatment of pancreatic cancer. However, delivering the therapeutic gene to a sufficient number of tumor cells able to trigger a complete response remains a challenge. Target-specific delivery of adenovirus to fibroblast growth factor receptors (FGFRs) has been obtained in a variety of tumor models and has been shown to highly increase transduction efficiency. In the present paper we have tested the therapeutic outcome of retargeting the adenoviral vector, Ad-CYP2B1, to FGFRs, using an FGF2-Fab' conjugate, in pancreatic cancer models. First, we show a heterogeneous subcellular distribution of overexpressed FGFR-1 in pancreatic cancer cells. Higher transduction efficiency was observed in five of the six cell lines studied after FGF2-AdGFPLuc infection. Interestingly, an association between FGFR-1 membrane cell expression and viral entry was found. Moreover, tumors injected with FGF2-AdGFPLuc showed enhanced and persistent transgene expression. Importantly, we demonstrate the relevant enhanced cytotoxic effect of the FGF2-Ad-CYP2B]/CPA system in four of the six cell lines studied. Moreover, retargeting Ad-CYP2B1/CPA to FGFRs resulted in a potent antitumoral effect and in an increased survival rate, in two human pancreatic xenograft models. Thus, our results indicate that redirecting adenoviruses to FGFRs highly increases the potency of the suicide system CYP2B1/CPA. Consequently, it may constitute a promising approach to the treatment of patients with pancreatic tumors, in which a high proportion of FGF receptors precisely localize to the plasma membrane.
Collapse
Affiliation(s)
- Meritxell Huch
- Programa Gens i Malaltia, Centre de Regulació Genòmica-Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Huch M, Abate-Daga D, Roig JM, González JR, Fabregat J, Sosnowski B, Mazo A, Fillat C. Targeting the CYP2B1/Cyclophosphamide Suicide System to Fibroblast Growth Factor Receptors Results in a Potent Antitumoral Response in Pancreatic Cancer Models. Hum Gene Ther 2006. [DOI: 10.1089/hum.2006.17.ft-259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
12
|
Shen F, Li AA, Gong YK, Somers S, Potter MA, Winnik FM, Chang PL. Encapsulation of Recombinant Cells with a Novel Magnetized Alginate for Magnetic Resonance Imaging. Hum Gene Ther 2005; 16:971-84. [PMID: 16076255 DOI: 10.1089/hum.2005.16.971] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Implanting recombinant cells encapsulated in alginate microcapsules to express therapeutic proteins has been proven effective in treating several mouse models of human diseases (neurological disorders, dwarfism, hemophilia, lysosomal storage disease, and cancer). In anticipation of clinical application, we have reported the synthesis and characterization of a magnetized ferrofluid alginate that potentially allows tracking of these microcapsules in vivo by magnetic resonance imaging (MRI). We now report the properties of these ferrofluid microcapsules important for applications in gene therapy. When a mouse myoblast cell line was encapsulated in these microcapsules, it showed similar viability as in regular unmodified alginate capsules, both in vitro and in vivo, in mice. The permeability of these magnetized microcapsules, a critical parameter for immunoisolation devices, was comparable to that of classic alginate in the transit of various recombinant molecules of various molecular masses (human factor IX, 65 kDa; murine IgG, 150 kDa; and beta-glucuronidase, 300 kDa). When followed by MRI in vitro and in vivo, the ferrofluid microcapsules remained intact and visible for extended periods, allowing quantitative monitoring of microcapsules. At autopsy, the ferrofluid microcapsules were mostly free within the intraperitoneal cavities, with no overt inflammatory response. Serological analyses demonstrated a high level of biocompatibility comparable to that of unmodified alginate. In conclusion, ferrofluid-enhanced alginate microcapsules are comparable to classic alginate microcapsules in permeability and biocompatibility. Their visibility and stability to MRI monitoring permitted qualitative and quantitative tracking of the implanted microcapsules without invasive surgery. These properties are important advantages for the application of immunoisolation devices in human gene therapy.
Collapse
Affiliation(s)
- Feng Shen
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
13
|
Shen F, Li AA, Gong YK, Somers S, Potter MA, Winnik FM, Chang PL. Encapsulation of Recombinant Cells with a Novel Magnetized Alginate for Magnetic Resonance Imaging. Hum Gene Ther 2005. [DOI: 10.1089/hum.2005.16.ft-95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
14
|
Cirone P, Shen F, Chang PL. A multiprong approach to cancer gene therapy by coencapsulated cells. Cancer Gene Ther 2005; 12:369-80. [PMID: 15692610 DOI: 10.1038/sj.cgt.7700786] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Immune-isolation of nonautologous cells with microencapsulation protects these cells from graft rejection, thus allowing the same recombinant therapeutic cell line to be implanted in different recipients. This approach was successful in treating HER2/neu-expressing tumors in mice by delivering an interleukin-2 fusion protein (sFvIL-2), or angiostatin. However, treatment with interleukin-2 led to profuse inflammation, while angiostatin delivery did not result in long-term tumor suppression, in part due to endothelial cell-independent neovascularization (vascular mimicry). We hypothesize that coencapsulating the two producer cells in the same microcapsules may enhance the efficacy and ameliorate the above side effects. Hence, B16-F0/neu tumor-bearing mice were implanted with sFvIL-2- and angiostatin-secreting cells coencapsulated in the same alginate-poly-L-lysine-alginate microcapsules. However, this protocol only produced an incremental but not synergistic improvement, as measured with greater tumor suppression and improved survival. Compared to the single sFvIL-2 treatment, the coencapsulation protocol showed improved efficacy associated with: mobilization of sFvIL-2 from the spleen; a higher level of cytokine delivery systemically and to the tumors; increased tumor and tumor-associated endothelial cell apoptosis; and a reduced host inflammatory response. However, compared to the single angiostatin treatment, the efficacy was reduced, primarily due to a "bystander" effect in which the angiostatin-secreting cells suffered similar transgene silencing as the coencapsulated cytokine-secreting cells. Nevertheless, the level of "vascular mimicry" of the single angiostatin treatment was significantly reduced. Hence, while there was no synergy in efficacy, an incremental improvement and some reduction in undesirable side effects of inflammation and vascular mimicry were achieved over the single treatments.
Collapse
Affiliation(s)
- Pasquale Cirone
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| | | | | |
Collapse
|
15
|
Sakai S, Kawabata K, Ono T, Ijima H, Kawakami K. Preparation of mammalian cell-enclosing subsieve-sized capsules (<100 microm) in a coflowing stream. Biotechnol Bioeng 2004; 86:168-73. [PMID: 15052636 DOI: 10.1002/bit.20006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The droplet breakup technique with an immiscible liquid coflowing stream was investigated for the preparation of mammalian cell-enclosing subsieve-sized capsules of less than 100 microm in diameter. The major parts of the droplet generation device were a needle of several hundred micrometers in diameter for extruding the cell-suspending sodium alginate aqueous solution and a tubule of 2.5 mm in diameter through which the extruded alginate solution flowed into ambient immiscible liquid paraffin. The needle was positioned upstream in the vicinity of the coaxial tubule. The droplet diameter of the viscous sodium alginate aqueous solution could be controlled from several dozen to several hundred micrometers by changing the velocities of the inner and ambient fluids and the diameter of the needle. By utilizing a 300-microm diameter needle, CHO-K1 cell-enclosing droplets of 48 +/- 8 microm in diameter were obtained by extruding a cell-suspending sodium alginate solution at a velocity of 1.2 cm/sec into the ambient liquid paraffin flowing at a velocity of 23.5 cm/sec. The breakup process did not influence the viability of the enclosed cells, since more than 95% of the CHO-K1 cells remained alive after the enclosing process.
Collapse
Affiliation(s)
- Shinji Sakai
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan.
| | | | | | | | | |
Collapse
|
16
|
Shen F, Poncet-Legrand C, Somers S, Slade A, Yip C, Duft AM, Winnik FM, Chang PL. Properties of a novel magnetized alginate for magnetic resonance imaging. Biotechnol Bioeng 2003; 83:282-92. [PMID: 12783484 DOI: 10.1002/bit.10674] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Implanting recombinant cells encapsulated in alginate microcapsules to secrete therapeutic proteins has been proven clinically effective in treating several murine models of human diseases. However, once implanted, these microcapsules cannot be assessed without invasive surgery. We now report the preparation and characterization of a novel ferrofluid to render these microcapsules visible with magnetic resonance imaging (MRI). The ferrofluid was prepared as a colloidal iron oxide stabilized in water by alginate. The presence of iron particles in the ferrofluid was verified with chemical titration, dynamic light scattering, and magnetization measurement. The microcapsules fabricated with various concentrations of the ferrofluid in the core, or on the surface of alginate microcapsules, or both, all produced microcapsules with smooth surfaces as shown with light and scanning electron microscopy. However, at the nanoscale level, as revealed with atomic force microscopy, the ferrofluid-fabricated microcapsules demonstrated increased granularity, particularly when the ferrofluid was used to laminate the surface. From the force spectroscopy measurements, these modified microcapsules showed increasing surface rigidity in the following order: traditional alginate < ferrofluid in the core < ferrofluid on the surface. Although the mechanical stability of low-concentration ferrofluid (0.1%) microcapsules was reduced, increasing concentrations, up to 20%, were able to improve stability. When these ferrofluid microcapsules were examined with MRI, their T(2) relaxation time was reduced, thereby producing increased contrast readily detectable with MRI, whereas the traditional alginate microcapsules showed no difference when compared with water. In conclusion, such ferrofluid-enhanced alginate is suitable for fabricating microcapsules that offer the potential for in vivo tracking of implanted microcapsules without invasive surgery.
Collapse
Affiliation(s)
- Feng Shen
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Baldwin A, Huang Z, Jounaidi Y, Waxman DJ. Identification of novel enzyme-prodrug combinations for use in cytochrome P450-based gene therapy for cancer. Arch Biochem Biophys 2003; 409:197-206. [PMID: 12464259 DOI: 10.1016/s0003-9861(02)00453-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Gene-directed enzyme prodrug therapy can be used to increase the therapeutic activity of anti-cancer prodrugs that undergo liver cytochrome P450 (CYP)-catalyzed prodrug to active drug conversion. The present report describes a cell-culture-based assay to identify CYP gene-CYP prodrug combinations that generate bystander cytotoxic metabolites and that may potentially be useful for CYP-based gene therapy for cancer. A panel of rat liver microsomes, comprising distinct subsets of drug-inducible hepatic CYPs, was evaluated for prodrug activation in a four-day 9L gliosarcoma cell growth inhibition assay. A strong NADPH- and liver microsome-dependent increase in 9L cytotoxicity was observed for the CYP prodrugs cyclophosphamide, ifosfamide, and methoxymorpholinyl doxorubicin (MMDX) but not with three other CYP prodrugs, procarbazine, dacarbazine, and tamoxifen. MMDX activation was potentiated approximately 250-fold by liver microsomes from dexamethasone-induced rats (IC(50) (MMDX) approximately 0.1nM), suggesting that dexamethasone-inducible CYP3A enzymes contribute to activation of this novel anthracycline anti-tumor agent. This CYP3A dependence was verified in studies using liver microsomes from uninduced male and female rats and by using the CYP3A-selective inhibitors troleandomycin and ketoconazole. These findings highlight the advantages of using cell culture assays to identify novel CYP prodrug-CYP gene combinations that are characterized by production of cell-permeable, cytotoxic metabolites and that may potentially be incorporated into CYP-based gene therapies for cancer treatment.
Collapse
Affiliation(s)
- Alex Baldwin
- Division of Cell and Molecular Biology, Department of Biology, Boston University, 5 Cummington St., MA 02215, USA
| | | | | | | |
Collapse
|
18
|
Löhr JM, Saller R, Salmons B, Günzburg WH. Microencapsulation of genetically engineered cells for cancer therapy. Methods Enzymol 2002; 346:603-18. [PMID: 11883094 DOI: 10.1016/s0076-6879(02)46080-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- J-Matthias Löhr
- Department of Molecular Gastroenterology, Medical Clinic II, University of Heidelberg, D-68167 Mannheim, Germany
| | | | | | | |
Collapse
|
19
|
Michl P, Buchholz M, Rolke M, Kunsch S, Löhr M, McClane B, Tsukita S, Leder G, Adler G, Gress TM. Claudin-4: a new target for pancreatic cancer treatment using Clostridium perfringens enterotoxin. Gastroenterology 2001; 121:678-84. [PMID: 11522752 DOI: 10.1053/gast.2001.27124] [Citation(s) in RCA: 222] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Recently, several members of the claudin family have been identified as integral constituents of tight junctions. Using expression profiling, we previously found claudin-4 to be overexpressed in pancreatic cancer. Because claudin-4 has been described as a receptor for the cytotoxic Clostridium perfringens enterotoxin (CPE), we investigated the effect of CPE on pancreatic cancer cells. METHODS Expression of claudin-4 was analyzed by Northern blots. In vitro toxicity of CPE was determined by trypan blue exclusion and the (86)Rb-release assay. The in vivo effect of CPE was studied in claudin-4-expressing nude mouse xenografts of the Panc-1 cell line. RESULTS Expression analyses showed that claudin-4 was overexpressed in most pancreatic cancer tissues and cell lines and several other gastrointestinal tumors. CPE led to an acute dose-dependent cytotoxic effect, restricted to claudin-4-expressing cells and dependent on claudin-4 expression levels. Furthermore, transforming growth factor beta was identified as a negative modulator of both claudin-4 expression and susceptibility to CPE. In vivo, intratumoral injections of CPE in Panc-1 xenografts led to large areas of tumor cell necrosis and significant reduction of tumor growth. CONCLUSIONS Our findings suggest that targeting claudin-4-expressing tumors with CPE represents a promising new treatment modality for pancreatic cancer and other solid tumors.
Collapse
Affiliation(s)
- P Michl
- Department of Internal Medicine I, University Medical Center, University of Ulm, Ulm, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Pancreatic cancer is the fifth leading cause of cancer deaths in the United States with little or no impact from conventional treatment options. Significant advances in understanding basic immunology have renewed interest in using immunotherapy to treat pancreatic cancer. Cancer immunotherapy, including humanized MAbs, cytokines, and potent vaccine strategies, has been successful in animal models and is being evaluated in clinical trials. Gene therapy is also being explored using methods to inactivate oncogenes, replace defective tumor suppressor genes, confer enhanced chemosensitivity to tumor cells, and increase immunogenicity of tumor cells. Angiogenesis, an essential step in the growth and metastasis of pancreatic cancer, has been targeted by many antiangiogenic agents. Several clinical trials have been initiated to evaluate the role of these innovative strategies in patients with pancreatic cancer with increasingly sophisticated correlative studies to learn more about the mechanisms of tumor rejection with these agents. The rapid translation of basic science discoveries to clinical trials should result in the development of new effective treatments for patients with pancreatic cancer.
Collapse
Affiliation(s)
- S M Lieberman
- Department of Surgery, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|