1
|
Abstract
Elevated levels of cyclooxygenase-2 (COX-2) and prostaglandins (PGs) are involved in the pathogenesis of Alzheimer's disease (AD), which is characterized by the accumulation of β-amyloid protein (Aβ) and tau hyperphosphorylation. However, the gaps in our knowledge of the roles of COX-2 and PGs in AD have not been filled. Here, we summarized the literature showing that COX-2 dysregulation obviously influences abnormal cleavage of β-amyloid precursor protein, aggregation and deposition of Aβ in β-amyloid plaques and the inclusion of phosphorylated tau in neurofibrillary tangles. Neuroinflammation, oxidative stress, synaptic plasticity, neurotoxicity, autophagy, and apoptosis have been assessed to elucidate the mechanisms of COX-2 regulation of AD. Notably, an imbalance of these factors ultimately produces cognitive decline. The current review substantiates our understanding of the mechanisms of COX-2-induced AD and establishes foundations for the design of feasible therapeutic strategies to treat AD.-Guan, P.-P., Wang, P. Integrated communications between cyclooxygenase-2 and Alzheimer's disease.
Collapse
Affiliation(s)
- Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
2
|
Abstract
Curcumin is a component of turmeric, a spice used in many types of cooking. Epidemiological evidence suggesting that populations that eat food with a substantial amount of curcumin were at lower risk of Alzheimer’s disease (AD) led to the idea that this compound might have a neuroprotective effect. Curcumin has substantial antioxidant and anti-inflammatory effects, and is being used as a potential preventative agent or treatment for many types of cancer. There is evidence to suggest that the addition of curcumin to cultured neuronal cells decreases brain inflammation and protects against β-amyloid-induced neurotoxicity. Curcumin also protects against toxicity when β-amyloid is administered to produce animal models of AD. Curcumin decreases β-amyloid formation from amyloid precursor protein, and also inhibits aggregation of β-amyloid into pleated sheets. Studies in transgenic mice with overproduction of β-amyloid demonstrate a neuroprotective effect of curcumin as well. Cognitive function was also improved in these animal models. Clinical trials of curcumin in AD have not been very promising. It is possible that this is due to poor oral bioavailability of curcumin in humans, and thus several approaches are being developed to improve delivery systems or to create analogs that will mimic the neuroprotective effects and easily reach the brain. The lack of efficacy of curcumin in humans with AD may also result from treating for too short a time or starting treatment too late in the course of the disease, where substantial neuronal death has already occurred and cannot be reversed. Curcumin may be beneficial in protecting against development or progression of AD if taken over the long term and started before symptoms of AD become apparent.
Collapse
Affiliation(s)
- Pamela E Potter
- Department of Pharmacology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| |
Collapse
|
3
|
Wang D, Xiang YK. β-adrenergic receptor, amyloid β-peptide, and Alzheimer's disease. CURRENT TOPICS IN MEMBRANES 2011; 67:205-28. [PMID: 21771492 DOI: 10.1016/b978-0-12-384921-2.00010-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Dayong Wang
- Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | |
Collapse
|
4
|
Clarner T, Buschmann JP, Beyer C, Kipp M. Glial amyloid precursor protein expression is restricted to astrocytes in an experimental toxic model of multiple sclerosis. J Mol Neurosci 2010; 43:268-74. [PMID: 20607446 DOI: 10.1007/s12031-010-9419-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 06/22/2010] [Indexed: 01/22/2023]
Abstract
The amyloid precursor protein is rapidly induced in reactive glia in response to pathological stimuli and inflammation. In this study, we investigated its expression in an experimental multiple sclerosis animal model, the cuprizone mouse model which reveals massive myelin loss. Cuprizone intoxication for 5 weeks induced immense demyelination of the corpus callosum and resulted in hypertrophic and hyperplastic astrocytosis accompanied by microglia/macrophage invasion. Using double-immunofluorescence, real-time quantitative PCR and Western Blot, we observed that activated astrocytes are the main source of amyloid precursor protein during demyelination. In order to rule out astrocytes, in general, responding to inflammatory and toxic compounds by amyloid precursor protein expression, neonatal astroglia cultures were exposed to various stimuli. Under control conditions, astroglial amyloid precursor protein was only moderately expressed. None of the treatments had a significant effect on its expression in vitro. Our results suggest that amyloid precursor protein is specifically up-regulated under cuprizone-induced demyelination. It remains to be further elucidated whether amyloid precursor protein-positive astrocytes are directly implicated in the pathological mechanism of demyelination.
Collapse
Affiliation(s)
- Tim Clarner
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | | | | | | |
Collapse
|
5
|
Secretion of amyloidogenic gelsolin progressively compromises protein homeostasis leading to the intracellular aggregation of proteins. Proc Natl Acad Sci U S A 2009; 106:11125-30. [PMID: 19549824 DOI: 10.1073/pnas.0811753106] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Familial amyloidosis of Finnish type (FAF) is a systemic amyloid disease associated with the deposition of proteolytic fragments of mutant (D187N/Y) plasma gelsolin. We report a mouse model of FAF featuring a muscle-specific promoter to drive D187N gelsolin synthesis. This model recapitulates the aberrant endoproteolytic cascade and the aging-associated extracellular amyloid deposition of FAF. Amyloidogenesis is observed only in tissues synthesizing human D187N gelsolin, despite the presence of full-length D187N gelsolin and its 68-kDa cleavage product in blood-demonstrating the importance of local synthesis in FAF. Loss of muscle strength was progressive in homozygous D187N gelsolin mice. The presence of misfolding-prone D187N gelsolin appears to exacerbate the age-associated decline in cellular protein homeostasis (proteostasis), reflected by the intracellular deposition of numerous proteins, a characteristic of the most common degenerative muscle disease of aging humans, sporadic inclusion body myositis.
Collapse
|
6
|
Ariztia EV, Lee CJ, Gogoi R, Fishman DA. The Tumor Microenvironment: Key to Early Detection. Crit Rev Clin Lab Sci 2008; 43:393-425. [PMID: 17050079 DOI: 10.1080/10408360600778836] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The tumor microenvironment plays an important role equal to the tumor cell population in the progression of cancer. Consisting of stromal fibroblasts, inflammatory cells, components of the vasculature, normal epithelia, and extracellular matrix, the surrounding environment interacts or "cross-talks" with tumor cells through the release of growth factors, cytokines, proteases, and other bioactive molecules. Tumor growth, formation of new vascular networks, evasion of the host immune system, and invasion and metastasis are processes that co-evolve and become finely optimized and regulated within the tumor microenvironment. However, relatively recent reports on three areas of study have come together to add new levels of complexity to the tumor microenvironment. These include ectodomain shedding of proteins, shedding of membrane-derived vesicles, and novel roles for phospholipids. These dynamic changes that take place in the tumor microenvironment provide new avenues for study and for the early detection of cancer, whereas proteomic technologies provide the means to detect these unique proteins and lipids. Here we review the evolving concepts of the tumor microenvironment that, together with advances in proteomic technologies, hold the promise to facilitate the detection of early-stage cancer.
Collapse
Affiliation(s)
- Edgardo V Ariztia
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | |
Collapse
|
7
|
Van Den Heuvel C, Thornton E, Vink R. Traumatic brain injury and Alzheimer's disease: a review. PROGRESS IN BRAIN RESEARCH 2007; 161:303-16. [PMID: 17618986 DOI: 10.1016/s0079-6123(06)61021-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
In an effort to identify the factors that are involved in the pathogenesis of Alzheimer's disease (AD), epidemiological studies have featured prominently in contemporary research. Of those epidemiological factors, accumulating evidence implicates traumatic brain injury (TBI) as a possible predisposing factor in AD development. Exactly how TBI triggers the neurodegenerative cascade of events in AD remains controversial. There has been extensive research directed towards understanding the potential relationship between TBI and AD and the putative influence that apolipoprotein E (APOE) genotype has on this relationship. The aim of the current paper is to provide a critical summary of the experimental and human studies regarding the association between TBI, AD and APOE genotype. It will be shown that despite significant discrepancies in the literature, there still appears to be an increasing trend to support the hypothesis that TBI is a potential risk factor for AD. Furthermore, although it is known that APOE genotype plays an important role in AD, its link to a deleterious outcome following TBI remains inconclusive and ambiguous.
Collapse
Affiliation(s)
- Corinna Van Den Heuvel
- Discipline of Pathology, University of Adelaide, Centre for Neurological Diseases, The Hanson Institute, Adelaide, Australia.
| | | | | |
Collapse
|
8
|
Hontanilla B, Aubá C, Arcocha J, Gorría O. Nerve Regeneration through Nerve Autografts and Cold Preserved Allografts using Tacrolimus (FK506) in a Facial Paralysis Model: A Topographical and Neurophysiological Study in Monkeys. Neurosurgery 2006; 58:768-79; discussion 768-79. [PMID: 16575341 DOI: 10.1227/01.neu.0000204319.37546.5f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Nerve regeneration through cold preserved nerve allografts is demonstrated, and treatment of nerve allografts with FK506 induces better regeneration than other immunosuppressants. We study nerve regeneration through cold preserved nerve allografts temporarily treated with FK506 and compare it with the regeneration obtained using classic nerve autografts in a facial paralysis model in monkeys. METHODS A trunk of the facial nerve on both sides was transected in eight monkeys and immediately repaired with a 3 to 4 cm nerve autograft or allograft. FK506 was administered to the animals of the allograft group for 2 months, and nerve allografts were cold preserved for 3 weeks. At periods of 3, 5, and 8 months after surgery, quantitative electrophysiological assessment and video recordings were performed. At the end of the study, quantitative analysis of neurons in the facial nucleus was carried out, and axons were stereologically counted. RESULTS After the regenerative period, neuronal density was higher in the autograft group. However, distal axonal counts were similar in both groups. Serial electrophysiological recordings and histology of nerve allografts showed that the grafts were partially rejected after cessation of the immunosuppressant. CONCLUSION The regeneration through nerve allografts temporarily treated with FK506 does not achieve the electrophysiological results and neuronal counts achieved with nerve autografts, but axonal collateralization in the allografts induces a similar activation of mimic muscles.
Collapse
Affiliation(s)
- Bernardo Hontanilla
- Department of Plastic and Reconstructive Surgery, Clínica Universitaria, University of Navarra, Pamplona, Spain.
| | | | | | | |
Collapse
|
9
|
Townsend KP, Praticò D. Novel therapeutic opportunities for Alzheimer's disease: focus on nonsteroidal anti-inflammatory drugs. FASEB J 2006; 19:1592-601. [PMID: 16195368 DOI: 10.1096/fj.04-3620rev] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is the most common form of neurodegenerative disorder with dementia in the elderly. The AD brain pathology is characterized by deposits of amyloid-beta (Abeta) peptides and neurofibrillary tangles but also (among other aspects) by signs of a chronic inflammatory process. Epidemiological studies have shown that long-term use of nonsteroidal anti-inflammatory drugs (NSAIDs) reduces the risk of developing AD and delays its onset. Classical targets of NSAIDs include cycloxygenase, nuclear factor kappaB, and peroxisome proliferator-activated receptors. Modulation of these pathways, all of which have been implicated in AD pathogenesis, could explain the NSAID effect on AD progression. However, recent studies indicate that a subset of NSAIDs such as ibuprofen, indomethacin, and flurbiprofen may have direct Abeta-lowering properties in cell cultures as well as transgenic models of AD-like amyloidosis. A renewed interest in the old and a discovery of new pharmacological properties of these drugs are providing vital insight for future clinical trials. In this review we will summarize how the combination of traditional (anti-inflammatory) and new (anti-amyloidogenic) properties of some NSAIDs is providing unprecedented opportunities for drug discovery and could potentially result in novel therapeutic approaches for the treatment of AD.
Collapse
Affiliation(s)
- Kirk P Townsend
- Center for Experimental Therapeutics and Department of Pharmacology; University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
10
|
Lakshmikuttyamma A, Selvakumar P, Kanthan R, Kanthan SC, Sharma RK. Increased expression of calcineurin in human colorectal adenocarcinomas. J Cell Biochem 2005; 95:731-9. [PMID: 15832371 DOI: 10.1002/jcb.20437] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Colorectal cancer (CRC) is the third most common cause of cancer death in the Western world. Calcineurin (CaN), a Ca2+/calmodulin (CaM)-dependent protein phosphatase, is important for Ca2+-mediated signal transduction. The main objective of this study is to examine the potential role of Ca2+/CaM-dependent protein phosphatase in both normal and in invasive tumor components of human samples. In this study, we carried out 45 cases of CaN activity, 13 cases of CaN protein expression by Western blot analysis, and 6 cases for immunohistochemical analysis in both normal and invasive tumor components of human samples. Immunohistochemical analysis revealed that strong cytoplasmic staining of varying intensity was observed in colon tumors of all patients compared to normal mucosa. In addition, Western blot analysis revealed a prominent overexpressed immunoreactive band with an apparent molecular mass of 60 kDa catalytic alpha subunit (CaN A) as well as CaN Aalpha and beta in colon tumor samples. Elevated CaN protein expression appears to be a possible link between Ca2+ signaling and oncogenic processes.
Collapse
Affiliation(s)
- Ashakumary Lakshmikuttyamma
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 4H4, Canada
| | | | | | | | | |
Collapse
|
11
|
Yu L, Haverty PM, Mariani J, Wang Y, Shen HY, Schwarzschild MA, Weng Z, Chen JF. Genetic and pharmacological inactivation of adenosine A2A receptor reveals an Egr-2-mediated transcriptional regulatory network in the mouse striatum. Physiol Genomics 2005; 23:89-102. [PMID: 16046619 DOI: 10.1152/physiolgenomics.00068.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The adenosine A2A receptor (A2AR) is highly expressed in the striatum, where it modulates motor and emotional behaviors. We used both microarray and bioinformatics analyses to compare gene expression profiles by genetic and pharmacological inactivation of A2AR and inferred an A2AR-controlled transcription network in the mouse striatum. A comparison between vehicle (VEH)-treated A2AR knockout (KO) mice (A2AR KO-VEH) and wild-type (WT) mice (WT-VEH) revealed 36 upregulated genes that were partially mimicked by treatment with SCH-58261 (SCH; an A2AR antagonist) and 54 downregulated genes that were not mimicked by SCH treatment. We validated the A2AR as a specific drug target for SCH by comparing A2AR KO-SCH and A2AR KO-VEH groups. The unique downregulation effect of A2AR KO was confirmed by comparing A2AR KO-SCH with WT-SCH gene groups. The distinct striatal gene expression profiles induced by A2AR KO and SCH should provide clues to the molecular mechanisms underlying the different phenotypes observed after genetic and pharmacological inactivation of A2AR. Furthermore, bioinformatics analysis discovered that Egr-2 binding sites were statistically overrepresented in the proximal promoters of A2AR KO-affected genes relative to the unaffected genes. This finding was further substantiated by the demonstration that the Egr-2 mRNA level increased in the striatum of both A2AR KO and SCH-treated mice and that striatal Egr-2 binding activity in the promoters of two A2AR KO-affected genes was enhanced in A2AR KO mice as assayed by chromatin immunoprecipitation. Taken together, these results strongly support the existence of an Egr-2-directed transcriptional regulatory network controlled by striatal A2ARs.
Collapse
Affiliation(s)
- Liqun Yu
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Van Den Heuvel C, Donkin JJ, Finnie JW, Blumbergs PC, Kuchel T, Koszyca B, Manavis J, Jones NR, Reilly PL, Vink R. Downregulation of amyloid precursor protein (APP) expression following post-traumatic cyclosporin-A administration. J Neurotrauma 2005; 21:1562-72. [PMID: 15684649 DOI: 10.1089/neu.2004.21.1562] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of these studies was to assess and quantitate the effects of cyclosporin-A (CyA) on brain APP messenger RNA and neuronal perikaryal APP antigen expression following controlled focal head impact in sheep. Impact results in a significant increase in both APP mRNA and neuronal perikaryal APP antigen expression. Post-traumatic administration of CyA (intrathecal 10 mg/kg) resulted in a reduction in APP mRNA and neuronal perikaryal antigen expression. At 2 h postinjury, CyA treatment caused a statistically significant (p < 0.05) 1.3 +/- 0.1-fold decrease in APP mRNA in the central gray matter of impacted sheep compared to untreated impacted sheep. A more profound reduction in APP mRNA synthesis (1.6 +/- 0.2 fold) was evident at 6 h (p < 0.05). The mean percentage brain area with APP immunoreactive neuronal perikarya at 6 h post-injury was 94.5% in untreated impacted animals, 10.0% in CyA-treated impacted animals, 5.5% in untreated nonimpacted animals, and 6% in CyA-treated non-impacted controls. These results demonstrate that CyA has a downregulatory effect on increased APP expression caused by TBI.
Collapse
|
13
|
Gutwein P, Stoeck A, Riedle S, Gast D, Runz S, Condon TP, Marmé A, Phong MC, Linderkamp O, Skorokhod A, Altevogt P. Cleavage of L1 in exosomes and apoptotic membrane vesicles released from ovarian carcinoma cells. Clin Cancer Res 2005; 11:2492-501. [PMID: 15814625 DOI: 10.1158/1078-0432.ccr-04-1688] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The L1 adhesion molecule (CD171) is overexpressed in human ovarian and endometrial carcinomas and is associated with bad prognosis. Although expressed as a transmembrane molecule, L1 is released from carcinoma cells in a soluble form. Soluble L1 is present in serum and ascites of ovarian carcinoma patients. We investigated the mode of L1 cleavage and the function of soluble L1. EXPERIMENTAL DESIGN We used ovarian carcinoma cell lines and ascites from ovarian carcinoma patients to analyze soluble L1 and L1 cleavage by Western blot analysis and ELISA. RESULTS We find that in ovarian carcinoma cells the constitutive cleavage of L1 proceeds in secretory vesicles. We show that apoptotic stimuli like C2-ceramide, staurosporine, UV irradiation, and hypoxic conditions enhance L1-vesicle release resulting in elevated levels of soluble L1. Constitutive cleavage of L1 is mediated by a disintegrin and metalloproteinase 10, but under apoptotic conditions multiple metalloproteinases are involved. L1 cleavage occurs in two types of vesicles with distinct density features: constitutively released vesicles with similarity to exosomes and apoptotic vesicles. Both types of L1-containing vesicles are present in the ascites fluids of ovarian carcinoma patients. Soluble L1 from ascites is a potent inducer of cell migration and can trigger extracellular signal-regulated kinase phosphorylation. CONCLUSIONS We suggest that tumor-derived vesicles may be an important source for soluble L1 that could regulate tumor cell function in an autocrine/paracrine fashion.
Collapse
Affiliation(s)
- Paul Gutwein
- Tumor Immunology Programme, D010, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Raghavendra Prasad HS, Qi Z, Srinivasan KN, Gopalakrishnakone P. Potential effects of tetrodotoxin exposure to human glial cells postulated using microarray approach. Toxicon 2004; 44:597-608. [PMID: 15501285 DOI: 10.1016/j.toxicon.2004.07.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2004] [Revised: 07/08/2004] [Accepted: 07/12/2004] [Indexed: 10/26/2022]
Abstract
Sodium channels play an important role in many neurological disorders and also in prostate cancer. Tetrodotoxin (TTX), a blocker of voltage-gated sodium channels has been chiefly used as a molecular probe for the study and characterization of these channels. The regulation of gene expression in response for the exposure of TTX to glial cells which are reported to be involved in neurodegenerative process is poorly understood. Therefore, the present study aims to develop a repository of genes and map it on a few pivotal neurodegenerative pathways to speculate the effect of TTX. Using Affymetrix GeneChip (HG-U133A), we have selected a subset of 692 differentially expressed genes, several of which are-cullin 4A (CUL4A), ubiquitin carrier protein (E2-EPF), proteasome (prosome, macropain) subunit, beta type, 8 (large multifunctional protease 7) (PSMB8), protein tyrosine phosphatase type IVA (PTP4A1), intercellular adhesion molecule 1 (ICAM1), prostaglandin-endoperoxide synthase 2 (PTGS2), and caspase 1 (CASP1). These genes, which facilitate some of the neurodegenerative pathways, such as ubiquitin, proteasome, inflammation and kinases, were identified to be up- or down-regulated for the TTX treatment. Thus, the selected genes were further examined on ubiquitin-proteasome mediated inflammatory responses pathway as ample evidence for the role of glial cell-mediated inflammation in the neurodegenerative process are available. In summary, our result provides a basic understanding of the differentially expressed genes along with one of the possible pathway which may have been modulated by the exposure of TTX.
Collapse
Affiliation(s)
- H S Raghavendra Prasad
- Venom and Toxin Research Programme, Department of Anatomy, Faculty of Medicine, National University of Singapore, 4 Medical Drive, Singapore 117597
| | | | | | | |
Collapse
|
15
|
Poulter MO, Payne KB, Steiner JP. Neuroimmunophilins: A novel drug therapy for the reversal of neurodegenerative disease? Neuroscience 2004; 128:1-6. [PMID: 15450348 DOI: 10.1016/j.neuroscience.2004.06.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2004] [Indexed: 11/28/2022]
Abstract
Neuroimmunophilin ligands (NILs) are drugs derived from the immunosuppressant FK506 (tacrolimus) that have been shown to have variable efficacy in reversing neuronal degeneration and preventing cell death. In a wide range of animal models mimicking Parkinson's disease, dementia and even surgical nerve damage they induce re-sprouting, are neurotrophic or prevent nerve damage. The neurotrophic mechanism of action of these compounds is not known and may be dependent on the type of damage and genetic variability at the species or cellular level. Some evidence suggests that NILs may act through a family of proteins called FK506 binding proteins, some of which may regulate steroid hormone receptors. Other evidence suggests that NILs may protect neurons by upregulating the antioxidant glutathione and stimulating nerve regrowth by inducing the production of neurotrophic factors. Initial clinical trials have had mixed success. In one, patients with moderately severe Parkinson's disease showed no overall improvement in fine motor skills following 6 months of treatment by the neuroimmunophilin GPI 1485. But these patients did exhibit decreased loss of dopaminergic nerve terminals with a low dose of GPI 1485 and in fact some increase in dopaminergic terminals within 6 months of the higher dose of GPI 1485 drug treatment. As a result, a second phase II clinical trial using a patient population with less severe degeneration has been initiated concurrent with an investigation of GPI 1485 and other neuroprotective therapies funded by the National Institute of Neurological Disorders and Stroke. Another clinical trial ongoing at this time is exploring the use of a neuroimmunophilin ligand to prevent nerve degeneration and erectile dysfunction resulting from prostatectomy. In summary, neuroimmunophilins show promise to reverse some forms of neurodegeneration but exact factors that predict outcome have not been identified.
Collapse
Affiliation(s)
- M O Poulter
- Department of Psychology, Neuroscience Research Institute, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6.
| | | | | |
Collapse
|
16
|
Froestl B, Steiner B, Müller WE. Enhancement of proteolytic processing of the β-amyloid precursor protein by hyperforin. Biochem Pharmacol 2003; 66:2177-84. [PMID: 14609742 DOI: 10.1016/j.bcp.2003.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We studied the effect of hyperforin, a component of St. John's wort (Hypericum perforatum) extracts, on the processing of the amyloid precursor protein (APP) in rat pheochromocytoma PC12 cells, stably transfected with human wildtype APP. We observed transiently increased release of secretory APP fragments upon hyperforin treatment. Unique features, like a strong reduction of intracellular APP and the time course of soluble APP release, distinguished the effects of hyperforin from those of alkalizing agents and phorbol esters, well known activators of secretory processing of APP. Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP), a protonophore, induced an almost identical decrease in intracellular pH in PC12 cells as does hyperforin. Despite this, FCCP induced a less pronounced release of soluble APP fragments and only slightly reduced intracellular APP levels. These results suggest that hyperforin is an activator of secretory processing of APP with a novel mechanism of action not solely dependent on its effects on intracellular pH.
Collapse
Affiliation(s)
- Bettina Froestl
- Department of Pharmacology, Biocenter, University of Frankfurt, Marie-Curie-Str. 9, D-60439 Frankfurt, Germany
| | | | | |
Collapse
|
17
|
Versijpt J, Van Laere KJ, Dumont F, Decoo D, Vandecapelle M, Santens P, Goethals I, Audenaert K, Slegers G, Dierckx RA, Korf J. Imaging of the 5-HT2A system: age-, gender-, and Alzheimer's disease-related findings. Neurobiol Aging 2003; 24:553-61. [PMID: 12714112 DOI: 10.1016/s0197-4580(02)00137-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Serotonin (5-HT) and more specifically the 5-HT(2A) receptor is involved in cognitive and non-cognitive behavior and plays an important role in Alzheimer's disease (AD). The objective was to assess the 5-HT(2A) binding potential (BP) in healthy volunteers and AD with SPECT and 123I-5-I-R91150, a selective radio-iodinated 5-HT(2A) receptor antagonist. Twenty-six controls and nine AD patients were included. A semiquantitive analysis with normalization on cerebellar uptake provided estimates of BP for 26 cortical regions of interest. An age-related decline of neocortical BP was found (11.6% per decade). Compared to age-matched controls, a generally decreased neocortical BP in AD was found with a significant regional reduction in the orbitofrontal, prefrontal, lateral frontal, cingulate, sensorimotor, parietal inferior, and occipital region. These results are in line with previous postmortem, in vitro, and PET findings. The age-related decline highlights the necessity for matched advanced age study samples. The fact that the 5-HT(2A) receptor is differentially affected in AD patients has implications for both the etiological basis and therapeutic management of AD.
Collapse
Affiliation(s)
- J Versijpt
- Department of Biological Psychiatry, Groningen University Hospital, Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- Joaquín Arribas
- Laboratori de Recerca Oncològica, Servei d'Oncologia Mèdica, Hospital Universitari Vall d'Hebron, Psg. Vall d'Hebron 119-129, Barcelona 08035, Spain.
| | | |
Collapse
|
19
|
Rogers J, Strohmeyer R, Kovelowski CJ, Li R. Microglia and inflammatory mechanisms in the clearance of amyloid beta peptide. Glia 2002; 40:260-269. [PMID: 12379913 DOI: 10.1002/glia.10153] [Citation(s) in RCA: 288] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There is now abundant evidence that brain microglia, when activated, have the lineage, receptors, and synthetic capacity to participate in both potentially neurotoxic inflammatory responses and potentially beneficial phagocytic responses. Amyloid beta peptide (Abeta) forms highly insoluble, beta-pleated aggregates that are widely deposited in the Alzheimer's disease (AD) cortex and limbic system. Aggregated Abeta also activates the classical and alternative complement cascades. These properties make Abeta an excellent target for microglial phagocytosis, a view supported by multiple reports, through well established mechanisms of phagocyte clearance.
Collapse
Affiliation(s)
| | | | | | - Rena Li
- Sun Health Research Institute, Sun City, Arisona
| |
Collapse
|
20
|
Avramovich Y, Amit T, Youdim MBH. Non-steroidal anti-inflammatory drugs stimulate secretion of non-amyloidogenic precursor protein. J Biol Chem 2002; 277:31466-73. [PMID: 12070143 DOI: 10.1074/jbc.m201308200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chronic inflammatory processes are associated with the pathophysiology of Alzheimer's disease (AD), and it has been proposed that treatment with non-steroidal anti-inflammatory drugs (NSAIDs) reduces the risk for AD. Here we report that various NSAIDs, such as the cyclooxygenase inhibitors, nimesulide, ibuprofen and indomethacin, as well as thalidomide (Thal) and its non-teratogenic analogue, supidimide, significantly stimulated the secretion of the non-amyloidogenic alpha-secretase form of the soluble amyloid precursor protein (sAPP alpha) into the conditioned media of SH-SY5Y neuroblastoma and PC12 cells. These NSAIDs markedly reduced the levels of the cellular APP holoprotein, further accelerating non-amyloidogenic processes. sAPP alpha release, induced by nimesulide and Thal, was modulated by inhibitors of protein kinase C and Erk mitogen-activated protein (MAP) kinase. Furthermore, in results complementary to the inhibitor studies, we show for the first time that NSAIDs can activate the Erk MAP kinase signaling cascade, thus identifying a novel pharmacology mechanism of NSAIDs. Our findings suggest that NSAIDs and Thal might prove useful to favor non-amyloidogenic APP processing by enhancing alpha-secretase activity, thereby reducing the formation of amyloidogenic derivatives, and therefore are of potential therapeutic value in AD.
Collapse
Affiliation(s)
- Yael Avramovich
- Eve Topf and National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases Research and Department of Pharmacology, Technion - Faculty of Medicine, 31096 Haifa, Israel
| | | | | |
Collapse
|
21
|
Beach TG, Walker DG, Potter PE, Sue LI, Fisher A. Reduction of cerebrospinal fluid amyloid beta after systemic administration of M1 muscarinic agonists. Brain Res 2001; 905:220-3. [PMID: 11423097 DOI: 10.1016/s0006-8993(01)02484-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Overproduction of the peptide amyloid beta (A beta) is a critical event in Alzheimer's disease (AD). Systemic administration of 3 M1-selective muscarinic agonists, AF102B, AF150S and AF267B, decreased cerebrospinal fluid (CSF) A beta concentrations; levels of CSF secreted beta-APP were not significantly altered. Rabbits treated for 5 days with s.c. injections of each drug (2 mg/kg/day) had levels of CSF A beta which were between 55 and 71% of control for A beta 1-40 and between 59 and 84% of control for A beta 1--42.
Collapse
Affiliation(s)
- T G Beach
- Sun Health Research Institute, 10515 Santa Fe Drive, Sun City, AZ 85372, USA.
| | | | | | | | | |
Collapse
|