1
|
Sattar A, Rehman Z, Murtaza H, Ashraf W, Ahmad T, Alqahtani F, Imran I. Brivaracetam and rufinamide combination increased seizure threshold and improved neurobehavioral deficits in corneal kindling model of epilepsy. Animal Model Exp Med 2024. [PMID: 39439107 DOI: 10.1002/ame2.12478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/14/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Besides seizures, a myriad of overlapping neuropsychiatric and cognitive comorbidities occur in patients with epilepsy, which further debilitates their quality of life. This study provides an in-depth characterization of the impact of brivaracetam and rufinamide individually and in combination at 10 and 20 mg/kg doses, respectively, on corneal kindling-induced generalized seizures and behavioral alterations. Furthermore, observed convulsive frequency and behavioral changes were correlated to post-kindling-induced changes in the activity of markers of oxidative stress. METHODS Adult C57BL/6 mice were kindled via twice-daily transcorneal 50-Hz electrical stimulations (3 mA) for 3 s for 12 days until animals reached a fully kindled state. After the kindling procedure, animals were tested using a set of behavioral tests, and neurochemical alterations were assessed. RESULTS Corneal-kindled animals exhibited intense generalized convulsions, altered behavioral phenotypes typified by positive symptoms (hyperlocomotion), negative symptoms (anxiety and anhedonia), and deficits in semantic and working memory. BRV 10 + RFM 20 dual regime increased convulsive threshold and propensity toward the start of stage 4-5 seizures and improved phenotypical deficits, that is, anxiety, depression, and memory impairments. Moreover, this combination therapy mitigated kindling-induced redox impairments as evidenced by reduced malondialdehyde and acetylcholinesterase levels and increased glutathione antioxidant activity in the brain of animals subjected to repetitive brain insult. CONCLUSION Based on our outcomes, this dual therapy provides supporting evidence in alleviating epilepsy-induced neurobehavioral comorbidities and changes in redox homeostasis.
Collapse
Affiliation(s)
- Awais Sattar
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Zohabia Rehman
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Hammad Murtaza
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Waseem Ashraf
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Tanveer Ahmad
- Institut pour l'Avancée des Biosciences, Centre de Recherche UGA/INSERM U1209/CNRS 5309, Université Grenoble Alpes, Saint Martin d'Hères, France
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
2
|
Löscher W, Stafstrom CE. Epilepsy and its neurobehavioral comorbidities: Insights gained from animal models. Epilepsia 2023; 64:54-91. [PMID: 36197310 DOI: 10.1111/epi.17433] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 01/21/2023]
Abstract
It is well established that epilepsy is associated with numerous neurobehavioral comorbidities, with a bidirectional relationship; people with epilepsy have an increased incidence of depression, anxiety, learning and memory difficulties, and numerous other psychosocial challenges, and the occurrence of epilepsy is higher in individuals with those comorbidities. Although the cause-and-effect relationship is uncertain, a fuller understanding of the mechanisms of comorbidities within the epilepsies could lead to improved therapeutics. Here, we review recent data on epilepsy and its neurobehavioral comorbidities, discussing mainly rodent models, which have been studied most extensively, and emphasize that clinically relevant information can be gained from preclinical models. Furthermore, we explore the numerous potential factors that may confound the interpretation of emerging data from animal models, such as the specific seizure induction method (e.g., chemical, electrical, traumatic, genetic), the role of species and strain, environmental factors (e.g., laboratory environment, handling, epigenetics), and the behavioral assays that are chosen to evaluate the various aspects of neural behavior and cognition. Overall, the interplay between epilepsy and its neurobehavioral comorbidities is undoubtedly multifactorial, involving brain structural changes, network-level differences, molecular signaling abnormalities, and other factors. Animal models are well poised to help dissect the shared pathophysiological mechanisms, neurological sequelae, and biomarkers of epilepsy and its comorbidities.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Carl E Stafstrom
- Division of Pediatric Neurology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Palmieri B, Corazzari V, Vadalaʹ M, Vallelunga A, Morales-Medina JC, Iannitti T. The role of sensory and olfactory pathways in multiple chemical sensitivity. REVIEWS ON ENVIRONMENTAL HEALTH 2021; 36:319-326. [PMID: 33070122 DOI: 10.1515/reveh-2020-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Multiple chemical sensitivity (MCS) is characterised by non-specific and recurring symptoms affecting multiple organs and associated with exposure to chemicals, even at low concentrations, which are, under normal circumstances, harmless to the general population. Symptoms include general discomfort, cardiovascular instability, irritation of the sensory organs, breath disorders, hypersensitivity affecting the skin and epithelial lining of the gut, throat and lungs, anxiety, and learning and memory loss. Chemical intolerance is a key distinguishing feature of MCS, limiting considerably patients' lifestyle with serious social, occupational and economic implications. Since no specific diagnostic markers are currently available for chemical intolerance, the diagnosis relies on clinical symptoms. Despite the formulation of several hypotheses regarding the pathophysiology of MCS, its mechanisms remain undefined. A person-centred care approach, based on multidisciplinary and individualised medical plans, has shown promising results. However, more definite treatment strategies are required. We have reviewed the main experimental studies on MCS pathophysiology, focusing on the brain networks involved, the impact of environmental pollution on the olfactory system and the correlation with other pathologies such as neurodegenerative diseases. Finally, we discuss treatment strategies targeting the olfactory system.
Collapse
Affiliation(s)
- Beniamino Palmieri
- Surgical, Medical, Dental and Morphological Sciences Departments with interest in Transplants, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Network of Second Opinion, Modena, Italy
| | | | - Maria Vadalaʹ
- Surgical, Medical, Dental and Morphological Sciences Departments with interest in Transplants, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Network of Second Opinion, Modena, Italy
| | - Annamaria Vallelunga
- Department of Medicine and Surgery, Centre for Neurodegenerative Diseases (CEMAND), University of Salerno, Salerno, Italy
| | - Julio César Morales-Medina
- Centro de Investigación en Reproducción Animal, CINVESTAV- Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Tommaso Iannitti
- Charles River Discovery Research Services UK Limited, Portishead, UK
| |
Collapse
|
4
|
Alipour V, Hoseinpour F, Vatanparast J. Persistent alterations in seizure susceptibility, drug responsiveness and comorbidities associated with chemical kindling after neonatal exposure to an organophosphate. Neurotoxicology 2019; 73:92-99. [DOI: 10.1016/j.neuro.2019.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/19/2019] [Accepted: 03/07/2019] [Indexed: 12/20/2022]
|
5
|
Requena M, Parrón T, Navarro A, García J, Ventura MI, Hernández AF, Alarcón R. Association between environmental exposure to pesticides and epilepsy. Neurotoxicology 2018; 68:13-18. [PMID: 30018027 DOI: 10.1016/j.neuro.2018.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/22/2018] [Accepted: 07/02/2018] [Indexed: 12/21/2022]
Abstract
There is increasing evidence of an association between long-term environmental exposure to pesticides and neurodegenerative disorders; however, the relationship with epilepsy has not been addressed thus far. This study was aimed at determining the prevalence and risk of developing epilepsy among people from South-East Spain living in areas of high vs. low exposure to pesticides based on agronomic data. The study population consisted of 4007 subjects with a diagnosis of epilepsy and 580,077 control subjects adjusted for age, sex and geographical area. Data were collected from hospital records of the Spanish health care system (basic minimum dataset) between the years 1998 and 2010. The prevalence of epilepsy was significantly higher in areas of greater pesticide use relative to areas of lesser use. Overall, an increased risk of epilepsy was observed in the population living in areas of high vs. low use of pesticides (OR: 1.65; p < 0.001). Although this study was exploratory in nature, the results suggest that environmental exposure to pesticides might increase the risk of having epilepsy.
Collapse
Affiliation(s)
- Mar Requena
- University of Almería School of Health Sciences, Almería, Spain.
| | - Tesifón Parrón
- University of Almería School of Health Sciences, Almería, Spain; Andalusian Council of Health at Almería Province, Almería, Spain
| | | | | | | | - Antonio F Hernández
- Dept. Legal Medicine and Toxicology, University of Granada School of Medicine, Granada, Spain
| | - Raquel Alarcón
- University of Almería School of Health Sciences, Almería, Spain
| |
Collapse
|
6
|
Bandara SB, Sadowski RN, Schantz SL, Gilbert ME. Developmental exposure to an environmental PCB mixture delays the propagation of electrical kindling from the amygdala. Neurotoxicology 2016; 58:42-49. [PMID: 27816614 DOI: 10.1016/j.neuro.2016.10.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 10/01/2016] [Accepted: 10/28/2016] [Indexed: 11/28/2022]
Abstract
Developmental PCB exposure impairs hearing and induces brainstem audiogenic seizures in adult offspring. The degree to which this enhanced susceptibility to seizure is manifest in other brain regions has not been examined. Thus, electrical kindling of the amygdala was used to evaluate the effect of developmental exposure to an environmentally relevant PCB mixture on seizure susceptibility in the rat. Female Long-Evans rats were dosed orally with 0 or 6mg/kg/day of the PCB mixture dissolved in corn oil vehicle 4 weeks prior to mating and continued through gestation and up until postnatal day (PND) 21. On PND 21, pups were weaned, and two males from each litter were randomly selected for the kindling study. As adults, the male rats were implanted bilaterally with electrodes in the basolateral amygdala. For each animal, afterdischarge (AD) thresholds in the amygdala were determined on the first day of testing followed by once daily stimulation at a standard 200μA stimulus intensity until three stage 5 generalized seizures (GS) ensued. Developmental PCB exposure did not affect the AD threshold or total cumulative AD duration, but PCB exposure did increase the latency to behavioral manifestations of seizure propagation. PCB exposed animals required significantly more stimulations to reach stage 2 seizures compared to control animals, indicating attenuated focal (amygdala) excitability. A delay in kindling progression in the amygdala stands in contrast to our previous finding of increased susceptibility to brainstem-mediated audiogenic seizures in PCB-exposed animals in response to a an intense auditory stimulus. These seemingly divergent results are not unexpected given the distinct source, type, and mechanistic underpinnings of these different seizure models. A delay in epileptogenesis following focal amygdala stimulation may reflect a decrease in neuroplasticity following developmental PCB exposure consistent with reductions in use-dependent synaptic plasticity that have been reported in the hippocampus of developmentally PCB exposed animals.
Collapse
Affiliation(s)
- Suren B Bandara
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States.
| | - Renee N Sadowski
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States; Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 60801, United States
| | - Susan L Schantz
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States; Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 60801, United States; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Mary E Gilbert
- U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States
| |
Collapse
|
7
|
Li G, Yang J, Ling S. Formaldehyde exposure alters miRNA expression profiles in the olfactory bulb. Inhal Toxicol 2015; 27:387-93. [PMID: 26161908 DOI: 10.3109/08958378.2015.1062580] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
It has been reported that inhaling formaldehyde (FA) causes damage to the central nervous system. However, it is unclear whether FA can disturb the function of the olfactory bulb. Using a microarray, we found that FA inhalation altered the miRNA expression profile. Functional enrichment analysis of the predicted targets of the changed miRNA showed that the enrichment canonical pathways and networks associated with cancer and transcriptional regulation. FA exposure disrupts miRNA expression profiles within the olfactory bulb.
Collapse
Affiliation(s)
- Guifa Li
- Institute of Neuroscience, Medical College, Zhejiang University , Hangzhou , P.R. China
| | | | | |
Collapse
|
8
|
Indoor volatile organic compounds and chemical sensitivity reactions. Clin Dev Immunol 2013; 2013:623812. [PMID: 24228055 PMCID: PMC3818819 DOI: 10.1155/2013/623812] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 09/17/2013] [Indexed: 11/17/2022]
Abstract
Studies of unexplained symptoms observed in chemically sensitive subjects have increased the awareness of the relationship between neurological and immunological diseases due to exposure to volatile organic compounds (VOCs). However, there is no direct evidence that links exposure to low doses of VOCs and neurological and immunological dysfunction. We review animal model data to clarify the role of VOCs in neuroimmune interactions and discuss our recent studies that show a relationship between chronic exposure of C3H mice to low levels of formaldehyde and the induction of neural and immune dysfunction. We also consider the possible mechanisms by which VOC exposure can induce the symptoms presenting in patients with a multiple chemical sensitivity.
Collapse
|
9
|
Yuan Y. Methylmercury: a potential environmental risk factor contributing to epileptogenesis. Neurotoxicology 2012; 33:119-26. [PMID: 22206970 PMCID: PMC3285480 DOI: 10.1016/j.neuro.2011.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 12/12/2011] [Accepted: 12/14/2011] [Indexed: 12/29/2022]
Abstract
Epilepsy or seizure disorder is one of the most common neurological diseases in humans. Although genetic mutations in ion channels and receptors and some other risk factors such as brain injury are linked to epileptogenesis, the underlying cause for the majority of epilepsy cases remains unknown. Gene-environment interactions are thought to play a critical role in the etiology of epilepsy. Exposure to environmental chemicals is an important risk factor. Methylmercury (MeHg) is a prominent environmental neurotoxicant, which targets primarily the central nervous system (CNS). Patients or animals with acute or chronic MeHg poisoning often display epileptic seizures or show increased susceptibility to seizures, suggesting that MeHg exposure may be associated with epileptogenesis. This mini-review highlights the effects of MeHg exposure, especially developmental exposure, on the susceptibility of humans and animals to seizures, and discusses the potential role of low level MeHg exposure in epileptogenesis. This review also proposes that a preferential effect of MeHg on the inhibitory GABAergic system, leading to disinhibition of excitatory glutamatergic function, may be one of the potential mechanisms underlying MeHg-induced changes in seizure susceptibility.
Collapse
Affiliation(s)
- Yukun Yuan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
10
|
Magnavita N. A cluster of neurological signs and symptoms in soil fumigators. J Occup Health 2009; 51:159-63. [PMID: 19212086 DOI: 10.1539/joh.n8007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Nicola Magnavita
- Institute of Occupational Medicine, Catholic University School of Medicine, Largo Gemelli, Roma, Italy.
| |
Collapse
|
11
|
Rylski M, Amborska R, Zybura K, Michaluk P, Bielinska B, Konopacki FA, Wilczynski GM, Kaczmarek L. JunB is a repressor of MMP-9 transcription in depolarized rat brain neurons. Mol Cell Neurosci 2008; 40:98-110. [PMID: 18976709 DOI: 10.1016/j.mcn.2008.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 08/14/2008] [Accepted: 09/17/2008] [Indexed: 11/15/2022] Open
Abstract
Matrix Metalloproteinase-9 (MMP-9) is an extracellularly operating enzyme involved in the synaptic plasticity, hippocampal-dependent long term memory and neurodegeneration. Previous studies have shown its upregulation following seizure-evoking stimuli. Herein, we show that in the rat brain, MMP-9 mRNA expression in response to pentylenetetrazole-evoked neuronal depolarization is transient. Furthermore, we demonstrate that in the rat hippocampus neuronal activation strongly induces JunB expression, simultaneously leading to an accumulation of JunB/FosB complexes onto the -88/-80 bp site of the rat MMP-9 gene promoter in vivo. Surprisingly, manipulations with JunB expression levels in activated neurons revealed its moderate repressive action onto MMP-9 gene expression. Therefore, our study documents the active repressive influence of AP-1 onto MMP-9 transcriptional regulation by the engagement of JunB.
Collapse
Affiliation(s)
- Marcin Rylski
- Department of Molecular and Cellular Neurobiology, Nencki Institute, Pasteura 3, 02-093 Warsaw, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Cl− conduction of GABAA receptor complex of synaptic membranes in the cortex of rats at the middle stage of chronic cerebral epileptization (pharmacological kindling). Bull Exp Biol Med 2007; 144:667-9. [DOI: 10.1007/s10517-007-0400-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Mazza M, Di Nicola M, Della Marca G, Janiri L, Bria P, Mazza S. Bipolar disorder and epilepsy: a bidirectional relation? Neurobiological underpinnings, current hypotheses, and future research directions. Neuroscientist 2007; 13:392-404. [PMID: 17644769 DOI: 10.1177/10738584070130041101] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A number of studies have demonstrated that affective disorders in epilepsy represent a common psychiatric comorbidity; however, most of the classic neuropsychiatric literature focuses on depression, which is actually prominent, but little is known about bipolar depression, and very little about mania, in epilepsy. Biochemical, structural, and functional abnormalities in primary bipolar disorder could also occur secondary to seizure disorders. The kindling paradigm, invoked as a model for understanding seizure disorders, has also been applied to the episodic nature of bipolar disorder. In bipolar patients, changes in second-messenger systems, such as G-proteins, phosphatidylinositol, protein kinase C, myristoylated alanine-rich C kinase substrate, or calcium activity have been described, along with changes in c-fos expression. Common mechanisms at the level of ion channels might include the antikindling and the calcium-antagonistic and potassium outward current-modulating properties of antiepileptic drugs. All these lines of research appear to be converging on a richer understanding of neurobiological underpinnings between bipolar disorder and epilepsy. Mania, which is the other side of the coin in affective disorders, may represent a privileged window into the neurobiology of mood regulation and the neurobiology of epilepsy itself. Future research on intracellular mechanisms might become decisive for a better understanding of the similarities between these two disorders.
Collapse
Affiliation(s)
- Marianna Mazza
- Institute of Psychiatry, Bipolar Disorders Unit, Catholic University of Sacred Heart, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
14
|
Rebrov IG, Karpova MN, Andreev AA, Kalinina MV, Klishina NY, Kuznetsova LV. Effect of classic convulsants on Cl− conductance of the GABAA receptor complex in membranes of cerebral cortex cells at the early stage of kindling. Bull Exp Biol Med 2007; 143:12-4. [DOI: 10.1007/s10517-007-0004-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Rubin DB, Cleland TA. Dynamical mechanisms of odor processing in olfactory bulb mitral cells. J Neurophysiol 2006; 96:555-68. [PMID: 16707721 DOI: 10.1152/jn.00264.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the olfactory system, the contribution of dynamical properties such as neuronal oscillations and spike synchronization to the representation of odor stimuli is a matter of substantial debate. While relatively simple computational models have sufficed to guide current research in large-scale network dynamics, less attention has been paid to modeling the membrane dynamics in bulbar neurons that may be equally essential to sensory processing. We here present a reduced, conductance-based compartmental model of olfactory bulb mitral cells that exhibits the complex dynamical properties observed in these neurons. Specifically, model neurons exhibit intrinsic subthreshold oscillations with voltage-dependent frequencies that shape the timing of stimulus-evoked action potentials. These oscillations rely on a persistent sodium conductance, an inactivating potassium conductance, and a calcium-dependent potassium conductance and are reset via inhibitory input such as that delivered by periglomerular cell shunt inhibition. Mitral cells fire bursts, or clusters, of spikes when continuously stimulated. Burst properties depend critically on multiple currents, but a progressive deinactivation of I(A) over the course of a burst is an important regulator of burst termination. Each of these complex properties exhibits appropriate dynamics and pharmacology as determined by electrophysiological studies. Additionally, we propose that a second, inconsistently observed form of infrathreshold bistability in mitral cells may derive from the activation of ATP-activated potassium currents responding to hypoxic conditions. We discuss the integration of these cellular properties in the larger context of olfactory bulb network operations.
Collapse
Affiliation(s)
- Daniel B Rubin
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
16
|
Arnold Llamosas PA, Arrizabalaga Clemente P, Bonet Agusti M, de la Fuente Brull X. Hipersensibilidad química múltiple en el síndrome del edificio enfermo. Med Clin (Barc) 2006; 126:774-8. [PMID: 16883665 DOI: 10.1157/13089106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The sick building syndrome includes irritation of the eyes and the respiratory tract neurotoxicity affectation and skin problems, which can occur in individuals under improperly ventilated buildings. Poor air quality, as shown in CO2 atmospheric levels of more than 1,000 ppm, results in a pathological exposure to biological and chemical products. We present a work-related case of multiple chemical hypersensitivity from a dialysis unit that had no air renewal. This person, who was summitted to continuous exposure despite having taken corrective measures in the ventilation, developed chronic fatigue syndrome. An acoustic voice observation alerted of the case which led to the analysis of the environmental conditions which confirmed the relationship between multiple chemical hypersensitivity and chronic fatigue syndrome. This case stresses the neglected fact that all health service centres pose a high risk of chemical exposure and that there exists a lack of rigoroursness in putting in practice scientific medical knowledge.
Collapse
Affiliation(s)
- Pablo A Arnold Llamosas
- Inmunología y Medicina Interna, Servicio de Reumatología, Centro Internacional Medicina Avanzada (CIMA), Servei Acreditat Cat Salut, Barcelona, Spain
| | | | | | | |
Collapse
|
17
|
Morimoto K, Fahnestock M, Racine RJ. Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol 2004; 73:1-60. [PMID: 15193778 DOI: 10.1016/j.pneurobio.2004.03.009] [Citation(s) in RCA: 625] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Accepted: 03/24/2004] [Indexed: 01/09/2023]
Abstract
This review focuses on the remodeling of brain circuitry associated with epilepsy, particularly in excitatory glutamate and inhibitory GABA systems, including alterations in synaptic efficacy, growth of new connections, and loss of existing connections. From recent studies on the kindling and status epilepticus models, which have been used most extensively to investigate temporal lobe epilepsy, it is now clear that the brain reorganizes itself in response to excess neural activation, such as seizure activity. The contributing factors to this reorganization include activation of glutamate receptors, second messengers, immediate early genes, transcription factors, neurotrophic factors, axon guidance molecules, protein synthesis, neurogenesis, and synaptogenesis. Some of the resulting changes may, in turn, contribute to the permanent alterations in seizure susceptibility. There is increasing evidence that neurogenesis and synaptogenesis can appear not only in the mossy fiber pathway in the hippocampus but also in other limbic structures. Neuronal loss, induced by prolonged seizure activity, may also contribute to circuit restructuring, particularly in the status epilepticus model. However, it is unlikely that any one structure, plastic system, neurotrophin, or downstream effector pathway is uniquely critical for epileptogenesis. The sensitivity of neural systems to the modulation of inhibition makes a disinhibition hypothesis compelling for both the triggering stage of the epileptic response and the long-term changes that promote the epileptic state. Loss of selective types of interneurons, alteration of GABA receptor configuration, and/or decrease in dendritic inhibition could contribute to the development of spontaneous seizures.
Collapse
Affiliation(s)
- Kiyoshi Morimoto
- Department of Neuropsychiatry, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | | | | |
Collapse
|
18
|
Hayashi H, Kunugita N, Arashidani K, Fujimaki H, Ichikawa M. Long-term exposure to low levels of formaldehyde increases the number of tyrosine hydroxylase-immunopositive periglomerular cells in mouse main olfactory bulb. Brain Res 2004; 1007:192-7. [PMID: 15064152 DOI: 10.1016/j.brainres.2003.12.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2003] [Indexed: 11/24/2022]
Abstract
Multiple chemical sensitivity (MCS) in response to a long-term low-level chemical exposure is as yet an unclarified disorder. To determine the role of olfactory function in the induction of MCS, immunocytochemical analysis of the main olfactory bulb (MOB) was performed after exposure of mice to low levels of formaldehyde. A long-term exposure resulted in an increase in the number of tyrosine hydroxylase-immunopositive periglomerular cells and may affect the neuronal function of the MOB.
Collapse
Affiliation(s)
- Hiroshi Hayashi
- Laboratory of Cell Biology and Anatomy, Department of Basic Techniques and Facilities, Tokyo Metropolitan Institute for Neuroscience, Tokyo Metropolitan Organization for Medical Research, 2-6, Musashidai, Fuchu City, Tokyo 183-8526, Japan
| | | | | | | | | |
Collapse
|
19
|
Wang Y, Zhou D, Wang B, Li H, Chai H, Zhou Q, Zhang S, Stefan H. A kindling model of pharmacoresistant temporal lobe epilepsy in Sprague-Dawley rats induced by Coriaria lactone and its possible mechanism. Epilepsia 2003; 44:475-88. [PMID: 12680996 DOI: 10.1046/j.1528-1157.2003.32502.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE The aim of this study was to develop a new animal model of pharmacoresistant temporal lobe epilepsy (TLE) by repeated intramuscular injection of Coriaria lactone (CL) at subthreshold dosages and to explore the mechanisms that might be involved. METHODS Healthy male Sprague-Dawley rats (n = 160) were randomized into four groups during the kindling process: three groups (n = 50 for each group) received CL injection at subthreshold dosages (1.25, 1.5, and 1.75 mg/kg, respectively), and ten received normal saline (NS) injection as a control group. The maximal human adult dosage of carbamazepine (CBZ), valproate (VPA), and phenytoin (PHT) was administered as monotherapy to different groups of kindled rats for 1 month (n = 20 for each group). Changes in EEG recording, seizure number, intensity (expressed as grade 1-5 according to Racine stage), and duration, including spontaneous seizures during different interventions, were compared. The expression of P-170, a multiple drug resistance gene (MDR1) encoding P-glycoprotein, was measured in brain samples from different groups of experimental rats by using an image analysis and measurement system (ImagePro-Plus 4.0). RESULTS A total of 70 (46.7%) rats were fully kindled with a median of 15 (seven to 20) CL injections. Electrocorticogram (ECoG) including hippocampal (EHG) monitoring revealed the temporal lobe origins of epileptiform potentials, which were consistent with the behavioral changes observed. Spontaneous seizures occurred with frequency and diurnal patterns similar to those of human TLE. The antiepileptic drugs (AEDs) tested lacked a satisfactory seizure control. The maximal P-170 expression was in the kindled rats with AED treatment; the next highest was in the kindled rats without AED intervention. Nonkindled SD rats with CL injection also had increased P-170 expression compared with control SD rats. CONCLUSIONS The study provided a simple and stable animal TLE kindling model with pharmacoresistant properties. The pharmacoresistance observed in the kindled rats to CBZ, VPA, and PHT at maximal human adult dosages together with the increased P-170 expression was a distinct feature of this model. This model might be used in further investigations of the mechanisms involved in pharmacoresistant TLE and for developing new AEDs.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- Animals
- Anticonvulsants/pharmacology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drug Resistance/genetics
- Drugs, Chinese Herbal
- Electroencephalography/drug effects
- Epilepsy, Temporal Lobe/chemically induced
- Epilepsy, Temporal Lobe/pathology
- Epilepsy, Temporal Lobe/physiopathology
- Gene Expression/drug effects
- Glycoproteins/genetics
- Hippocampus/drug effects
- Hippocampus/pathology
- Hippocampus/physiopathology
- Humans
- Injections, Intramuscular
- Kindling, Neurologic/drug effects
- Kindling, Neurologic/genetics
- Kindling, Neurologic/physiology
- Lactones/pharmacology
- Male
- Phytotherapy
- Rats
- Rats, Sprague-Dawley
- Temporal Lobe/drug effects
- Temporal Lobe/pathology
- Temporal Lobe/physiopathology
Collapse
Affiliation(s)
- Ying Wang
- Sino-German Epilepsy Center, Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Pall ML. NMDA sensitization and stimulation by peroxynitrite, nitric oxide, and organic solvents as the mechanism of chemical sensitivity in multiple chemical sensitivity. FASEB J 2002; 16:1407-17. [PMID: 12205032 DOI: 10.1096/fj.01-0861hyp] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Multiple chemical sensitivity (MCS) is a condition where previous exposure to hydrophobic organic solvents or pesticides appears to render people hypersensitive to a wide range of chemicals, including organic solvents. The hypersensitivity is often exquisite, with MCS individuals showing sensitivity that appears to be at least two orders of magnitude greater than that of normal individuals. This paper presents a plausible set of interacting mechanisms to explain such heightened sensitivity. It is based on two earlier theories of MCS: the elevated nitric oxide/peroxynitrite theory and the neural sensitization theory. It is also based on evidence implicating excessive NMDA activity in MCS. Four sensitization mechanisms are proposed to act synergistically, each based on known physiological mechanisms: Nitric oxide-mediated stimulation of neurotransmitter (glutamate) release; peroxynitrite-mediated ATP depletion and consequent hypersensitivity of NMDA receptors; peroxynitrite-mediated increased permeability of the blood-brain barrier, producing increased accessibility of organic chemicals to the central nervous system; and nitric oxide inhibition of cytochrome P450 metabolism. Evidence for each of these mechanisms, which may also be involved in Parkinson's disease, is reviewed. These interacting mechanisms provide explanations for diverse aspects of MCS and a framework for hypothesis-driven MCS research.
Collapse
Affiliation(s)
- Martin L Pall
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-4660, USA.
| |
Collapse
|