1
|
Bharti D, Tikka M, Lee SY, Bok EY, Lee HJ, Rho GJ. Female Germ Cell Development, Functioning and Associated Adversities under Unfavorable Circumstances. Int J Mol Sci 2021; 22:1979. [PMID: 33671303 PMCID: PMC7922109 DOI: 10.3390/ijms22041979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 01/07/2023] Open
Abstract
In the present era, infertility is one of the major issues which restricts many couples to have their own children. Infertility is the inability to achieve a clinical pregnancy after regular unprotected sexual intercourse for the period of one year or more. Various factors including defective male or female germ cell development, unhealthy and improper lifestyles, diseases like cancer and associated chemo-or-radiation therapies, congenital disorders, etc., may be responsible for infertility. Therefore, it is highly important to understand the basic concepts of germ cell development including primordial germ cell (PGC) formation, specification, migration, entry to genital ridges and their molecular mechanisms, activated pathways, paracrine and autocrine signaling, along with possible alteration which can hamper germ cell development and can cause adversities like cancer progression and infertility. Knowing all these aspects in a proper way can be very much helpful in improving our understanding about gametogenesis and finding possible ways to cure related disorders. Here in this review, various aspects of gametogenesis especially female gametes and relevant factors causing functional impairment have been thoroughly discussed.
Collapse
Affiliation(s)
- Dinesh Bharti
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-Y.L.); (E.-Y.B.)
| | - Manisha Tikka
- Department of Zoology and Environmental Sciences, Punjabi University, Patiala 147002, India;
| | - Sang-Yun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-Y.L.); (E.-Y.B.)
| | - Eun-Yeong Bok
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-Y.L.); (E.-Y.B.)
| | - Hyeon-Jeong Lee
- Department of Medicine, University of California, San Diego, CA 92093-0021, USA;
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-Y.L.); (E.-Y.B.)
| |
Collapse
|
2
|
Vandame P, Spriet C, Trinel D, Gelaude A, Caillau K, Bompard C, Biondi E, Bodart JF. The spatio-temporal dynamics of PKA activity profile during mitosis and its correlation to chromosome segregation. Cell Cycle 2015; 13:3232-40. [PMID: 25485503 DOI: 10.4161/15384101.2014.950907] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The cyclic adenosine monophosphate dependent kinase protein (PKA) controls a variety of cellular processes including cell cycle regulation. Here, we took advantages of genetically encoded FRET-based biosensors, using an AKAR-derived biosensor to characterize PKA activity during mitosis in living HeLa cells using a single-cell approach. We measured PKA activity changes during mitosis. HeLa cells exhibit a substantial increase during mitosis, which ends with telophase. An AKAREV T>A inactive form of the biosensor and H89 inhibitor were used to ascertain for the specificity of the PKA activity measured. On a spatial point of view, high levels of activity near to chromosomal plate during metaphase and anaphase were detected. By using the PKA inhibitor H89, we assessed the role of PKA in the maintenance of a proper division phenotype. While this treatment in our hands did not impaired cell cycle progression in a drastic manner, inhibition of PKA leads to a dramatic increase in chromososme misalignement on the spindle during metaphase that could result in aneuploidies. Our study emphasizes the insights that can be gained with genetically encoded FRET-based biosensors, which enable to overcome the shortcomings of classical methologies and unveil in vivo PKA spatiotemporal profiles in HeLa cells.
Collapse
Affiliation(s)
- Pauline Vandame
- a Laboratoire de Régulation des Signaux de division; EA4479; Université Lille1; Université Lille Nord de France; Villeneuve d'Ascq, France Institut Fédératif de Recherche (IFR)147; Site de Recherche Intégré en Cancérologie (SIRIC) ONCOLILLE
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Lomas O, Zaccolo M. Phosphodiesterases maintain signaling fidelity via compartmentalization of cyclic nucleotides. Physiology (Bethesda) 2014; 29:141-9. [PMID: 24583770 PMCID: PMC3949206 DOI: 10.1152/physiol.00040.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Novel technological advances have improved our understanding of how cyclic nucleotides are able to convey signals faithfully between cellular compartments. Phosphodiesterases play a crucial role in shaping these signals in health and disease. The concept of compartmentalization is guiding the search for therapies that have the potential to offer greater efficacy and tolerability compared with current treatments.
Collapse
Affiliation(s)
- Oliver Lomas
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom; and
| | | |
Collapse
|
4
|
Kim TJ, Sun J, Lu S, Zhang J, Wang Y. The regulation of β-adrenergic receptor-mediated PKA activation by substrate stiffness via microtubule dynamics in human MSCs. Biomaterials 2014; 35:8348-8356. [PMID: 24973298 DOI: 10.1016/j.biomaterials.2014.06.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 06/07/2014] [Indexed: 12/31/2022]
Abstract
The mechanical microenvironment surrounding cells has a significant impact on cellular function. One prominent example is that the stiffness of the substrate directs stem cell differentiation. However, the underlying mechanisms of how mechanical cues affect stem cell functions are largely elusive. Here, we report that in human mesenchymal stem cells (HMSCs), substrate stiffness can regulate cellular responses to a β-adrenergic receptor (β-AR) agonist, Isoproterenol (ISO). Fluorescence resonance energy transfer-based A-Kinase Activity Reporter revealed that HMSCs displayed low activity of ISO-induced protein kinase A (PKA) signal on soft substrate, whereas a significantly higher activity can be observed on hard substrate. Meanwhile, there is an increasing ISO-induced internalization of β2-AR with increasing substrate stiffness. Further experiments revealed that the effects of substrate stiffness on both events were disrupted by interfering the polymerization of microtubules, but not actin filaments. Mechanistic investigation revealed that inhibiting ISO-induced PKA activation abolished β2-AR internalization and vice versa, forming a feedback loop. Thus, our results suggest that the cellular sensing mechanism of its mechanical environment, such as substrate stiffness, affects its response to chemical stimulation of β-AR signaling and PKA activation through the coordination of microtubules, which may contribute to how mechanical cues direct stem cell differentiation.
Collapse
Affiliation(s)
- Tae-Jin Kim
- Neuroscience Program, Center for Biophysics and Computational Biology, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Bioengineering and the Beckman Institute for Advanced Science and Technology, Center for Biophysics and Computational Biology, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jie Sun
- Department of Bioengineering and the Beckman Institute for Advanced Science and Technology, Center for Biophysics and Computational Biology, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Integrative and Molecular Physiology, Center for Biophysics and Computational Biology, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shaoying Lu
- Department of Bioengineering and the Beckman Institute for Advanced Science and Technology, Center for Biophysics and Computational Biology, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Bioengineering, University of California at San Diego, CA 92093, USA
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, and the Solomon H. Snyder Department of Neuroscience and Department of Oncology, the Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yingxiao Wang
- Neuroscience Program, Center for Biophysics and Computational Biology, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Bioengineering and the Beckman Institute for Advanced Science and Technology, Center for Biophysics and Computational Biology, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Pharmacology and Molecular Sciences, and the Solomon H. Snyder Department of Neuroscience and Department of Oncology, the Johns Hopkins University, Baltimore, MD 21205, USA.,Department of Bioengineering, University of California at San Diego, CA 92093, USA
| |
Collapse
|
5
|
Terrin A, Monterisi S, Stangherlin A, Zoccarato A, Koschinski A, Surdo NC, Mongillo M, Sawa A, Jordanides NE, Mountford JC, Zaccolo M. PKA and PDE4D3 anchoring to AKAP9 provides distinct regulation of cAMP signals at the centrosome. ACTA ACUST UNITED AC 2012; 198:607-21. [PMID: 22908311 PMCID: PMC3514031 DOI: 10.1083/jcb.201201059] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Control of cell cycle progression relies on unique regulation of centrosomal
cAMP/PKA signals through PKA and PDE4D3 interaction with the A kinase anchoring
protein AKAP9. Previous work has shown that the protein kinase A (PKA)–regulated
phosphodiesterase (PDE) 4D3 binds to A kinase–anchoring proteins (AKAPs).
One such protein, AKAP9, localizes to the centrosome. In this paper, we
investigate whether a PKA–PDE4D3–AKAP9 complex can generate
spatial compartmentalization of cyclic adenosine monophosphate (cAMP) signaling
at the centrosome. Real-time imaging of fluorescence resonance energy transfer
reporters shows that centrosomal PDE4D3 modulated a dynamic microdomain within
which cAMP concentration selectively changed over the cell cycle.
AKAP9-anchored, centrosomal PKA showed a reduced activation threshold as a
consequence of increased autophosphorylation of its regulatory subunit at S114.
Finally, disruption of the centrosomal cAMP microdomain by local displacement of
PDE4D3 impaired cell cycle progression as a result of accumulation of cells in
prophase. Our findings describe a novel mechanism of PKA activity regulation
that relies on binding to AKAPs and consequent modulation of the enzyme
activation threshold rather than on overall changes in cAMP levels. Further, we
provide for the first time direct evidence that control of cell cycle
progression relies on unique regulation of centrosomal cAMP/PKA signals.
Collapse
Affiliation(s)
- Anna Terrin
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Nguyen C, Feng C, Zhan M, Cross AS, Goldblum SE. Bacillus anthracis-derived edema toxin (ET) counter-regulates movement of neutrophils and macromolecules through the endothelial paracellular pathway. BMC Microbiol 2012; 12:2. [PMID: 22230035 PMCID: PMC3277462 DOI: 10.1186/1471-2180-12-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 01/09/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A common finding amongst patients with inhalational anthrax is a paucity of polymorphonuclear leukocytes (PMNs) in infected tissues in the face of abundant circulating PMNs. A major virulence determinant of anthrax is edema toxin (ET), which is formed by the combination of two proteins produced by the organism, edema factor (EF), which is an adenyl cyclase, and protective antigen (PA). Since cAMP, a product of adenyl cyclase, is known to enhance endothelial barrier integrity, we asked whether ET might decrease extravasation of PMNs into tissues through closure of the paracellular pathway through which PMNs traverse. RESULTS Pretreatment of human microvascular endothelial cell(EC)s of the lung (HMVEC-L) with ET decreased interleukin (IL)-8-driven transendothelial migration (TEM) of PMNs with a maximal reduction of nearly 60%. This effect required the presence of both EF and PA. Conversely, ET did not diminish PMN chemotaxis in an EC-free system. Pretreatment of subconfluent HMVEC-Ls decreased transendothelial 14 C-albumin flux by ~ 50% compared to medium controls. Coadministration of ET with either tumor necrosis factor-α or bacterial lipopolysaccharide, each at 100 ng/mL, attenuated the increase of transendothelial 14 C-albumin flux caused by either agent alone. The inhibitory effect of ET on TEM paralleled increases in protein kinase A (PKA) activity, but could not be blocked by inhibition of PKA with either H-89 or KT-5720. Finally, we were unable to replicate the ET effect with either forskolin or 3-isobutyl-1-methylxanthine, two agents known to increase cAMP. CONCLUSIONS We conclude that ET decreases IL-8-driven TEM of PMNs across HMVEC-L monolayers independent of cAMP/PKA activity.
Collapse
Affiliation(s)
- Chinh Nguyen
- Southern Arizona Veterans Affairs Health Care Systems, Tucson, AZ 85723, USA.
| | | | | | | | | |
Collapse
|
7
|
Searle JS, Wood MD, Kaur M, Tobin DV, Sanchez Y. Proteins in the nutrient-sensing and DNA damage checkpoint pathways cooperate to restrain mitotic progression following DNA damage. PLoS Genet 2011; 7:e1002176. [PMID: 21779180 PMCID: PMC3136438 DOI: 10.1371/journal.pgen.1002176] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 05/23/2011] [Indexed: 11/18/2022] Open
Abstract
Checkpoint pathways regulate genomic integrity in part by blocking anaphase until all chromosomes have been completely replicated, repaired, and correctly aligned on the spindle. In Saccharomyces cerevisiae, DNA damage and mono-oriented or unattached kinetochores trigger checkpoint pathways that bifurcate to regulate both the metaphase to anaphase transition and mitotic exit. The sensor-associated kinase, Mec1, phosphorylates two downstream kinases, Chk1 and Rad53. Activation of Chk1 and Rad53 prevents anaphase and causes inhibition of the mitotic exit network. We have previously shown that the PKA pathway plays a role in blocking securin and Clb2 destruction following DNA damage. Here we show that the Mec1 DNA damage checkpoint regulates phosphorylation of the regulatory (R) subunit of PKA following DNA damage and that the phosphorylated R subunit has a role in restraining mitosis following DNA damage. In addition we found that proteins known to regulate PKA in response to nutrients and stress either by phosphorylation of the R subunit or regulating levels of cAMP are required for the role of PKA in the DNA damage checkpoint. Our data indicate that there is cross-talk between the DNA damage checkpoint and the proteins that integrate nutrient and stress signals to regulate PKA. Previous studies showed that phosphorylation of a subset of regulatory (R) subunits of the cAMP-dependent protein kinase (PKA) occurred under conditions that down-regulate global PKA activity, including growth on non-fermentable carbon sources. However, the role of the phosphorylation sites has not been elucidated. Addition of glucose to cells growing on a non-fermentable carbon source causes a transient increase of cAMP and PKA activity, which drives cells into S phase. A second peak in cAMP was proposed to restrain mitosis if the daughter cell had not reached an appropriate size. We identified a role for PKA in restraining mitosis following DNA damage. Here we provide evidence of cross-talk between the DNA damage checkpoint and PKA by phosphorylation of the R subunit. The R subunit phosphorylation sites and cAMP are necessary for the role of PKA following DNA damage. We propose that activation of PKA in response to DNA damage occurs in two steps: the phosphorylation of a subset of R subunits, probably to allow localized activation of these complexes, and cAMP to activate PKA. Our work suggests that the checkpoint and nutrient-sensing pathways share a signaling node to restrain mitosis following nutrient-induced rapid transition through the cell cycle and DNA damage.
Collapse
Affiliation(s)
- Jennifer S. Searle
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire, United States of America
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Matthew D. Wood
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - Mandeep Kaur
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - David V. Tobin
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - Yolanda Sanchez
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
8
|
Huang HS, Turner DL, Thompson RC, Uhler MD. Ascl1-induced neuronal differentiation of P19 cells requires expression of a specific inhibitor protein of cyclic AMP-dependent protein kinase. J Neurochem 2011; 120:667-83. [PMID: 21623794 DOI: 10.1111/j.1471-4159.2011.07332.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
cAMP-dependent protein kinase (PKA) plays a critical role in nervous system development by modulating sonic hedgehog and bone morphogenetic protein signaling. In the current studies, P19 embryonic carcinoma cells were neuronally differentiated by expression of the proneural basic helix-loop-helix transcription factor Ascl1. After expression of Ascl1, but prior to expression of neuronal markers such as microtubule associated protein 2 and neuronal β-tubulin, P19 cells demonstrated a large, transient increase in both mRNA and protein for the endogenous protein kinase inhibitor (PKI)β. PKIβ-targeted shRNA constructs both reduced the levels of PKIβ expression and blocked the neuronal differentiation of P19 cells. This inhibition of differentiation was rescued by transfection of a shRNA-resistant expression vector for the PKIβ protein, and this rescue required the PKA-specific inhibitory sequence of the PKIβ protein. PKIβ played a very specific role in the Ascl1-mediated differentiation process as other PKI isoforms were unable to rescue the deficit conferred by shRNA-mediated knockdown of PKIβ. Our results define a novel requirement for PKIβ and its inhibition of PKA during neuronal differentiation of P19 cells.
Collapse
Affiliation(s)
- Holly S Huang
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | | | | | | |
Collapse
|
9
|
Shen W, Ahmad F, Hockman S, Ma J, Omi H, Raghavachari N, Manganiello V. Female infertility in PDE3A(-/-) mice: polo-like kinase 1 (Plk1) may be a target of protein kinase A (PKA) and involved in meiotic arrest of oocytes from PDE3A(-/-) mice. Cell Cycle 2010; 9:4720-34. [PMID: 21099356 PMCID: PMC3048038 DOI: 10.4161/cc.9.23.14090] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 10/29/2010] [Accepted: 11/02/2010] [Indexed: 01/01/2023] Open
Abstract
Mechanisms of cAMP/PKA-induced meiotic arrest in oocytes are not completely identified. In cultured, G2/M-arrested PDE3A(-/-) murine oocytes, elevated PKA activity was associated with inactivation of Cdc2 and Plk1, and inhibition of phosphorylation of histone H3 (S10) and of dephosphorylation of Cdc25B (S323) and Cdc2 (Thr14/Tyr15). In cultured WT oocytes, PKA activity was transiently reduced and then increased to that observed in PDE3A(-/-) oocytes; Cdc2 and Plk1 were activated, phosphorylation of histone H3 (S10) and dephosphorylation of Cdc25B (S323) and Cdc2 (Thr14/Tyr15) were observed. In WT oocytes, PKAc were rapidly translocated into nucleus, and then to the spindle apparatus, but in PDE3A(-/-) oocytes, PKAc remained in the cytosol. Plk1 was reactivated by incubation of PDE3A(-/-) oocytes with PKA inhibitor, Rp-cAMPS. PDE3A was co-localized with Plk1 in WT oocytes, and co-immunoprecipitated with Plk1 in WT ovary and Hela cells. PKAc phosphorylated rPlk1 and Hela cell Plk1 and inhibited Plk1 activity in vitro. Our results suggest that PKA-induced inhibition of Plk1 may be critical in oocyte meiotic arrest and female infertility in PDE3A(-/-) mice.
Collapse
Affiliation(s)
- Weixing Shen
- Translational Medicine Branch (TMB); National Heart, Lung and Blood Institute (NHLBI); National Institutes of Health; Bethesda, MD USA
| | - Faiyaz Ahmad
- Translational Medicine Branch (TMB); National Heart, Lung and Blood Institute (NHLBI); National Institutes of Health; Bethesda, MD USA
| | - Steven Hockman
- Translational Medicine Branch (TMB); National Heart, Lung and Blood Institute (NHLBI); National Institutes of Health; Bethesda, MD USA
| | - John Ma
- Translational Medicine Branch (TMB); National Heart, Lung and Blood Institute (NHLBI); National Institutes of Health; Bethesda, MD USA
| | - Hitoshi Omi
- Translational Medicine Branch (TMB); National Heart, Lung and Blood Institute (NHLBI); National Institutes of Health; Bethesda, MD USA
| | - Nalini Raghavachari
- Genomics Core Facility; Pulmonary and Vascular Medicine Branch (PVMB); National Heart, Lung and Blood Institute (NHLBI); National Institutes of Health; Bethesda, MD USA
| | - Vincent Manganiello
- Translational Medicine Branch (TMB); National Heart, Lung and Blood Institute (NHLBI); National Institutes of Health; Bethesda, MD USA
| |
Collapse
|
10
|
The cAMP-dependent protein kinase inhibitor H-89 attenuates the bioluminescence signal produced by Renilla Luciferase. PLoS One 2009; 4:e5642. [PMID: 19461967 PMCID: PMC2680982 DOI: 10.1371/journal.pone.0005642] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 04/21/2009] [Indexed: 11/19/2022] Open
Abstract
Background Investigations into the regulation and functional roles of kinases such as cAMP-dependent protein kinase (PKA) increasingly rely on cellular assays. Currently, there are a number of bioluminescence-based assays, for example reporter gene assays, that allow the study of the regulation, activity, and functional effects of PKA in the cellular context. Additionally there are continuing efforts to engineer improved biosensors that are capable of detecting real-time PKA signaling dynamics in cells. These cell-based assays are often utilized to test the involvement of PKA-dependent processes by using H-89, a reversible competitive inhibitor of PKA. Principal Findings We present here data to show that H-89, in addition to being a competitive PKA inhibitor, attenuates the bioluminescence signal produced by Renilla luciferase (RLuc) variants in a population of cells and also in single cells. Using 10 µM of luciferase substrate and 10 µM H-89, we observed that the signal from RLuc and RLuc8, an eight-point mutation variant of RLuc, in cells was reduced to 50% (±15%) and 54% (±14%) of controls exposed to the vehicle alone, respectively. In vitro, we showed that H-89 decreased the RLuc8 bioluminescence signal but did not compete with coelenterazine-h for the RLuc8 active site, and also did not affect the activity of Firefly luciferase. By contrast, another competitive inhibitor of PKA, KT5720, did not affect the activity of RLuc8. Significance The identification and characterization of the adverse effect of H-89 on RLuc signal will help deconvolute data previously generated from RLuc-based assays looking at the functional effects of PKA signaling. In addition, for the current application and future development of bioluminscence assays, KT5720 is identified as a more suitable PKA inhibitor to be used in conjunction with RLuc-based assays. These principal findings also provide an important lesson to fully consider all of the potential effects of experimental conditions on a cell-based assay readout before drawing conclusions from the data.
Collapse
|
11
|
Stenzinger A, Schreiner D, Koch P, Hofer HW, Wimmer M. Cell and molecular biology of the novel protein tyrosine-phosphatase-interacting protein 51. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 275:183-246. [PMID: 19491056 DOI: 10.1016/s1937-6448(09)75006-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This chapter examines the current state of knowledge about the expression profile, as well as biochemical properties and biological functions of the evolutionarily conserved protein PTPIP51. PTPIP51 is apparently expressed in splice variants and shows a particularly high expression in epithelia, skeletal muscle, placenta, and germ cells, as well as during mammalian development and in cancer. PTPIP51 is an in vitro substrate of Src- and protein kinase A, the PTP1B/TCPTP protein tyrosine phosphatases and interacts with 14-3-3 proteins, the Nuf2 kinetochore protein, the ninein-interacting CGI-99 protein, diacylglycerol kinase alpha, and also with itself forming dimers and trimers. Although the precise cellular function remains to be elucidated, the current data implicate PTPIP51 in signaling cascades mediating proliferation, differentiation, apoptosis, and motility.
Collapse
Affiliation(s)
- Albrecht Stenzinger
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | | | | | | | | |
Collapse
|
12
|
Wang H, Li M, Lin W, Wang W, Zhang Z, Rayburn ER, Lu J, Chen D, Yue X, Shen F, Jiang F, He J, Wei W, Zeng X, Zhang R. Extracellular activity of cyclic AMP-dependent protein kinase as a biomarker for human cancer detection: distribution characteristics in a normal population and cancer patients. Cancer Epidemiol Biomarkers Prev 2007; 16:789-95. [PMID: 17416772 DOI: 10.1158/1055-9965.epi-06-0367] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The overexpression of cyclic AMP (cAMP)-dependent protein kinase (PKA) has been reported in patients with cancer, and PKA inhibitors have been tested in clinical trials as a novel cancer therapy. The present study was designed to characterize the population distribution of extracellular activity of cAMP-dependent protein kinase (ECPKA) and its potential value as a biomarker for cancer detection and monitoring of cancer therapy. The population distribution of ECPKA activity was determined in serum samples from a Chinese population consisting of a total of 603 subjects (374 normal healthy volunteers and 229 cancer patients). The serum ECPKA was determined by a validated sensitive radioassay, and its diagnostic values (including positive and negative predictive values) were analyzed. The majority of normal subjects (>70%) have undetectable or very low levels of serum ECPKA. In contrast, the majority of cancer patients (>85%) have high levels of ECPKA. The mean ECPKA activity in the sera of cancer patients was 10.98 units/mL, 5-fold higher than that of the healthy controls (2.15 units/mL; P < 0.001). In both normal subjects and cancer patients, gender and age had no significant influence on the serum ECPKA. Among factors considered, logistic analysis revealed that the disease (cancer) is the only factor contributing to the elevation of ECPKA activity in cancer patients. In conclusion, ECPKA may function as a cancer marker for various human cancers and can be used in cancer detection and for monitoring response to therapy with other screening or diagnostic techniques.
Collapse
Affiliation(s)
- Hui Wang
- Division of Clinical Pharmacology, Department of Pharmacology and Toxicology, University of Alabama at Birmingham, VH 113, Box 600, 1670 University Boulevard, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lingle WL, Lukasiewicz K, Salisbury JL. Deregulation of the centrosome cycle and the origin of chromosomal instability in cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 570:393-421. [PMID: 18727509 DOI: 10.1007/1-4020-3764-3_14] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although we have begun to tap into the mechanisms behind Boveri's initial observation that supernumerary centrosomes cause chromosome missegregation in sea urchin eggs, there is still much left to discover with regard to chromosomal instability in cancer. Many of the molecular players involved in regulation of the centrosome and cell cycles, and the coupling of the two cycles to produce a bipolar mitotic spindle have been identified. One theme that has become apparent is that cross talk and interrelatedness of the pathways serve to provide redundant mechanisms to maintain genomic integrity. In spite of this, cells occasionally fall prey to insults that initiate and maintain the chromosomal instability that results in viable malignant tumours. Deregulation of centrosome structure is an integral aspect of the origin of chromosomal instability in many cancers. There are numerous routes to centrosome amplification including: environmental insults such as ionising radiation and exposure to estrogen (Li et al., 2005); failure of cytokinesis; and activating mutations in key regulators of centrosome structure and function. There are two models for initiation of centrosome amplification (Figure 2). In the first, centrosome duplication and chromosome replication remain coupled and cells enter G2 with 4N chromosomes and duplicated centrosomes. However, these cells may fail to complete mitosis, and thus reenter G1 as tetraploid cells with amplified centrosomes. In the second, the centrosome cycle is uncoupled from chromosome replication and cells go through one or more rounds of centriole/centrosome duplication in the absence of chromosome replication. If these cells then go through chromosome replication accompanied by another round of centrosome duplication, cells complete G2 with 4N chromosomes and more than 2 centrosomes, and therefore are predisposed to generate multipolar mitotic spindles. Fragmentation of centrosomes due to ionising radiation is a variation of the second model. Once centrosome amplification is present, even in a diploid cell, that cell has the potential to yield viable aneuploid progeny. The telophase cell in Figure 3C illustrates this scenario. In a normal telophase configuration, the total number of chromosomes is 92 (resulting from the segregation of 46 pairs of chromatids), with each daughter nucleus containing 46 individual chromosomes. Based on the number of kinetochore signals present, the lower nucleus in Figure 3C has approximately 28 chromosomes, and the elongate upper nucleus has approximately 60, for a total of 88. Due to superimposition of kinetochores in this maximum projection image, 88 is an underestimate of the actual number of kinetochores and is not significantly different from the expected total of 92. A cell resulting from the lower nucleus with only around 28 chromosomes would probably not be viable, much as Boveri's experiments indicated. However, the upper nucleus with at least 60 chromosomes could be viable. This cell would enter G1 as hypotriploid (69 chromosomes = triploid) with 2 centrosomes. During S and G2, the centrosomes and chromosomes would double, and the following mitosis could be tetrapolar with a 6N chromosome content. When centrosome amplification is accompanied by permissive lapses in cell cycle checkpoints, the potential for malignant growth is present. These lapses could result from specific genetic mutations and amplifications, epigenetic gene silencing, or from massive chromosomal instability caused by the centrosome amplification. Centrosome amplification, therefore, can serve to exacerbate and/or generate genetic instabilities associated with cancers.
Collapse
Affiliation(s)
- Wilma L Lingle
- Mayo Clinic College of Medicine, Mayo Clinic Foundation, Mayo Clinic Cancer Center, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
14
|
Abstract
Carney complex (CNC) is a unique multiple endocrine neoplasia syndrome (MIM 160980) which is characterized by unusual biochemical features (chronic hypersomatotropinemia and paradoxical responses of cortisol production to glucocorticoids) and multi-tissue involvement. The gene coding for the protein kinase A (PKA) type 1alpha regulatory subunit, PRKAR1A, had been mapped to 17q22-24, one of the genetic loci involved in CNC, and allelic analysis using probes from this chromosomal region revealed consistent changes in CNC tumors. Sequencing of the PRKAR1A gene in over 100 kindreds showed a number of mutations; in almost all cases, the sequence change was predicted to lead to a premature stop codon, and mutant mRNAs were subject to nonsense-mediated mRNA decay. In CNC cells, PKA activity assays showed increased stimulation by cAMP. Few mutations that did not lead to a premature stop codon have been described; they are also associated with increased PKA activity. PRKAR1A has been investigated in sporadic endocrine tumors; it does not appear to be mutated in pituitary adenomas, but both thyroid and adrenal neoplasms have been found to harbor somatic mutations of this gene. Animal models of the disease have been developed. CNC is the first human disease caused by mutations of one of the subunits of the PKA holoenzyme, a critical component of numerous cellular signaling systems. This has wide implications for cAMP involvement in endocrine tumorigenesis.
Collapse
Affiliation(s)
- Sosipatros A Boikos
- Section on Endocrinology and Genetics, Developmental Endocrinology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Md., USA
| | | |
Collapse
|
15
|
Abstract
Hereditary origin of a tumor helps toward early discovery of its mutated gene; for example, it supports the compilation of a DNA panel from index cases to identify that gene by finding mutations in it. The gene for a hereditary tumor may contribute also to common tumors. For some syndromes, such as hereditary paraganglioma, several genes can cause a similar syndrome. For other syndromes, such as multiple endocrine neoplasia 2, one gene supports variants of a syndrome. Onset usually begins earlier and in more locations with hereditary than sporadic tumors. Mono- or oligoclonal ("clonal") tumor usually implies a postnatal delay, albeit less delay than for sporadic tumor, to onset and potential for cancer. Hormone excess from a polyclonal tissue shows onset at birth and no benefit from subtotal ablation of the secreting organ. Genes can cause neoplasms through stepwise loss of function, gain of function, or combinations of these. Polyclonal hormonal excess reflects abnormal gene dosage or effect, such as activation or haploinsufficiency. Polyclonal hyperplasia can cause the main endpoint of clinical expression in some syndromes or can be a precursor to clonal progression in others. Gene discovery is usually the first step toward clarifying the molecule and pathway mutated in a syndrome. Most mutated pathways in hormone excess states are only partly understood. The bases for tissue specificity of hormone excess syndromes are usually uncertain. In a few syndromes, tissue selectivity arises from mutation in the open reading frame of a regulatory gene (CASR, TSHR) with selective expression driven by its promoter. Polyclonal excess of a hormone is usually from a defect in the sensor system for an extracellular ligand (e.g., calcium, glucose, TSH). The final connections of any of these polyclonal or clonal pathways to hormone secretion have not been identified. In many cases, monoclonal proliferation causes hormone excess, probably as a secondary consequence of accumulation of cells with coincidental hormone-secretory ability.
Collapse
Affiliation(s)
- Stephen J Marx
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases/NIH, Building 10, Room 9C-101, 10 Center Drive, MSC 1802, Bethesda, MD 20892-1802, USA.
| | | |
Collapse
|
16
|
Harkness TAA, Shea KA, Legrand C, Brahmania M, Davies GF. A functional analysis reveals dependence on the anaphase-promoting complex for prolonged life span in yeast. Genetics 2004; 168:759-74. [PMID: 15514051 PMCID: PMC1448841 DOI: 10.1534/genetics.104.027771] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Accepted: 06/21/2004] [Indexed: 11/18/2022] Open
Abstract
Defects in anaphase-promoting complex (APC) activity, which regulates mitotic progression and chromatin assembly, results in genomic instability, a hallmark of premature aging and cancer. We investigated whether APC-dependent genomic stability affects aging and life span in yeast. Utilizing replicative and chronological aging assays, the APC was shown to promote longevity. Multicopy expression of genes encoding Snf1p (MIG1) and PKA (PDE2) aging-pathway components suppressed apc5CA phenotypes, suggesting their involvement in APC-dependent longevity. While it is known that PKA inhibits APC activity and reduces life span, a link between the Snf1p-inhibited Mig1p transcriptional modulator and the APC is novel. Our mutant analysis supports a model in which Snf1p promotes extended life span by inhibiting the negative influence of Mig1p on the APC. Consistent with this, we found that increased MIG1 expression reduced replicative life span, whereas mig1Delta mutations suppressed the apc5CA chronological aging defect. Furthermore, Mig1p and Mig2p activate APC gene transcription, particularly on glycerol, and mig2Delta, but not mig1Delta, confers a prolonged replicative life span in both APC5 and acp5CA cells. However, glucose repression of APC genes was Mig1p and Mig2p independent, indicating the presence of an uncharacterized factor. Therefore, we propose that APC-dependent genomic stability is linked to prolonged longevity by the antagonistic regulation of the PKA and Snf1p pathways.
Collapse
Affiliation(s)
- Troy A A Harkness
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | | | | | | |
Collapse
|
17
|
Singh KK, Rasmussen AK, Rasmussen LJ. Genome-wide analysis of signal transducers and regulators of mitochondrial dysfunction in Saccharomyces cerevisiae. Ann N Y Acad Sci 2004; 1011:284-98. [PMID: 15126304 DOI: 10.1007/978-3-662-41088-2_27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Mitochondrial dysfunction is a hallmark of cancer cells. However, genetic response to mitochondrial dysfunction during carcinogenesis is unknown. To elucidate genetic response to mitochondrial dysfunction we used Saccharomyces cerevisiae as a model system. We analyzed genome-wide expression of nuclear genes involved in signal transduction and transcriptional regulation in a wild-type yeast and a yeast strain lacking the mitochondrial genome (rho(0)). Our analysis revealed that the gene encoding cAMP-dependent protein kinase subunit 3 (PKA3) was upregulated. However, the gene encoding cAMP-dependent protein kinase subunit 2 (PKA2) and the VTC1, PTK2, TFS1, CMK1, and CMK2 genes, involved in signal transduction, were downregulated. Among the known transcriptional factors, OPI1, MIG2, INO2, and ROX1 belonged to the upregulated genes, whereas MSN4, MBR1, ZMS1, ZAP1, TFC3, GAT1, ADR1, CAT8, and YAP4 including RFA1 were downregulated. RFA1 regulates DNA repair genes at the transcriptional level. RFA is also involved directly in DNA recombination, DNA replication, and DNA base excision repair. Downregulation of RFA1 in rho(0) cells is consistent with our finding that mitochondrial dysfunction leads to instability of the nuclear genome. Together, our data suggest that gene(s) involved in mitochondria-to-nucleus communication play a role in mutagenesis and may be implicated in carcinogenesis.
Collapse
Affiliation(s)
- Keshav K Singh
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA.
| | | | | |
Collapse
|
18
|
SINGH KESHAVK, RASMUSSEN ANNEKARIN, RASMUSSEN LENEJUEL. Genome-Wide Analysis of Signal Transducers and Regulators of Mitochondrial Dysfunction inSaccharomyces cerevisiae. Ann N Y Acad Sci 2004. [DOI: 10.1196/annals.1293.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|