1
|
Castillo-Velasquez C, Matamala E, Becerra D, Orio P, Brauchi SE. Optical recordings of organellar membrane potentials and the components of membrane conductance in lysosomes. J Physiol 2024; 602:1637-1654. [PMID: 38625711 DOI: 10.1113/jp283825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 03/20/2024] [Indexed: 04/17/2024] Open
Abstract
The eukaryotic cell is highly compartmentalized with organelles. Owing to their function in transporting metabolites, metabolic intermediates and byproducts of metabolic activity, organelles are important players in the orchestration of cellular function. Recent advances in optical methods for interrogating the different aspects of organellar activity promise to revolutionize our ability to dissect cellular processes with unprecedented detail. The transport activity of organelles is usually coupled to the transport of charged species; therefore, it is not only associated with the metabolic landscape but also entangled with membrane potentials. In this context, the targeted expression of fluorescent probes for interrogating organellar membrane potential (Ψorg) emerges as a powerful approach, offering less-invasive conditions and technical simplicity to interrogate cellular signalling and metabolism. Different research groups have made remarkable progress in adapting a variety of optical methods for measuring and monitoring Ψorg. These approaches include using potentiometric dyes, genetically encoded voltage indicators, hybrid fluorescence resonance energy transfer sensors and photoinduced electron transfer systems. These studies have provided consistent values for the resting potential of single-membrane organelles, such as lysosomes, the Golgi and the endoplasmic reticulum. We can foresee the use of dynamic measurements of Ψorg to study fundamental problems in organellar physiology that are linked to serious cellular disorders. Here, we present an overview of the available techniques, a survey of the resting membrane potential of internal membranes and, finally, an open-source mathematical model useful to interpret and interrogate membrane-bound structures of small volume by using the lysosome as an example.
Collapse
Affiliation(s)
- Cristian Castillo-Velasquez
- Department of Physiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile
| | - Ella Matamala
- Department of Physiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile
| | - Diego Becerra
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Sebastian E Brauchi
- Department of Physiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile
| |
Collapse
|
2
|
The genome-wide identification and adaptive evolution of slc9 genes in Leuciscus waleckii under extremely alkaline conditions. Gene 2022; 840:146769. [PMID: 35907566 DOI: 10.1016/j.gene.2022.146769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/29/2022] [Accepted: 07/24/2022] [Indexed: 11/23/2022]
Abstract
The solute carrier family 9 (slc9) genes, especially slc9a isoform coding proteins contribute to electroneutral countertransport of H+ for Na+ across the plasmalemmal and organellar membranes, intracellular pH and cellular volume regulation as well as the electrolyte, acid-base, and fluid volume homeostasis at the systemic level. These functional properties determine a potential basis for organisms to challenge stressful conditions. However, these well-done researches have been reported more in mammals. Thus, in this study, a total of eleven slc9 genes were identified from the latest version genome of L. waleckii, a cyprinid fish that could tolerate extremely alkaline environments (pH 9.6). The evolutionary footprint of slc9 genes was uncovered via the analysis of copy numbers, gene structure, motif composition, chromosome location and phylogenetic relationship. More importantly, there were two SNPs located on 5' UTR and three non-synonymous mutations in the coding region of the slc9a3.2 gene by comparing freshwater with alkaline water populations attached to resequencing technology. Slc9a3.2 gene was a statistically significant low expression in gill tissue with extremely alkaline pressure. Generally, slc9 gene family in L. waleckii was highly conserved. Several important SNPs with high Fst values were identified where non-synonymous mutations occurred between freshwater and alkaline water populations, and they may play an important role in specific functional differentiation. Slc9 genes had clear tissue expression preferences and were involved in abiotic stress response, indicating their roles in physiological function and strong self-regulating capacity. Our insight into the genetic variations that take place in the individual genes under extreme conditions could provide a feasible example for studying specific molecular mechanisms based on genomic data with increasing environmental stress.
Collapse
|
3
|
Genome-wide identification of the NHE gene family in Coilia nasus and its response to salinity challenge and ammonia stress. BMC Genomics 2022; 23:526. [PMID: 35858854 PMCID: PMC9297642 DOI: 10.1186/s12864-022-08761-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022] Open
Abstract
Background In aquatic environments, pH, salinity, and ammonia concentration are extremely important for aquatic animals. NHE is a two-way ion exchange carrier protein, which can transport Na+ into cells and exchange out H+, and also plays key roles in regulating intracellular pH, osmotic pressure, and ammonia concentration. Results In the present study, ten NHEs, the entire NHE gene family, were identified from Coilia nasus genome and systemically analyzed via phylogenetic, structural, and synteny analysis. Different expression patterns of C. nasus NHEs in multiple tissues indicated that expression profiles of NHE genes displayed tissue-specific. Expression patterns of C. nasus NHEs were related to ammonia excretion during multiple embryonic development stages. To explore the potential functions on salinity challenge and ammonia stress, expression levels of ten NHEs were detected in C. nasus gills under hypotonic stress, hypertonic stress, and ammonia stress. Expression levels of all NHEs were upregulated during hypotonic stress, while they were downregulated during hypertonic stress. NHE2 and NHE3 displayed higher expression levels in C. nasus larvae and juvenile gills under ammonia stress. Conclusions Our study revealed that NHE genes played distinct roles in embryonic development, salinity stress, and ammonia exposure. Syntenic analysis showed significant difference between stenohaline fish and euryhaline fishes. Our findings will provide insight into effects of C. nasus NHE gene family on ion transport and ammonia tolerance and be beneficial for healthy aquaculture of C. nasus. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08761-9.
Collapse
|
4
|
Nikolovska K, Seidler UE, Stock C. The Role of Plasma Membrane Sodium/Hydrogen Exchangers in Gastrointestinal Functions: Proliferation and Differentiation, Fluid/Electrolyte Transport and Barrier Integrity. Front Physiol 2022; 13:899286. [PMID: 35665228 PMCID: PMC9159811 DOI: 10.3389/fphys.2022.899286] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/19/2022] [Indexed: 12/11/2022] Open
Abstract
The five plasma membrane Na+/H+ exchanger (NHE) isoforms in the gastrointestinal tract are characterized by distinct cellular localization, tissue distribution, inhibitor sensitivities, and physiological regulation. NHE1 (Slc9a1) is ubiquitously expressed along the gastrointestinal tract in the basolateral membrane of enterocytes, but so far, an exclusive role for NHE1 in enterocyte physiology has remained elusive. NHE2 (Slc9a2) and NHE8 (Slc9a8) are apically expressed isoforms with ubiquitous distribution along the colonic crypt axis. They are involved in pHi regulation of intestinal epithelial cells. Combined use of a knockout mouse model, intestinal organoid technology, and specific inhibitors revealed previously unrecognized actions of NHE2 and NHE8 in enterocyte proliferation and differentiation. NHE3 (Slc9a3), expressed in the apical membrane of differentiated intestinal epithelial cells, functions as the predominant nutrient-independent Na+ absorptive mechanism in the gut. The new selective NHE3 inhibitor (Tenapanor) allowed discovery of novel pathophysiological and drug-targetable NHE3 functions in cystic-fibrosis associated intestinal obstructions. NHE4, expressed in the basolateral membrane of parietal cells, is essential for parietal cell integrity and acid secretory function, through its role in cell volume regulation. This review focuses on the expression, regulation and activity of the five plasma membrane Na+/H+ exchangers in the gastrointestinal tract, emphasizing their role in maintaining intestinal homeostasis, or their impact on disease pathogenesis. We point to major open questions in identifying NHE interacting partners in central cellular pathways and processes and the necessity of determining their physiological role in a system where their endogenous expression/activity is maintained, such as organoids derived from different parts of the gastrointestinal tract.
Collapse
|
5
|
Endocytic regulation of cellular ion homeostasis controls lysosome biogenesis. Nat Cell Biol 2020; 22:815-827. [PMID: 32601373 DOI: 10.1038/s41556-020-0535-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/21/2020] [Indexed: 12/24/2022]
Abstract
Lysosomes serve as cellular degradation and signalling centres that coordinate metabolism in response to intracellular cues and extracellular signals. Lysosomal capacity is adapted to cellular needs by transcription factors, such as TFEB and TFE3, which activate the expression of lysosomal and autophagy genes. Nuclear translocation and activation of TFEB are induced by a variety of conditions such as starvation, lysosome stress and lysosomal storage disorders. How these various cues are integrated remains incompletely understood. Here, we describe a pathway initiated at the plasma membrane that controls lysosome biogenesis via the endocytic regulation of intracellular ion homeostasis. This pathway is based on the exo-endocytosis of NHE7, a Na+/H+ exchanger mutated in X-linked intellectual disability, and serves to control intracellular ion homeostasis and thereby Ca2+/calcineurin-mediated activation of TFEB and downstream lysosome biogenesis in response to osmotic stress to promote the turnover of toxic proteins and cell survival.
Collapse
|
6
|
Anglani F, Gianesello L, Beara-Lasic L, Lieske J. Dent disease: A window into calcium and phosphate transport. J Cell Mol Med 2019; 23:7132-7142. [PMID: 31472005 PMCID: PMC6815805 DOI: 10.1111/jcmm.14590] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 12/19/2022] Open
Abstract
This review examines calcium and phosphate transport in the kidney through the lens of the rare X-linked genetic disorder Dent disease. Dent disease type 1 (DD1) is caused by mutations in the CLCN5 gene encoding ClC-5, a Cl- /H+ antiporter localized to early endosomes of the proximal tubule (PT). Phenotypic features commonly include low molecular weight proteinuria (LMWP), hypercalciuria, focal global sclerosis and chronic kidney disease; calcium nephrolithiasis, nephrocalcinosis and hypophosphatemic rickets are less commonly observed. Although it is not surprising that abnormal endosomal function and recycling in the PT could result in LMWP, it is less clear how ClC-5 dysfunction disturbs calcium and phosphate metabolism. It is known that the majority of calcium and phosphate transport occurs in PT cells, and PT endocytosis is essential for calcium and phosphorus reabsorption in this nephron segment. Evidence from ClC-5 KO models suggests that ClC-5 mediates parathormone endocytosis from tubular fluid. In addition, ClC-5 dysfunction alters expression of the sodium/proton exchanger NHE3 on the PT apical surface thus altering transcellular sodium movement and hence paracellular calcium reabsorption. A potential role for NHE3 dysfunction in the DD1 phenotype has never been investigated, either in DD models or in patients with DD1, even though patients with DD1 exhibit renal sodium and potassium wasting, especially when exposed to even a low dose of thiazide diuretic. Thus, insights from the rare disease DD1 may inform possible underlying mechanisms for the phenotype of hypercalciuria and idiopathic calcium stones.
Collapse
Affiliation(s)
- Franca Anglani
- Division of Nephrology, Department of Medicine, Laboratory of Histomorphology and Molecular Biology of the Kidney, University of Padua, Padua, Italy
| | - Lisa Gianesello
- Division of Nephrology, Department of Medicine, Laboratory of Histomorphology and Molecular Biology of the Kidney, University of Padua, Padua, Italy
| | - Lada Beara-Lasic
- Division of Nephrology, New York University School of Medicine, New York, NY, USA
| | - John Lieske
- Division of Nephrology and Hypertension, Department of Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
7
|
Functional prediction, characterization, and categorization of operome from Acetoanaerobium sticklandii DSM 519. Anaerobe 2019; 61:102088. [PMID: 31425748 DOI: 10.1016/j.anaerobe.2019.102088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 01/05/2023]
Abstract
Acetoanaerobium sticklandii DSM 519 is a hyper-ammonia producing anaerobic bacterium that can be able utilizes amino acids as sole carbon and energy sources for its growth and energetic metabolism. A lack of knowledge on its molecular machinery and 30.5% conserved hypothetical proteins (HPs; operome) hinders the successful utility in biofuel applications. In this study, we have predicted, characterized and categorized its operome whose functions are still not determined accurately using a combined bioinformatics approach. The functions of 64 of the 359 predicted HPs are involved in diverse metabolic subsystems. A. sticklandii operome has consisted of 16% Rossmann fold and 46% miscellaneous folds. Subsystems-based technology has classified 51 HPs contributing to the small-molecular reactions, 26 in macromolecular reactions and 12 in the biosynthesis of cofactors, prosthetic groups and electron carriers. A generality of functions predicted from its operome contributed to the cell cycle, amino acid metabolism, membrane transport, and regulatory processes. Many of them have duplicated functions as paralogs in this genome. A. sticklandii has the ability to compete with invading microorganisms and tolerate abiotic stresses, which can be overwhelmed by the predicted functions of its operome. Results of this study revealed that it has specialized systems for amino acid catabolism-directed solventogenesis and acidogenesis but the level of gene expression may determine the metabolic function in amino acid fermenting niches in the rumina of cattle. As shown by our analysis, the predicted functions of its operome allow us for a better understanding of the growth and physiology at systems-scale.
Collapse
|
8
|
Kumar P, Chand S, Maurya PK. Quercetin-modulated erythrocyte membrane sodium-hydrogen exchanger during human aging: correlation with ATPase's. Arch Physiol Biochem 2016; 122:141-7. [PMID: 26835548 DOI: 10.3109/13813455.2016.1150299] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
CONTENT Quercetin uptake by erythrocytes is rapid. The sodium-hydrogen exchanger (NHE) is a secondary active transporter, regulating intracellular pH, Na(+) concentration and cell volume. OBJECTIVE The aim of present study was to investigate NHE as a function of human age and effect of quercetin on its activity. The NHE activity was correlated with erythrocytes ATPases. MATERIALS AND METHODS We analyzed normal, healthy subjects of both sexes (20-82 years). NHE activity was estimated in terms of amiloride-sensitive H+-efflux from acid-loaded cells. RESULTS A significant age-dependent increase in NHE activity was observed during aging in humans. Concentration (10(-3 )M to 10(-8 )M)-dependent in vitro treatment with quercetin causes inhibition of NHE activity. The Na(+)/K(+) -ATPase (r = 0.8882) and Ca(2+)-ATPase (r = 0.9540) activities positively correlated with it. DISCUSSION AND CONCLUSION The present data show an additional mechanism where dietary flavonoids may exerts beneficial effect during aging.
Collapse
Affiliation(s)
- Prabhanshu Kumar
- a Amity Institute of Biotechnology, Amity University Uttar Pradesh , Noida , India
| | - Subhash Chand
- b Department of Biochemical Engineering & Biotechnology , Indian Institute of Technology , Delhi , India , and
| | - Pawan Kumar Maurya
- a Amity Institute of Biotechnology, Amity University Uttar Pradesh , Noida , India
- c Department of Psychiatry , Interdisciplinary Laboratory of Clinical Neuroscience (LINC), Federal University of São Paulo , São Paulo , Brazil
| |
Collapse
|
9
|
Di Stadio CS, Altieri F, Miselli G, Elce A, Severino V, Chambery A, Quagliariello V, Villano V, de Dominicis G, Rippa E, Arcari P. AMP18 interacts with the anion exchanger SLC26A3 and enhances its expression in gastric cancer cells. Biochimie 2015; 121:151-60. [PMID: 26700142 DOI: 10.1016/j.biochi.2015.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 12/01/2015] [Indexed: 01/05/2023]
Abstract
AMP18 is a stomach-specific secreted protein expressed in normal gastric mucosa but absent in gastric cancer. AMP18 plays a major role in maintaining gastric mucosa integrity and is characterized by the presence of a BRICHOS domain consisting of about 100 amino acids, present also in several unrelated proteins, and probably endowed with a chaperon-like activity. In this work, we exploited a functional proteomic strategy to identify potential AMP18 interactors with the aim to add knowledge on its functional role within gastric cell lines and tissues. To this purpose, recombinant biotinylated AMP18 was purified and incubated with protein extract from human normal gastric mucosa by applying an affinity chromatography strategy. The interacting proteins were identified by peptide mass fingerprinting using MALDI-TOF mass spectrometry. The pool of interacting proteins contained SLC26A3, a protein expressed in the apical membrane of intestinal epithelial cells, supposed to play a critical role in Cl(-) absorption and fluid homeostasis. The interaction was also confirmed by Western blot with anti-SLC26A3 on transfected AGS cell extract following AMP18 pull-down. Furthermore, the interaction between AMP18 and SLC26A3 was also validated by confocal microscopy that showed a co-localization of both proteins at plasma membrane level. More importantly, for the first time, we showed that SLC26A3 is down-regulated in gastric cancer and that the overexpression of AMP18 in AMP-transfected gastric cancer cells up-regulated the expression of SLC26A3 both at transcriptional and translational level, the latter probably through the activation of the MAP kinases pathway. These findings strongly suggest that AMP18 might play an anti-inflammatory role in maintaining mucosal integrity also by regulating SLC26A3 level.
Collapse
Affiliation(s)
- Chiara Stella Di Stadio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Filomena Altieri
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Giuseppina Miselli
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Ausilia Elce
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Valeria Severino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy
| | - Angela Chambery
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy; IRCCS Multimedica, Milan, Italy
| | - Vincenzo Quagliariello
- Laboratory of Biotechnology, Department of Anesthesia, Surgical and Emergency Sciences, Second University of Naples, Via Costantinopoli 16, I-80138, Naples, Italy
| | - Valentina Villano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | - Emilia Rippa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| | - Paolo Arcari
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy; CEINGE, Advanced Biotechnology Scarl, Via Gaetano Salvatore 486, I-80145, Naples, Italy.
| |
Collapse
|
10
|
Parathyroid hormone inhibition of Na+/H+ exchanger 3 transcription: Intracellular signaling pathways and transcription factor expression. Biochem Biophys Res Commun 2015; 461:582-8. [DOI: 10.1016/j.bbrc.2015.04.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/07/2015] [Indexed: 11/18/2022]
|
11
|
Thorsen K, Drengstig T, Ruoff P. Transepithelial glucose transport and Na+/K+ homeostasis in enterocytes: an integrative model. Am J Physiol Cell Physiol 2014; 307:C320-37. [PMID: 24898586 DOI: 10.1152/ajpcell.00068.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The uptake of glucose and the nutrient coupled transcellular sodium traffic across epithelial cells in the small intestine has been an ongoing topic in physiological research for over half a century. Driving the uptake of nutrients like glucose, enterocytes must have regulatory mechanisms that respond to the considerable changes in the inflow of sodium during absorption. The Na-K-ATPase membrane protein plays a major role in this regulation. We propose the hypothesis that the amount of active Na-K-ATPase in enterocytes is directly regulated by the concentration of intracellular Na(+) and that this regulation together with a regulation of basolateral K permeability by intracellular ATP gives the enterocyte the ability to maintain ionic Na(+)/K(+) homeostasis. To explore these regulatory mechanisms, we present a mathematical model of the sodium coupled uptake of glucose in epithelial enterocytes. Our model integrates knowledge about individual transporter proteins including apical SGLT1, basolateral Na-K-ATPase, and GLUT2, together with diffusion and membrane potentials. The intracellular concentrations of glucose, sodium, potassium, and chloride are modeled by nonlinear differential equations, and molecular flows are calculated based on experimental kinetic data from the literature, including substrate saturation, product inhibition, and modulation by membrane potential. Simulation results of the model without the addition of regulatory mechanisms fit well with published short-term observations, including cell depolarization and increased concentration of intracellular glucose and sodium during increased concentration of luminal glucose/sodium. Adding regulatory mechanisms for regulation of Na-K-ATPase and K permeability to the model show that our hypothesis predicts observed long-term ionic homeostasis.
Collapse
Affiliation(s)
- Kristian Thorsen
- Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway; and
| | - Tormod Drengstig
- Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway; and
| | - Peter Ruoff
- Centre for Organelle Research, University of Stavanger, Stavanger, Norway
| |
Collapse
|
12
|
Babich V, Vadnagara K, Di Sole F. The biophysical and molecular basis of intracellular pH sensing by Na+/H+ exchanger-3. FASEB J 2013; 27:4646-58. [PMID: 23934281 DOI: 10.1096/fj.12-225466] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Epithelial Na(+)/H(+) exchanger-3 (NHE3) transport is fundamental for renal and intestinal sodium reabsorption. Cytoplasmic protons are thought to serve as allosteric modifiers of the exchanger and to trigger its transport through protein conformational change. This effect presupposes an intracellular pH (pHi) dependence of NHE3 activity, although the biophysical and molecular basis of NHE3 pHi sensitivity have not been defined. NHE3, when complexed with the calcineurin homologous protein-1 (CHP1), had a shift in pHi sensitivity (0.4 units) toward the acidic side in comparison with NHE3 alone, as measured by oscillating pH electrodes combined with whole-cell patch clamping. Indeed, CHP1 interaction with NHE3 inhibited NHE3 transport in a pHi -dependent manner. CHP1 binding to NHE3 also affected its acute regulation. Intracellular perfusion of peptide from the CHP1 binding region (or pHi modification to reduce the CHP1 amount bound to NHE3) was permissive and cooperative for dopamine inhibition of NHE3 but reversed that of adenosine. Thus, CHP1 interaction with NHE3 apparently establishes the exchanger set point for pHi, and modification in this set point is effective in the hormonal stimuli-mediated regulation of NHE3. CHP1 may serve as a regulatory cofactor for NHE3 conformational change, dependent on intracellular protonation.
Collapse
Affiliation(s)
- Victor Babich
- 1Department of Medicine, University of Maryland School of Medicine, 20 Penn Street, HSFII, Suite S005, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
13
|
Characterization of cytoskeletal protein 4.1R interaction with NHE1 (Na(+)/H(+) exchanger isoform 1). Biochem J 2012; 446:427-35. [PMID: 22731252 DOI: 10.1042/bj20120535] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
NHE1 (Na(+)/H(+) exchanger isoform 1) has been reported to be hyperactive in 4.1R-null erythrocytes [Rivera, De Franceschi, Peters, Gascard, Mohandas and Brugnara (2006) Am. J. Physiol. Cell Physiol. 291, C880-C886], supporting a functional interaction between NHE1 and 4.1R. In the present paper we demonstrate that 4.1R binds directly to the NHE1cd (cytoplasmic domain of NHE1) through the interaction of an EED motif in the 4.1R FERM (4.1/ezrin/radixin/moesin) domain with two clusters of basic amino acids in the NHE1cd, K(519)R and R(556)FNKKYVKK, previously shown to mediate PIP(2) (phosphatidylinositol 4,5-bisphosphate) binding [Aharonovitz, Zaun, Balla, York, Orlowski and Grinstein (2000) J. Cell. Biol. 150, 213-224]. The affinity of this interaction (K(d) = 100-200 nM) is reduced in hypertonic and acidic conditions, demonstrating that this interaction is of an electrostatic nature. The binding affinity is also reduced upon binding of Ca(2+)/CaM (Ca(2+)-saturated calmodulin) to the 4.1R FERM domain. We propose that 4.1R regulates NHE1 activity through a direct protein-protein interaction that can be modulated by intracellular pH and Na(+) and Ca(2+) concentrations.
Collapse
|
14
|
Zhang Y, Wang X, Sha S, Liang S, Zhao L, Liu L, Chai N, Wang H, Wu K. Berberine increases the expression of NHE3 and AQP4 in sennosideA-induced diarrhoea model. Fitoterapia 2012; 83:1014-22. [DOI: 10.1016/j.fitote.2012.05.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/23/2012] [Accepted: 05/26/2012] [Indexed: 11/28/2022]
|
15
|
Yang W, Shen Z, Martens H. An energy-rich diet enhances expression of Na+/H+ exchanger isoform 1 and 3 messenger RNA in rumen epithelium of goat1. J Anim Sci 2012; 90:307-17. [DOI: 10.2527/jas.2011-3854] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- W. Yang
- Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Z. Shen
- Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - H. Martens
- Institute of Veterinary Physiology, Free University Berlin, D-14163 Berlin, Germany
| |
Collapse
|
16
|
Hayashi H, Yamashita Y. Role of N-glycosylation in cell surface expression and protection against proteolysis of the intestinal anion exchanger SLC26A3. Am J Physiol Cell Physiol 2011; 302:C781-95. [PMID: 22159084 DOI: 10.1152/ajpcell.00165.2011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
SLC26A3 is a Cl(-)/HCO(3)(-) exchanger that plays a major role in Cl(-) absorption from the intestine. Its mutation causes congenital chloride-losing diarrhea. It has been shown that SLC26A3 are glycosylated, with the attached carbohydrate being extracellular and perhaps modulating function. However, the role of glycosylation has yet to be clearly determined. We used the approaches of biochemical modification and site-directed mutagenesis to prevent glycosylation. Deglycosylation experiments with glycosidases indicated that the mature glycosylated form of SLC26A3 exists at the plasma membrane, and a putative large second extracellular loop contains all of the N-linked carbohydrates. Deglycosylation of SLC26A3 causes depression of transport activity compared with wild-type, although robust intracellular pH changes were still observed, suggesting that N-glycosylation is not absolutely necessary for transport activity. To localize glycosylation sites, we mutated the five consensus sites by replacing asparagine (N) with glutamine. Immnoblotting suggests that SLC26A3 is glycosylated at N153, N161, and N165. Deglycosylation of SLC26A3 causes a defect in cell surface processing with decreased cell surface expression. We also assessed whether SLC26A3 is protected from tryptic digestion. While the mature glycosylated SLC26A3 showed little breakdown after treatment with trypsin, deglycosylated SLC26A3 exhibited increased susceptibility to trypsin, suggesting that the oligosaccharides protect SLC26A3 from tryptic digestion. In conclusion, our data indicate that N-glycosylation of SLC26A3 is important for cell surface expression and for protection from proteolytic degradation that may contribute to the understanding of pathogenesis of congenital disorders of glycosylation.
Collapse
Affiliation(s)
- Hisayoshi Hayashi
- Laboratory of Physiology, School of Food and Nutritional Sciences, Univ. of Shizuoka, Suruga-ku, Shizuoka, Japan.
| | | |
Collapse
|
17
|
Wagner J, Allman E, Taylor A, Ulmschneider K, Kovanda T, Ulmschneider B, Nehrke K, Peters MA. A calcineurin homologous protein is required for sodium-proton exchange events in the C. elegans intestine. Am J Physiol Cell Physiol 2011; 301:C1389-403. [PMID: 21865588 DOI: 10.1152/ajpcell.00139.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Caenorhabditis elegans defecation is a rhythmic behavior, composed of three sequential muscle contractions, with a 50-s periodicity. The motor program is driven by oscillatory calcium signaling in the intestine. Proton fluxes, which require sodium-proton exchangers at the apical and basolateral intestinal membranes, parallel the intestinal calcium flux. These proton shifts are critical for defecation-associated muscle contraction, nutrient uptake, and longevity. How sodium-proton exchangers are activated in time with intestinal calcium oscillation is not known. The posterior body defecation contraction mutant (pbo-1) encodes a calcium-binding protein with homology to calcineurin homologous proteins, which are putative cofactors for mammalian sodium-proton exchangers. Loss of pbo-1 function results in a weakened defecation muscle contraction and a caloric restriction phenotype. Both of these phenotypes also arise from dysfunctions in pH regulation due to mutations in intestinal sodium-proton exchangers. Dynamic, in vivo imaging of intestinal proton flux in pbo-1 mutants using genetically encoded pH biosensors demonstrates that proton movements associated with these sodium-proton exchangers are significantly reduced. The basolateral acidification that signals the first defecation motor contraction is scant in the mutant compared with a normal animal. Luminal and cytoplasmic pH shifts are much reduced in the absence of PBO-1 compared with control animals. We conclude that pbo-1 is required for normal sodium-proton exchanger activity and may couple calcium and proton signaling events.
Collapse
Affiliation(s)
- Jamie Wagner
- Dept. of Biology, Oberlin College, Oberlin, OH 44074, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Liu L, Schlesinger PH, Slack NM, Friedman PA, Blair HC. High capacity Na+/H+ exchange activity in mineralizing osteoblasts. J Cell Physiol 2011; 226:1702-12. [PMID: 21413028 DOI: 10.1002/jcp.22501] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Osteoblasts synthesize bone in polarized groups of cells sealed by tight junctions. Large amounts of acid are produced as bone mineral is precipitated. We addressed the mechanism by which cells manage this acid load by measuring intracellular pH (pHi) in non-transformed osteoblasts in response to weak acid or bicarbonate loading. Basal pHi in mineralizing osteoblasts was ∼ 7.3 and decreased by ∼ 1.4 units upon replacing extracellular Na(+) with N-methyl-D-glucamine. Loading with 40 mM acetic or propionic acids, in normal extracellular Na(+), caused only mild cytosolic acidification. In contrast, in Na(+) -free solutions, weak acids reduced pHi dramatically. After Na(+) reintroduction, pHi recovered rapidly, in keeping with Na(+) /H(+) exchanger (NHE) activity. Sodium-dependent pHi recovery from weak acid loading was inhibited by amiloride with the Ki consistent with NHEs. NHE1 and NHE6 were expressed strongly, and expression was upregulated highly, by mineralization, in human osteoblasts. Antibody labeling of mouse bone showed NHE1 on basolateral surfaces of all osteoblasts. NHE6 occurred on basolateral surfaces of osteoblasts mainly in areas of mineralization. Conversely, elevated HCO 3- alkalinized osteoblasts, and pH recovered in medium containing Cl(-), with or without Na(+), in keeping with Na(+) -independent Cl(-) /HCO 3- exchange. The exchanger AE2 also occurred on the basolateral surface of osteoblasts, consistent with Cl(-) /HCO 3- exchange for elimination of metabolic carbonate. Overexpression of NHE6 or knockdown of NHE1 in MG63 human osteosarcoma cells confirmed roles of NHE1 and NHE6 in maintaining pHi. We conclude that in mineralizing osteoblasts, slightly basic basal pHi is maintained, and external acid load is dissipated, by high-capacity Na(+) /H(+) exchange via NHE1 and NHE6.
Collapse
Affiliation(s)
- Li Liu
- Department of Pathology and Physiology, Pittsburgh Veteran's Affairs Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
19
|
Ozkucur N, Perike S, Sharma P, Funk RHW. Persistent directional cell migration requires ion transport proteins as direction sensors and membrane potential differences in order to maintain directedness. BMC Cell Biol 2011; 12:4. [PMID: 21255452 PMCID: PMC3042415 DOI: 10.1186/1471-2121-12-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 01/22/2011] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Ion transport proteins generate small electric fields that can induce directional cell motility; however, little is known about their mechanisms that lead to directedness. We investigated Na, K-ATPase (NaKA) and Na+/H+ exchanger isoforms (NHE1 and 3) in SaOS-2 and Calvarial osteoblasts, which present anode- and cathode- directed motility, during electrotaxis. RESULTS Significant colocalizations of NaKA with vinculin and pNHE3 with ß-actin were observed to occur at the leading edges of cells. The directedness were attenuated when NaKA or NHE3 was inhibited, confirming their implication in directional sensing. Depending on the perceived direction, a divergent regulation in PIP2 levels as a function of NHE3 and NaKA levels was observed, suggesting that PIP2 may act as a spatiotemporal regulator of the cell membrane during electrotaxis. Moreover, at the same places where pNHE3 accumulates, bubble-shaped H+ clouds were observed, suggesting a physio-mechanical role for NHE3. The cell membrane becomes hyperpolarized at the front and depolarized at the back, which confirms NaKA activity at the leading edge. CONCLUSION We suggest a novel role for both NaKA and NHE3 that extends beyond ion translocation and conclude that they can act as directional sensors and Vmem as a regulatory cue which maintain the persistent direction in electrotaxis.
Collapse
Affiliation(s)
- Nurdan Ozkucur
- Department of Anatomy, Medical Faculty Carl Gustav Carus, Technical University of Dresden, Dresden, Germany.
| | | | | | | |
Collapse
|
20
|
Rotte A, Pasham V, Eichenmüller M, Yang W, Bhandaru M, Lang F. Influence of Dexamethasone on Na +/H + Exchanger Activity in Dendritic Cells. Cell Physiol Biochem 2011; 28:305-14. [DOI: 10.1159/000331746] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2011] [Indexed: 11/19/2022] Open
|
21
|
Calcium dynamics during physiological acidification in Xenopus oocyte. J Membr Biol 2010; 236:233-45. [PMID: 20717657 DOI: 10.1007/s00232-010-9290-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 07/19/2010] [Indexed: 10/19/2022]
Abstract
Interplays between intracellular pH (pHi) and calcium ([Ca(2+)](i)) variations remain unclear, though both proton and calcium homeostasis changes accompany physiological events such as Xenopus laevis oocyte maturation. In this report, we used NH(4)Cl and changes of extracellular pH (pHe) to acidify the cytosol in a physiological range. In oocytes voltage-clamped at -80 mV, NH(4)Cl triggered an inward current, the main component of which is a Ca(2+)-dependent chloride current. Calcium imaging confirmed that NH(4)Cl provoked a [Ca(2+)](i) increase. The mobilized sources of calcium were discriminated using the triple-step protocol as a means to follow both the calcium-activated chloride currents (ICl-Ca) and the hyperpolarization- and acid-activated nonselective cation current (I(In)). These currents were stimulated during external addition of NH(4)Cl. This upregulation was abolished by BAPTA-AM, caffeine and heparin. By both buffering pHi changes with MOPS and by inhibiting calcium influx with lanthanum, intracellular acidification, initiated by NH(4)Cl and extracellular acidic medium, was shown to trigger a [Ca(2+)](i) increase through both calcium release and calcium influx. The calcium pathways triggered by pHe changes are similar to those activated by NH(4)Cl, thus suggesting that there is a robust signaling mechanism allowing the cell to adjust to variable environmental conditions.
Collapse
|
22
|
Hayashi H, Suruga K, Yamashita Y. Regulation of intestinal Cl−/HCO3− exchanger SLC26A3 by intracellular pH. Am J Physiol Cell Physiol 2009; 296:C1279-90. [DOI: 10.1152/ajpcell.00638.2008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
SLC26A3, a Cl−/HCO3− exchanger, is highly expressed in intestinal epithelial cells, and its mutations cause congenital chloride diarrhea. This suggests that SLC26A3 plays a key role in NaCl absorption in the intestine. Electroneutral NaCl absorption in the intestine is mediated by functional coupling of the Na+/H+ exchanger and Cl−/HCO3− exchanger. It is proposed that the coupling of these exchangers may occur as a result of indirect linkage by changes of intracellular pH (pHi). We therefore investigated whether SLC26A3 is regulated by pHi. We generated a hemagglutinin epitope-tagged human SLC26A3 construct and expressed it in Chinese hamster ovary cells. Transport activities were measured with a fluorescent chloride-sensitive dye dihydro-6-methoxy- N-ethylquinolinium iodide (diH-MEQ). pHi was clamped at a range of values from 6.0 to 7.4. We monitored the transport activity of SLC26A3 by reverse mode of Cl−/HCO3− and Cl−/NO3− exchange. None of these exchange modes induced membrane potential changes. At constant external pH 7.4, Cl−/HCO3− exchange was steeply inhibited with pHi decrease between 7.3 and 6.8 as opposed to thermodynamic prediction. In contrast, however, Cl−/NO3− exchange was essentially insensitive to pHi within physiological ranges. We also characterized the pHi dependency of COOH-terminal truncation mutants. Removal of the entire COOH-terminal resulted in decrease of the transport activity but did not noticeably affect pHi sensitivity. These results suggest that Cl−/HCO3− exchange mode of human SLC26A3 is controlled by a pH-sensitive intracellular modifier site, which is likely in the transmembrane domain. These observations raise the possibility that SLC26A3 activity may be regulated via Na+/H+ exchanger 3 (NHE3) through the alteration of pHi under physiological conditions.
Collapse
|
23
|
Bobulescu IA, Moe OW. Luminal Na(+)/H (+) exchange in the proximal tubule. Pflugers Arch 2009; 458:5-21. [PMID: 18853182 PMCID: PMC2878283 DOI: 10.1007/s00424-008-0595-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 09/26/2008] [Indexed: 12/11/2022]
Abstract
The proximal tubule is critical for whole-organism volume and acid-base homeostasis by reabsorbing filtered water, NaCl, bicarbonate, and citrate, as well as by excreting acid in the form of hydrogen and ammonium ions and producing new bicarbonate in the process. Filtered organic solutes such as amino acids, oligopeptides, and proteins are also retrieved by the proximal tubule. Luminal membrane Na(+)/H(+) exchangers either directly mediate or indirectly contribute to each of these processes. Na(+)/H(+) exchangers are a family of secondary active transporters with diverse tissue and subcellular distributions. Two isoforms, NHE3 and NHE8, are expressed at the luminal membrane of the proximal tubule. NHE3 is the prevalent isoform in adults, is the most extensively studied, and is tightly regulated by a large number of agonists and physiological conditions acting via partially defined molecular mechanisms. Comparatively little is known about NHE8, which is highly expressed at the lumen of the neonatal proximal tubule and is mostly intracellular in adults. This article discusses the physiology of proximal Na(+)/H(+) exchange, the multiple mechanisms of NHE3 regulation, and the reciprocal relationship between NHE3 and NHE8 at the lumen of the proximal tubule.
Collapse
Affiliation(s)
- I. Alexandru Bobulescu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8856, USA
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8856, USA
| | - Orson W. Moe
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8856, USA,
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8856, USA
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8856, USA
| |
Collapse
|
24
|
Ivanis G, Esbaugh AJ, Perry SF. Branchial expression and localization of SLC9A2 and SLC9A3 sodium/hydrogen exchangers and their possible role in acid-base regulation in freshwater rainbow trout (Oncorhynchus mykiss). ACTA ACUST UNITED AC 2008; 211:2467-77. [PMID: 18626081 DOI: 10.1242/jeb.017491] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Experiments were conducted on adult rainbow trout (Oncorhynchus mykiss) to test the hypothesis that SLC9 Na+/H+ exchangers (SLC9A2, NHE2; and SLC9A3, NHE3) on the gill epithelium are localized specifically to a subset of mitochondria-rich cells (MRCs) that are unable to bind peanut lectin agglutinin (PNA). This cell type, termed the PNA- MRC, is a sub-type of MRC believed to function in Na+ uptake and acid excretion. A technique using biotinylated PNA was used to distinguish between the PNA- and PNA+ MRCs on fixed gill sections. In contrast to expectations, both NHE2 (mRNA) and NHE3 (protein) were confined to cells enriched with Na+/K+-ATPase and capable of binding PNA. Thus, in trout, NHE2 and NHE3 are localized to PNA+ MRCs, the cells previously believed to be responsible for Cl- uptake and base excretion. Levels of mRNA for NHE2, the predominant isoform in the gill, were increased during 72 h of hypercapnic acidosis; NHE3 mRNA and protein levels were unaffected. Because plasma cortisol levels were increased during hypercapnia (from 35.3+/-9.4 to 100.1+/-30.9 ng ml(-1)), the effects of experimentally elevated cortisol levels on NHE expression were investigated. The elevation of plasma cortisol using intraperitoneal implants caused a significant increase in NHE2 mRNA expression without affecting NHE3 mRNA or protein abundance. Thus, we suggest that NHE2 contributes to acid-base regulation during hypercapnia owing to its transcriptional regulation by cortisol. The finding of NHE expression in PNA+ MRCs is discussed with reference to current models of ionic and acid-base regulation in teleost fish.
Collapse
Affiliation(s)
- G Ivanis
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N 6N5
| | | | | |
Collapse
|
25
|
Ivanis G, Braun M, Perry SF. Renal expression and localization of SLC9A3 sodium/hydrogen exchanger and its possible role in acid-base regulation in freshwater rainbow trout (Oncorhynchus mykiss). Am J Physiol Regul Integr Comp Physiol 2008; 295:R971-8. [PMID: 18667717 DOI: 10.1152/ajpregu.90328.2008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Experiments were performed to assess the possible involvement of the Na(+)/H(+) exchanger isoform 3 (NHE3; SLC9A3) in renal acid-base regulation in adult rainbow trout (Oncorhynchus mykiss). NHE3 mRNA was expressed at high levels in the kidney relative to its paralog, NHE2. The results of in situ hybridization demonstrated an abundance of NHE3 mRNA in renal tubules. The combination of immunocytochemistry and histological staining revealed that NHE3 was confined to the apical membrane of proximal tubules, where it was colocalized with the vacuolar-type H(+)-ATPase. Levels of NHE3 protein (assessed by Western blotting) were increased during hypercapnia, likely as a result of increased transcription, as indicated by increasing levels of NHE3 mRNA (as determined by real-time PCR). Plasma cortisol concentration was increased during hypercapnia, and administration of exogenous cortisol caused a marked increase in NHE3 mRNA and protein. Thus we speculate that the elevation of plasma cortisol during hypercapnia contributes to transcriptional activation of NHE3 that ultimately promotes acid-base regulation by stimulating H(+) secretion and HCO(3)(-) reabsorption.
Collapse
Affiliation(s)
- Goran Ivanis
- Dept. of Biology, Univ. of Ottawa, 30 Marie Curie, Ottawa, ONT K1N 6N5, Canada
| | | | | |
Collapse
|
26
|
Di Sole F, Cerull R, Babich V, Casavola V, Helmle-Roth C, Burckhardt G. Short- and long-term A3 adenosine receptor activation inhibits the Na+/H+ exchanger NHE3 activity and expression in opossum kidney cells. J Cell Physiol 2008; 216:221-33. [PMID: 18286509 DOI: 10.1002/jcp.21399] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The renal function of the A(3) adenosine receptor (A3AR) is poorly characterized. In this study, we report that the A3AR-selective agonist, 1-[2-chloro-6-[[(3-iodophenyl)methyl]amino]-9H-purine-9-yl]-1-deoxy-N-methyl-b-D-ribofuranuronamide (2-Cl-IBMECA) regulates the Na+/H+ exchanger-3 (NHE3) in a dose- and time-dependent fashion. In opossum kidney (OK) cells, 2-Cl-IBMECA at high (10(-6) M) and low (10(-8) M) dose inhibits NHE3 by a multiphasic time course with an acute phase of NHE3 inhibition from 15 min to 1 h, followed by a chronic phase of NHE3 inhibition from 24 to 48 h. Pre-incubation with either the selective A3AR-antagonist MRS1523 (10(-7) M) or the protein kinase C inhibitor, Calphostin C (10(-8) M) completely blocked 10(-6) M 2-Cl-IBMECA-induced acute (15 min) and chronic (24 h) phases of NHE3 inhibition. In contrast, the acute inhibitory phase (15 min) of 10(-8) M 2-Cl-IBMECA was completely prevented only when Calphostin C (10(-8) M) was added in conjunction with the protein kinase A inhibitor, H89 (10(-7) M). Acute (15 or 30 min depending on the A3AR-agonist concentration) A3AR-dependent inhibition of NHE3 activity was accompanied by decrease in cell surface NHE3 protein with no change in total NHE3 antigen. Chronic (24 h) A3AR-mediated down-regulation of NHE3 was associated with reduction of surface NHE3, decreased total NHE3 protein (70%) and a paradoxical rise of NHE3 RNA (40%). In summary, these results indicate that A3AR directly regulates NHE3 at multiple levels in a complex pattern. A3AR-dependent short- and long-term inhibition of NHE3 may be a fundamental mechanism of net sodium and fluid balance.
Collapse
Affiliation(s)
- Francesca Di Sole
- Department of Physiology and Pathophysiology, University of Göttingen, Göttingen, Germany.
| | | | | | | | | | | |
Collapse
|
27
|
Johnstone ED, Speake PF, Sibley CP. Epidermal growth factor and sphingosine-1-phosphate stimulate Na+/H+ exchanger activity in the human placental syncytiotrophoblast. Am J Physiol Regul Integr Comp Physiol 2007; 293:R2290-4. [PMID: 17913870 DOI: 10.1152/ajpregu.00328.2007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Na+/H+ exchanger (NHE) has a key role in intracellular pH ([pH]i) regulation of the syncytiotrophoblast in the human placenta and may have a role in the life cycle of this cell. In other cells the NHE (actually a family of up to 9 isoforms) is regulated by a variety of factors, but its regulation in the syncytiotrophoblast has not been studied. Here, we tested the hypotheses that EGF and sphingosine-1-phosphate (S1P), both of which affect trophoblast apoptosis and, in other cell types, NHE activity, stimulate syncytiotrophoblast NHE activity. Villous fragments from term human placentas were loaded with the pH-sensitive dye, BCECF. NHE activity was measured by following the recovery of syncytiotrophoblast [pH]i following an imposed acid load, in the presence and absence of EGF, S1P, and specific inhibitors of NHE activity. Both EGF and S1P caused a dose-dependent upregulation of NHE activity in the syncytiotrophoblast. These effects were blocked by amiloride 500 microM (a nonspecific NHE blocker) and HOE694 100 microM (NHE blocker with NHE1 and 2 isoform selectivity). Effects of EGF were also reduced by the NHE3 selective blocker S3226 (used at 1 microM). These data provide the first evidence that both EGF and S1P stimulate NHE activity in the syncytiotrophoblast; they appear to do so predominantly by activating the NHE1 isoform.
Collapse
Affiliation(s)
- E D Johnstone
- Maternal and Fetal Health Research Group, (Academic Unit of Child Health Univ. of Manchester, St. Mary's Hospital, Manchester M13 OJH
| | | | | |
Collapse
|
28
|
Sládek M, Rybová M, Jindráková Z, Zemanová Z, Polidarová L, Mrnka L, O'Neill J, Pácha J, Sumová A. Insight into the circadian clock within rat colonic epithelial cells. Gastroenterology 2007; 133:1240-9. [PMID: 17675004 DOI: 10.1053/j.gastro.2007.05.053] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Accepted: 05/10/2007] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS The gastrointestinal tract exhibits diurnal rhythms in many physiologic functions. These rhythms are driven by food intake but are also preserved during food deprivation, suggesting the presence of endogenous circadian rhythmicity. The aim of the study was to provide insight into the circadian core clock mechanism within the rat colon. Moreover, the potency of a restricted feeding regime to shift the circadian clock in the colon was tested. The question of whether the colonic clock drives circadian expression in NHE3, an electroneutral Na(+)/H(+) exchanger, was also addressed. METHODS Daily profiles in expression of clock genes Per1, Per2, Cry1, Bmal1, Clock, and Rev-erbalpha, and the NHE3 transporter were examined by reverse transcriptase-polymerase chain reaction and their mRNA levels, as well as PER1 and BMAL1 protein levels, were localized in the colonic epithelium by in situ hybridization and immunocytochemistry, respectively. RESULTS Expression of Per1, Per2, Cry1, Bmal1, Clock, Rev-erbalpha, and NHE3, as well as PER1 and BMAL1 protein levels, exhibited circadian rhythmicity in the colon. The rhythms were in phase with those in the liver but phase-delayed relative to the master clock in the suprachiasmatic nucleus. Restricted feeding entrained the clock in the colon, because rhythms in clock genes as well as in NHE3 expression were phase-advanced similarly to the clock in the liver. CONCLUSIONS The rat colon harbors a circadian clock. The colonic clock is likely to drive rhythmic NHE3 expression. Restricted feeding resets the colonic clock similarly to the clock in the liver.
Collapse
Affiliation(s)
- Martin Sládek
- Department of Neurohumoral Regulations, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Yang X, Huang HC, Yin H, Alpern RJ, Preisig PA. RhoA required for acid-induced stress fiber formation and trafficking and activation of NHE3. Am J Physiol Renal Physiol 2007; 293:F1054-64. [PMID: 17686951 DOI: 10.1152/ajprenal.00295.2007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Exposure to an acid load increases apical membrane Na+/H+ antiporter (NHE3) activity, a process that involves exocytic trafficking of the transporter to the apical membrane. We have previously shown that an intact microfilament structure is required for this exocytic process (Yang X, Amemiya M, Peng Y, Moe OW, Preisig PA, Alpern RJ. Am J Physiol Cell Physiol 279: C410–C419, 2000). The present studies demonstrate that acid-induced stress fiber formation is required for stimulation of NHE3 activity. Formation of stress fibers is associated with acid-induced tyrosine phosphorylation and increases in protein abundance of two focal adhesion proteins, p125FAK and paxillin. The Rho kinase inhibitor Y27632 completely blocks acid-induced stress fiber formation and the increases in apical membrane NHE3 abundance and activity, but it has no effect on acid-induced tyrosine phosphorylation of p125FAK or paxillin. Herbimycin A completely blocks acid-induced tyrosine phosphorylation of p125FAK and paxillin but only partially blocks stress fiber formation and NHE3 activation. These studies demonstrate that Rho kinase mediates acid-induced stress fiber formation, which is required for NHE3 exocytosis, and increases in NHE3 activity. Acid-induced tyrosine phosphorylation of the focal adhesion proteins p125FAK and paxillin is not Rho kinase dependent. Thus these two acid-mediated effects are associated, yet independent processes.
Collapse
Affiliation(s)
- Xiaojing Yang
- Department of Internal Medicine, University of Texas Southwestern Medical School, Dallas, Texas, USA
| | | | | | | | | |
Collapse
|
30
|
Kang'ethe W, Aimanova KG, Pullikuth AK, Gill SS. NHE8 mediates amiloride-sensitive Na+/H+ exchange across mosquito Malpighian tubules and catalyzes Na+ and K+ transport in reconstituted proteoliposomes. Am J Physiol Renal Physiol 2007; 292:F1501-12. [PMID: 17287198 DOI: 10.1152/ajprenal.00487.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Following a blood meal, the mosquito Aedes aegypti will have acquired an enormous sodium load that must be rapidly excreted to restore ion homeostasis. It is a process that demands robust sodium and fluid transport capabilities. Even though the identities of the components involved in this ion transport across the mosquito Malpighian tubule epithelia have not been completely determined, electrophysiological studies suggest the contribution of a Na(+)/H(+) exchanger extruding cations into the lumen driven secondarily by the proton gradient created by the V-type H(+)-ATPase in the tubules' apical membrane. We have identified the putative exchanger and designated it AeNHE8. Immunolocalization studies demonstrated that AeNHE8 is expressed in the apical membranes of Malpighian tubules, gastric caecae, and rectum. When heterologously expressed in salt-sensitive yeast cells lacking Na(+) extrusion and Na(+)/H(+) exchange proteins, AeNHE8 rescues the salt-sensitive phenotype and restores the cells' ability to grow in high NaCl media. Furthermore, heterologous expression of AeNHE8 in NHE-deficient fibroblast cells results in an amiloride-sensitive (22)Na(+) uptake. To determine the exchanger's kinetic properties, we reconstituted membranes from yeast cells expressing the protein into lipid proteoliposomes and assayed for cation-dependent H(+) exchange by fluorimetric methods. Our results indicate that AeNHE8 mediates saturable exchange of Na(+) and K(+) for H(+). We propose that AeNHE8 may be coupled to the inward H(+) gradient across the Malpighian tubules and plays a role in the extrusion of excess sodium and potassium while maintaining steady intracellular pH in the principal cells.
Collapse
Affiliation(s)
- Wanyoike Kang'ethe
- Graduate Program in Environmental Toxicology, University of California, Riverside, California 92521, USA
| | | | | | | |
Collapse
|
31
|
Choe KP, Edwards SL, Claiborne JB, Evans DH. The putative mechanism of Na+ absorption in euryhaline elasmobranchs exists in the gills of a stenohaline marine elasmobranch, Squalus acanthias. Comp Biochem Physiol A Mol Integr Physiol 2007; 146:155-62. [PMID: 17208025 DOI: 10.1016/j.cbpa.2006.09.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Revised: 09/11/2006] [Accepted: 09/28/2006] [Indexed: 11/24/2022]
Abstract
We recently cloned an NHE3 orthologue from the gills of the euryhaline Atlantic stingray (Dasyatis sabina), and generated a stingray NHE3 antibody to unequivocally localize the exchanger to the apical side of epithelial cells that are rich with Na(+)/K(+)-ATPase (A MRC). We also demonstrated an increase in NHE3 expression when stingrays are in fresh water, suggesting that NHE3 is responsible for active Na(+) absorption. However, the vast majority of elasmobranchs are only found in marine environments. In the current study, immunohistochemistry with the stingray NHE3 antibody was used to localize the exchanger in the gills of the stenohaline marine spiny dogfish shark (Squalus acanthias). NHE3 immunoreactivity was confined to the apical side of cells with basolateral Na(+)/K(+)-ATPase and was excluded from cells with high levels of vacuolar H(+)-ATPase. Western blots detected a single protein of 88 kDa in dogfish gills, the same size as NHE3 in stingrays and mammals. These immunological data demonstrate that the putative cell type responsible for active Na(+) absorption in euryhaline elasmobranchs is also present in stenohaline marine elasmobranchs, and suggest that the inability of most elasmobranchs to survive in fresh water is not due to a lack of the gill ion transporters for Na(+) absorption.
Collapse
Affiliation(s)
- Keith P Choe
- Department of Zoology, University of Florida, Gainesville, FL 32611, USA.
| | | | | | | |
Collapse
|
32
|
Rangel-Mata F, Méndez-Márquez R, Martínez-Cadena G, López-Godínez J, Nishigaki T, Darszon A, García-Soto J. Rho, Rho-kinase, and the actin cytoskeleton regulate the Na+–H+ exchanger in sea urchin eggs. Biochem Biophys Res Commun 2007; 352:264-9. [PMID: 17113032 DOI: 10.1016/j.bbrc.2006.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Accepted: 11/06/2006] [Indexed: 11/26/2022]
Abstract
At fertilization, the sea urchin egg undergoes an internal pH (pHi) increase mediated by a Na+ -H+ exchanger. We used antibodies against the mammalian antiporters NHE1 and NHE3 to characterize this exchanger. In unfertilized eggs, only anti-NHE3 cross-reacted specifically with a protein of 81-kDa, which localized to the plasma membrane and cortical granules. Cytochalasin D, C3 exotoxin (blocker of RhoGTPase function), and Y-27632 (inhibitor of Rho-kinase) prevented the pHi change in fertilized eggs. These inhibitors blocked the first cleavage division of the embryo, but not the cortical granule exocytosis. Thus, the sea urchin egg has an epithelial NHE3-like Na+ -H+ exchanger which can be responsible for the pHi change at fertilization. Determinants of this pHi change can be: (i) the increase of exchangers in the plasma membrane (via cortical granule exocytosis) and (ii) Rho, Rho-kinase, and optimal organization of the actin cytoskeleton as regulators, among others, of the intrinsic activity of the exchanger.
Collapse
Affiliation(s)
- Francisco Rangel-Mata
- Instituto de Investigación en Biología Experimental, Facultad de Química, Universidad de Guanajuato, Guanajuato, Gto. 36000, Mexico
| | | | | | | | | | | | | |
Collapse
|
33
|
Banizs B, Komlosi P, Bevensee MO, Schwiebert EM, Bell PD, Yoder BK. Altered pH(i) regulation and Na(+)/HCO3(-) transporter activity in choroid plexus of cilia-defective Tg737(orpk) mutant mouse. Am J Physiol Cell Physiol 2006; 292:C1409-16. [PMID: 17182727 DOI: 10.1152/ajpcell.00408.2006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tg737(orpk) mice have defects in cilia assembly and develop hydrocephalus in the perinatal period of life. Hydrocephalus is progressive and is thought to be initiated by abnormal ion and water transport across the choroid plexus epithelium. The pathology is further aggravated by the slow and disorganized beating of motile cilia on ependymal cells that contribute to decreased cerebrospinal fluid movement through the ventricles. Previously, we demonstrated that the hydrocephalus phenotype is associated with a marked increase in intracellular cAMP levels in choroid plexus epithelium, which is known to have regulatory effects on ion and fluid movement in many secretory epithelia. To evaluate whether the hydrocephalus in Tg737(orpk) mutants is associated with defects in ion transport, we compared the steady-state pH(i) and Na(+)-dependent transport activities of isolated choroid plexus epithelium tissue from Tg737(orpk) mutant and wild-type mice. The data indicate that Tg737(orpk) mutant choroid plexus epithelium have lower pH(i) and higher Na(+)-dependent HCO(3)(-) transport activity compared with wild-type choroid plexus epithelium. In addition, wild-type choroid plexus epithelium could be converted to a mutant phenotype with regard to the activity of Na(+)-dependent HCO(3)(-) transport by addition of dibutyryl-cAMP and mutant choroid plexus epithelium toward the wild-type phenotype by inhibiting PKA activity with H-89. Together, these data suggest that cilia have an important role in regulating normal physiology of choroid plexus epithelium and that ciliary dysfunction in Tg737(orpk) mutants disrupts a signaling pathway leading to elevated intracellular cAMP levels and aberrant regulation of pH(i) and ion transport activity.
Collapse
Affiliation(s)
- Boglarka Banizs
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | |
Collapse
|
34
|
Sandu C, Artunc F, Palmada M, Rexhepaj R, Grahammer F, Hussain A, Yun C, Alessi DR, Lang F. Impaired intestinal NHE3 activity in the PDK1 hypomorphic mouse. Am J Physiol Gastrointest Liver Physiol 2006; 291:G868-76. [PMID: 16825708 DOI: 10.1152/ajpgi.00023.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In vitro experiments have demonstrated the stimulating effect of serum- and glucocorticoid-inducible kinase (SGK)1 on the activity of the Na+/H+ exchanger (NHE3). SGK1 requires activation by phosphoinositide-dependent kinase (PDK)1, which may thus similarly play a role in the regulation of NHE3-dependent epithelial electrolyte transport. The present study was performed to explore the role of PDK1 in the regulation of NHE3 activity. Because mice completely lacking functional PDK1 are not viable, hypomorphic mice expressing approximately 20% of PDK1 (pdk1(hm)) were compared with their wild-type littermates (pdk1(wt)). NHE3 activity in the intestine and PDK1-overexpressing HEK-293 cells was estimated by utilizing 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein fluorescence for the determination of intracellular pH. NHE activity was reflected by the Na+-dependent pH recovery from an ammonium prepulse (DeltapH(NHE)). The pH changes after an ammonium pulse allowed the calculation of cellular buffer capacity, which was not significantly different between pdk1(hm) and pdk1(wt) mice. DeltapH(NHE) was in pdk1(hm) mice, only 30 +/- 6% of the value obtained in pdk1(wt) mice. Conversely, DeltapH(NHE) was 32 +/- 7% larger in PDK1-overexpressing HEK-293 cells than in HEK-293 cells expressing the empty vector. The difference between pdk1(hm) and pdk1(wt) mice and between PDK1-overexpressing and empty vector-transfected HEK cells, respectively, was completely abolished in the presence of the NHE3 inhibitor S3226 (10 microM). In conclusion, defective PDK1 expression leads to significant impairment of NHE3 activity in the intestine, pointing to a role of PDK1-dependent signaling in the regulation of NHE-mediated electrolyte transport.
Collapse
Affiliation(s)
- Ciprian Sandu
- Department of Physiology I, University of Tübingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
De Vito P. The sodium/hydrogen exchanger: a possible mediator of immunity. Cell Immunol 2006; 240:69-85. [PMID: 16930575 DOI: 10.1016/j.cellimm.2006.07.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 06/30/2006] [Accepted: 07/05/2006] [Indexed: 10/24/2022]
Abstract
Immune cells such as macrophages and neutrophils provide the first line of defence of the immune system using phagocytosis, cytokine and chemokine synthesis and release, as well as Reactive Oxygen Species (ROS) generation. Many of these functions are positively coupled with cytoplasmic pH (pHi) and/or phagosomal pH (pHp) modification; an increase in pHi represents an important signal for cytokine and chemokine release, whereas a decrease in pHp can induce an efficient antigen presentation. However, the relationship between pHi and ROS generation is not well understood. In immune cells two main transport systems have been shown to regulate pHi: the Na+/H+ Exchanger (NHE) and the plasmalemmal V-type H+ ATPase. NHE is a family of proteins which exchange Na+ for H+ according to their concentration gradients in an electroneutral manner. The exchanger also plays a key role in several other cellular functions including proliferation, differentiation, apoptosis, migration, and cytoskeletal organization. Since not much is known on the relationship between NHE and immunity, this review outlines the contribution of NHE to different aspects of innate and adaptive immune responses such as phagosomal acidification, NADPH oxidase activation and ROS generation, cytokine and chemokine release as well as T cell apoptosis. The possibility that several pro-inflammatory diseases may be modulated by NHE activity is evaluated.
Collapse
Affiliation(s)
- Paolo De Vito
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy.
| |
Collapse
|
36
|
Orlov SN, Hamet P. Intracellular monovalent ions as second messengers. J Membr Biol 2006; 210:161-72. [PMID: 16909338 DOI: 10.1007/s00232-006-0857-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2005] [Revised: 02/08/2006] [Indexed: 01/03/2023]
Abstract
It is generally accepted that electrochemical gradients of monovalent ions across the plasma membrane, created by the coupled function of pumps, carriers and channels, are involved in the maintenance of resting and action membrane potential, cell volume adjustment, intracellular Ca(2+ )handling and accumulation of glucose, amino acids, nucleotides and other precursors of macromolecular synthesis. In the present review, we summarize data showing that side-by-side with these classic functions, modulation of the intracellular concentration of monovalent ions in a physiologically reasonable range is sufficient to trigger numerous cellular responses, including changes in enzyme activity, gene expression, protein synthesis, cell proliferation and death. Importantly, the engagement of monovalent ions in regulation of the above-listed cellular responses occurs at steps upstream of Ca(2+) (i) and other key intermediates of intracellular signaling, which allows them to be considered as second messengers. With the exception of HCO (3) (-) -sensitive soluble adenylyl cyclase, the molecular origin of sensors involved in the function of monovalent ions as second messengers remains unknown.
Collapse
Affiliation(s)
- S N Orlov
- Centre de recherche, Centre hospitalier de l'Université de Montréal, (CHUM)-Hôtel-Dieu, Montreal, Quebec, Canada.
| | | |
Collapse
|
37
|
Perry SF, Gilmour KM. Acid-base balance and CO2 excretion in fish: unanswered questions and emerging models. Respir Physiol Neurobiol 2006; 154:199-215. [PMID: 16777496 DOI: 10.1016/j.resp.2006.04.010] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Revised: 04/14/2006] [Accepted: 04/15/2006] [Indexed: 11/22/2022]
Abstract
Carbon dioxide (CO(2)) excretion and acid-base regulation in fish are linked, as in other animals, though the reversible reactions of CO(2) and the acid-base equivalents H(+) and HCO(3)(-): CO(2)+H(2)O<-->H(+)+HCO(3)(-). These relationships offer two potential routes through which acid-base disturbances may be regulated. Respiratory compensation involves manipulation of ventilation so as to retain CO(2) or enhance CO(2) loss, with the concomitant readjustment of the CO(2) reaction equilibrium and the resultant changes in H(+) levels. In metabolic compensation, rates of direct H(+) and HCO(3)(-) exchange with the environment are manipulated to achieve the required regulation of pH; in this case, hydration of CO(2) yields the necessary H(+) and HCO(3)(-) for exchange. Because ventilation in fish is keyed primarily to the demands of extracting O(2) from a medium of low O(2) content, the capacity to utilize respiratory compensation of acid-base disturbances is limited and metabolic compensation across the gill is the primary mechanism for re-establishing pH balance. The contribution of branchial acid-base exchanges to pH compensation is widely recognized, but the molecular mechanisms underlying these exchanges remain unclear. The relatively recent application of molecular approaches to this question is generating data, sometimes conflicting, from which models of branchial acid-base exchange are gradually emerging. The critical importance of the gill in acid-base compensation in fish, however, has made it easy to overlook other potential contributors. Recently, attention has been focused on the role of the kidney and particularly the molecular mechanisms responsible for HCO(3)(-) reabsorption. It is becoming apparent that, at least in freshwater fish, the responses of the kidney are both flexible and essential to complement the role of the gill in metabolic compensation. Finally, while respiratory compensation in fish is usually discounted, the few studies that have thoroughly characterized ventilatory responses during acid-base disturbances in fish suggest that breathing may, in fact, be adjusted in response to pH imbalances. How this is accomplished and the role it plays in re-establishing acid-base balance are questions that remain to be answered.
Collapse
Affiliation(s)
- S F Perry
- Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, 30 Marie Curie, Ottawa, Ont., Canada.
| | | |
Collapse
|
38
|
Malakooti J, Sandoval R, Amin MR, Clark J, Dudeja PK, Ramaswamy K. Transcriptional stimulation of the human NHE3 promoter activity by PMA: PKC independence and involvement of the transcription factor EGR-1. Biochem J 2006; 396:327-36. [PMID: 16464174 PMCID: PMC1462713 DOI: 10.1042/bj20051391] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
NHE3 (Na+/H+ exchanger 3) is essential for Na+ absorption in the ileum and is expressed in a cell-specific manner in the apical membrane of the intestinal epithelial cells. In the present study, we report the stimulatory effect of PMA on the hNHE3 (human NHE3) transcription. Pretreatment with actinomycin D or cycloheximide blocked the up-regulation of the NHE3 mRNA by PMA, indicating that the increased level of NHE3 mRNA expression is regulated by transcriptional activation and is dependent on de novo protein synthesis. 5'-Deletion of the promoter region and transfection analysis in C2BBe1 cells revealed that the PMA effect is mediated through a GC-rich DNA region between nt -88 and -69. Gel mobility-shift assays demonstrated that in nuclear extracts from C2BBe1 cells grown under the basal growth conditions, Sp1 (stimulating protein-1) and Sp3 interact with this GC-rich DNA region, while, in PMA-treated nuclear extracts, PMA-induced EGR-1 (early growth response gene product 1) transcription factor binds to the same site. Binding of EGR-1 diminished the Sp1 and Sp3 interactions with this promoter region significantly. Co-transfection of Sp1 or Sp3 into SL2 cells activated the NHE3-reporter constructs, suggesting that Sp1 and Sp3 act as positive regulators of the NHE3 expression. In addition, overexpression of EGR-1 was sufficient to transactivate the NHE3-reporter gene activity, and knockdown of EGR-1 with gene-specific small interfering RNA resulted in inhibition of the PMA-induced up-regulation of the endogenous NHE3 mRNA expression. Furthermore, the PKC (protein kinase C) inhibitor chelerythrine chloride did not affect PMA-induced NHE3 promoter activity, suggesting that PMA stimulation of the hNHE3 gene expression may be PKC-independent.
Collapse
Affiliation(s)
- Jaleh Malakooti
- Section of Digestive and Liver Diseases, Department of Medicine, University of Illinois at Chicago, 840 South Wood Street, Chicago, IL 60612, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Juncos R, Hong NJ, Garvin JL. Differential effects of superoxide on luminal and basolateral Na+/H+ exchange in the thick ascending limb. Am J Physiol Regul Integr Comp Physiol 2006; 290:R79-83. [PMID: 16099821 DOI: 10.1152/ajpregu.00447.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Superoxide (O2−) increases Na+ reabsorption in the thick ascending limb (THAL) by enhancing Na/K/2Cl cotransport. However, the effects of O2− on other THAL transporters, such as Na+/H+ exchangers, are unknown. We hypothesized that O2− stimulates Na+/H+ exchange in the THAL. We assessed total Na+/H+ exchange activity by measuring recovery of intracellular pH (pHi) after acid loading in isolated perfused THALs before and after adding xanthine oxidase (XO) and hypoxanthine (HX). We found that XO and HX decreased total pHi recovery rate from 0.26 ± 0.05 to 0.21 ± 0.04 pH units/min ( P < 0.05), and this net inhibition decreased steady-state pHi from 7.52 to 7.37. Because THALs have different Na+/H+ exchanger isoforms on the luminal and basolateral membrane, we tested the effects of xanthine oxidase and hypoxanthine on luminal and basolateral Na+/H+ exchange by adding dimethylamiloride to either the bath or lumen. Xanthine oxidase and hypoxanthine increased luminal Na+/H+ exchange from 3.5 ± 0.8 to 6.7 ± 1.4 pmol·min−1·mm−1 ( P < 0.01) but decreased basolateral Na+/H+ exchange from 10.8 ± 1.8 to 6.8 ± 1.1 pmol·min−1·mm−1 ( P < 0.007). To ascertain whether these effects were caused by O2− or H2O2, we examined the ability of tempol, a superoxide dismutase mimetic, to block these effects. In the presence of tempol, xanthine oxidase and hypoxanthine had no effect on luminal or basolateral Na+/H+ exchange. We conclude that O2− inhibits basolateral and stimulates luminal Na+/H+ exchangers, perhaps because different isoforms are expressed on each membrane. Inhibition of basolateral Na+/H+ exchange may enhance stimulation of luminal Na+/H+ exchange by providing additional protons to be extruded across the luminal membrane. Together, the effects of O2− on Na+/H+ exchange may increase net HCO3− reabsorption by the THAL.
Collapse
Affiliation(s)
- Ramiro Juncos
- Hypertension and Vascular Research Division, Henry Ford Hospital, 2799 West Grand Blvd., Detroit, MI 48202-2689, USA
| | | | | |
Collapse
|
40
|
Yenush L, Merchan S, Holmes J, Serrano R. pH-Responsive, posttranslational regulation of the Trk1 potassium transporter by the type 1-related Ppz1 phosphatase. Mol Cell Biol 2005; 25:8683-92. [PMID: 16166647 PMCID: PMC1265754 DOI: 10.1128/mcb.25.19.8683-8692.2005] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intracellular pH and K+ concentrations must be tightly controlled because they affect many cellular activities, including cell growth and death. The mechanisms of homeostasis of H+ and K+ are only partially understood. In the yeast Saccharomyces cerevisiae, proton efflux is mediated by the Pma1 H+-ATPase. As this pump is electrogenic, the activity of the Trk1 and -2 K+ uptake system is crucial for sustained Pma1p operation. The coordinated activities of these two systems determine cell volume, turgor, membrane potential, and pH. Genetic evidence indicates that Trk1p is activated by the Hal4 and -5 kinases and inhibited by the Ppz1 and -2 phosphatases, which, in turn, are inhibited by their regulatory subunit, Hal3p. We show that Trk1p, present in plasma membrane "rafts", physically interacts with Ppz1p, that Trk1p is phosphorylated in vivo, and that its level of phosphorylation increases in ppz1 and -2 mutants. Interestingly, both the interaction with and inhibition of Ppz1p by Hal3p are pH dependent. These results are consistent with a model in which the Ppz1-Hal3 interaction is a sensor of intracellular pH that modulates H+ and K+ homeostasis through the regulation of Trk1p activity.
Collapse
Affiliation(s)
- Lynne Yenush
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia CSIC, Camino de Vera s/n, 46022 Valencia, Spain.
| | | | | | | |
Collapse
|
41
|
Alexander RT, Furuya W, Szászi K, Orlowski J, Grinstein S. Rho GTPases dictate the mobility of the Na/H exchanger NHE3 in epithelia: role in apical retention and targeting. Proc Natl Acad Sci U S A 2005; 102:12253-8. [PMID: 16103375 PMCID: PMC1189301 DOI: 10.1073/pnas.0409197102] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Proximal tubular reabsorption of filtered sodium by the sodium/hydrogen exchanger isoform 3 (NHE3), located on the apical membrane, is fundamental to the maintenance of systemic volume and pH homeostasis. NHE3 is finely regulated by a variety of hormones and by changes in ionic composition and volume, likely requiring redistribution of the exchangers. We analyzed the subcellular distribution and dynamics of the exchangers by generating an epithelial line expressing NHE3 tagged with an exofacial epitope, which enabled us to monitor exchanger mobility and traffic in intact cells. Using determinations of fluorescence recovery after photobleaching in combination with dynamic measurements of subcellular distribution, we found that, in renal epithelial cells, NHE3 exists in four distinct subcompartments: a virtually immobile subpopulation that is retained on the apical membrane by interaction with the actin cytoskeleton in a manner that depends on the sustained activity of Rho GTPases; a mobile subpopulation on the apical membrane, which can be readily internalized; and two intracellular compartments that can be differentiated by their rate of exchange with the apical pool of NHE3. We provide evidence that detachment of the immobile fraction from its cytoskeletal anchorage leads to rapid internalization. These observations suggest that modulation of the mobile fraction of NHE3 on the apical membrane can alter the number of functional exchangers on the cell surface and, consequently, the rate of transepithelial ion transport. Regulation of the interaction of NHE3 with the actin cytoskeleton can therefore provide a new mode of regulation of sodium and hydrogen transport.
Collapse
Affiliation(s)
- R Todd Alexander
- Department of Pediatrics and Program in Cell Biology, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | |
Collapse
|
42
|
Wiemann M, Frede S, Bingmann D, Kiwull P, Kiwull-Schöne H. Sodium/Proton Exchanger 3 in the Medulla Oblongata and Set Point of Breathing Control. Am J Respir Crit Care Med 2005; 172:244-9. [PMID: 15947281 DOI: 10.1164/rccm.200411-1567oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE In vivo inhibition of the sodium/proton exchanger 3 (NHE3) in chemosensitive neurons of the ventrolateral brainstem augments central respiratory drive in anesthetized rabbits. OBJECTIVES To further explore the possible role of this exchanger for the control of breathing, we examined the individual relationship between brainstem NHE3 abundance and ventilation in rabbits during wakefulness. METHODS In 32 adult male rabbits on standard nutritional alkali load, alveolar ventilation, metabolic CO2 production, and blood gases were determined, together with arterial and urinary acid-base status and renal base control functions. Expression of NHE3 in brainstem tissue from the obex region was determined by quantitative real-time reverse-transcription polymerase chain reaction analysis. MEASUREMENTS AND MAIN RESULTS Regarding the distribution above and below the median, we classified high and low brainstem NHE3 animals, expressing a mean (+/- SEM) NHE3 mRNA of 2.08 +/- 0.28 and 0.72 +/- 0.06 fg cDNA/mg RNA, respectively. Alveolar ventilation of high brainstem NHE3 animals was lower than that of low brainstem NHE3 animals (715 +/- 36 vs. 919 +/- 41 ml . minute(-1); p < 0.01), a finding also reflected by a marked difference in Pa(CO2) (5.24 +/- 0.16 vs. 4.44 +/- 0.15 kPa; p < 0.01). Among possible secondary factors, CO2 production, systemic base excess, and fractional renal base reabsorption were not found to be different. CONCLUSIONS We conclude that the level of brainstem NHE3 expression-most likely via intracellular pH modulation-contributes to the individual control of breathing and Pa(CO2) in conscious rabbits by adjusting the set point and the loop gain of the system.
Collapse
Affiliation(s)
- Martin Wiemann
- Department of Physiology, University of Duisburg-Essen, 45122 Essen, Germany.
| | | | | | | | | |
Collapse
|
43
|
Choe KP, Kato A, Hirose S, Plata C, Sindic A, Romero MF, Claiborne JB, Evans DH. NHE3 in an ancestral vertebrate: primary sequence, distribution, localization, and function in gills. Am J Physiol Regul Integr Comp Physiol 2005; 289:R1520-34. [PMID: 15994375 DOI: 10.1152/ajpregu.00048.2005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In mammals, the Na+/H+ exchanger 3 (NHE3) is expressed with Na+/K+-ATPase in renal proximal tubules, where it secretes H+ and absorbs Na+ to maintain blood pH and volume. In elasmobranchs (sharks, skates, and stingrays), the gills are the dominant site of pH and osmoregulation. This study was conducted to determine whether epithelial NHE homologs exist in elasmobranchs and, if so, to localize their expression in gills and determine whether their expression is altered by environmental salinity or hypercapnia. Degenerate primers and RT-PCR were used to deduce partial sequences of mammalian NHE2 and NHE3 homologs from the gills of the euryhaline Atlantic stingray (Dasyatis sabina). Real-time PCR was then used to demonstrate that mRNA expression of the NHE3 homolog increased when stingrays were transferred to low salinities but not during hypercapnia. Expression of the NHE2 homolog did not change with either treatment. Rapid amplification of cDNA was then used to deduce the complete sequence of a putative NHE3. The 2,744-base pair cDNA includes a coding region for a 2,511-amino acid protein that is 70% identical to human NHE3 (SLC9A3). Antisera generated against the carboxyl tail of the putative stingray NHE3 labeled the apical membranes of Na+/K+-ATPase-rich epithelial cells, and acclimation to freshwater caused a redistribution of labeling in the gills. This study provides the first NHE3 cloned from an elasmobranch and is the first to demonstrate an increase in gill NHE3 expression during acclimation to low salinities, suggesting that NHE3 can absorb Na+ from ion-poor environments.
Collapse
Affiliation(s)
- Keith P Choe
- Department of Zoology, University of Florida, Gainesville, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Bobulescu IA, Dwarakanath V, Zou L, Zhang J, Baum M, Moe OW. Glucocorticoids acutely increase cell surface Na+/H+ exchanger-3 (NHE3) by activation of NHE3 exocytosis. Am J Physiol Renal Physiol 2005; 289:F685-91. [PMID: 15942046 PMCID: PMC2861571 DOI: 10.1152/ajprenal.00447.2004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glucocorticoids have important effects on renal function, including the modulation of renal acidification by the major proximal tubular Na(+)/H(+) exchanger, NHE3. While the chronic effect of glucocorticoids is considered to be primarily at the transcriptional level, with increases in NHE3 mRNA and protein expression driving increased transport activity, the mechanisms by which glucocorticoids activate NHE3 in an acute setting have not been investigated. Previous studies have shown that a glucocorticoid-stimulated increase in NHE3 activity can occur before any detectable change in NHE3 mRNA. The present study examines the acute effects of glucocorticoids on NHE3 using opossum kidney (OKP) cells as a cell model. In OKP cells, total NHE3 protein abundance was not changed by 3 h of treatment with dexamethasone (10(-6) M). However, the biotin-accessible fraction representing NHE3 at the apical membrane as well as Na(+)/H(+) exchange activity measured fluorimetrically using the pH-sensitive dye BCECF-AM were significantly increased. These effects were not prevented by the protein synthesis inhibitor cycloheximide. NHE3 insertion (biotinylatable NHE3 after sulfo-NHS-acetate blockade) was stimulated by dexamethasone incubation, with or without cycloheximide. The rate of NHE3 endocytic retrieval, assessed either by the avidin protection assay (early endocytosis) or by the sodium 2-mercaptoethane sulfonate (MesNa) cleavage assay (early and late endocytosis), was not affected by dexamethasone. These findings suggest that trafficking plays a key role in the acute stimulation of NHE3 by glucocorticoids, with exocytosis being the major contributor to the glucocorticoid-induced rapid increase in cell surface NHE3 protein abundance and Na(+)/H(+) exchange activity.
Collapse
Affiliation(s)
- I Alexandru Bobulescu
- Univ. of Texas Southwestern Medical Ctr., 5323 Harry Hines Blvd., Dallas, TX 75390-8856, USA
| | | | | | | | | | | |
Collapse
|
45
|
Saifur Rohman M, Emoto N, Nonaka H, Okura R, Nishimura M, Yagita K, van der Horst GTJ, Matsuo M, Okamura H, Yokoyama M. Circadian clock genes directly regulate expression of the Na+/H+ exchanger NHE3 in the kidney. Kidney Int 2005; 67:1410-9. [PMID: 15780093 DOI: 10.1111/j.1523-1755.2005.00218.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Daily rhythms in mammalian physiology are generated by a transcription/translation feedback loop orchestrated by a set of clock genes. However, little is known about the molecular cascade from the clock gene oscillators to cellular function. METHODS The mRNA expression profiles of NHE3 and clock genes were examined in mice and rat kidneys. First, luciferase assays followed by a site directed mutagenesis of an E-box sequence were used to assess the CLOCK:BMAL1-transactivated NHE3 promoter activity. A direct binding of CLOCK:BMAL1 heterodimers to an E-box sequences of NHE3 promoter was confirmed by electrophoretic mobility shift assay (EMSA). RESULTS We present evidence that renal tubular NHE3, the Na(+)/H(+) exchanger critical for systemic electrolyte and acid-base homeostasis, is a clock-controlled gene regulated directly by CLOCK:BMAL1 heterodimers in kidneys. NHE3 mRNA level in rat kidney displayed circadian kinetics, and this circadian expression was severely blunted in homozygous CRY1/2 double-deficient mice, suggesting that the transcriptional machinery of peripheral clocks in renal tubular cells directly regulates the circadian expression of NHE3. By analyzing the 5' upstream region of the NHE3 gene, we found an E box critical for the transcription of NHE3 via the CLOCK:BMAL1-driven circadian oscillator. The circadian expression of NHE3 mRNA was reflected by oscillating protein levels in the proximal tubules of the rat kidney. CONCLUSION NHE3 should represent an output gene of the peripheral oscillators in kidney, which is regulated directly by CLOCK:BMAL1 heterodimers.
Collapse
Affiliation(s)
- Mohammad Saifur Rohman
- Division of Cardiovascular and Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School, Kobe, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Weinman EJ, Cunningham R, Shenolikar S. NHERF and regulation of the renal sodium-hydrogen exchanger NHE3. Pflugers Arch 2005; 450:137-44. [PMID: 15742180 DOI: 10.1007/s00424-005-1384-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Revised: 12/22/2004] [Accepted: 01/13/2005] [Indexed: 10/25/2022]
Abstract
The sodium-hydrogen exchanger 3 (NHE3) isoform is the major regulated sodium transporter in the proximal convoluted tubule of the kidney. Study of the regulation of NHE3 by hormonal stimuli has identified a number of PDZ adaptor proteins that form an apical/subapical membrane scaffold that binds NHE3 and facilitates down-regulation of its activity in response to cAMP and activation of protein kinase A. The precise relation of proximal tubule adaptor proteins such as sodium-hydrogen exchanger regulatory factor-1 (NHERF-1), NHERF-2, and PDZ domain-containing-protein-1 (PDZK1) with each other and with protein targets such as NHE3 has been evolving with the development of specific reagents and genetically altered animals. In this review, we trace the discovery of NHERF-1 and NHERF-2, and update our current understanding of the relation between these proteins and the regulation and trafficking of NHE3.
Collapse
Affiliation(s)
- Edward J Weinman
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
47
|
Hackam DJ, Upperman JS, Grishin A, Ford HR. Disordered enterocyte signaling and intestinal barrier dysfunction in the pathogenesis of necrotizing enterocolitis. Semin Pediatr Surg 2005; 14:49-57. [PMID: 15770588 DOI: 10.1053/j.sempedsurg.2004.10.025] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Necrotizing enterocolitis (NEC) is the leading cause of death from gastrointestinal disease in neonates, and is characterized by the development of diffuse intestinal necrosis in the stressed, pre-term infant. Systemic stress causes a breakdown in the intestinal mucosal barrier, which leads to translocation of bacteria and endotoxin and the initiation of a signaling response within the enterocyte. This review summarizes recent evidence defining a clear role that defective enterocyte signaling plays in the pathogenesis of NEC through the following mechanisms: 1) The localized production of nitric oxide by villus enterocytes results in an increase in enterocyte apoptosis and impaired proliferation; 2) The translocation of endotoxin results in a PI3K-dependent activation of RhoA-GTPase within the enterocyte leading to decreased enterocyte migration and impaired restitution; 3) Dysregulated sodium-proton exchange within the enterocyte by endotoxin renders the enterocyte monolayer more susceptible to damage in the face of the acidic microenvironment characteristic of systemic sepsis; and 4) Endotoxin causes a p38-dependent release of the pro-inflammatory molecule COX-2 by the enterocyte, which potentiates the systemic inflammatory response. An understanding of the mechanisms by which disordered enterocyte signaling contributes to the pathogenesis of barrier failure and NEC--through these and other mechanisms--may lead to the identification of novel therapeutic approaches for this devastating disease.
Collapse
Affiliation(s)
- David J Hackam
- Division of Pediatric Surgry, Children's Hospital of Pittsburgh, Pennsylvania 15217, USA
| | | | | | | |
Collapse
|
48
|
Fidzinski P, Salvador-Silva M, Choritz L, Geibel J, Coca-Prados M. Inhibition of NHE-1 Na+/H+exchanger by natriuretic peptides in ocular nonpigmented ciliary epithelium. Am J Physiol Cell Physiol 2004; 287:C655-63. [PMID: 15140751 DOI: 10.1152/ajpcell.00552.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The natriuretic peptides (NPs) atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and C-type natriuretic peptide (CNP) display hypotensive effects in the mammalian eye by lowering the intraocular pressure (IOP), a function that is mediated by the bilayer ocular ciliary epithelium (CE), in conjunction with the trabecular meshwork. ANP regulates Na+/H+exchanger (NHE) activity, and inhibitors of NHE have been shown to lower IOP. We examined whether NPs influence the NHE activity of the CE, which is comprised of pigmented (PE) and nonpigmented (NPE) epithelial cells, by directly recording the rate of intracellular pH (pHi) recovery from its inner NPE cell layer. NPs inhibited, in a dose-dependent manner (1–100 nM), the rate of pHirecovery with the order of potency CNP > ANP > BNP, indicative that this inhibition is mediated by the presence of NPR type B receptors. 8-Bromo-cGMP (8-BrcGMP), a nonhydrolyzable analog of cGMP, mimicked NPs in inhibiting the rate of Na+-dependent pHirecovery. In contrast, ethylisopropyl amiloride (EIPA, 100 nM) or amiloride (10 μM) completely abolished the pHirecovery by NHE. 18α-Glycyrrhetinic acid (18α-GA), a gap junction blocker, attenuated the inhibitory effect of CNP on the rate of pHirecovery, suggesting that NHE activity in both cell layers of the CE is coregulated. This interpretation was supported, in part, by the coexpression of NHE-1 isoform mRNA in both NPE and PE cells. The mechanism by which the inhibitory effect of NPs on NHE-1 activity might influence the net solute movement or fluid transport by the bilayer CE remains to be determined.
Collapse
Affiliation(s)
- Pawel Fidzinski
- Dept. of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | |
Collapse
|
49
|
Cetin S, Dunklebarger J, Li J, Boyle P, Ergun O, Qureshi F, Ford H, Upperman J, Watkins S, Hackam DJ. Endotoxin differentially modulates the basolateral and apical sodium/proton exchangers (NHE) in enterocytes. Surgery 2004; 136:375-83. [PMID: 15300204 DOI: 10.1016/j.surg.2004.05.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Maintenance of enterocyte activity during extracellular acidosis requires functional sodium/proton exchangers (NHE), which are present at both basolateral and apical surfaces. Necrotizing enterocolitis is characterized by systemic hypoperfusion, metabolic acidosis, and the apical to basolateral translocation of endotoxin (lipopolysaccharide [LPS]). We hypothesized that LPS differentially impairs NHE activity at the basolateral or apical domains of enterocytes, leading to cellular acidification, and explored the mechanisms involved. METHODS Experimental necrotizing enterocolitis (NEC) was induced in newborn rats using a combination of gavage feeds and hypoxia. NHE isoforms were assessed in primary and cultured enterocytes by Western blot analysis and by confocal microscopy in the presence or absence of LPS. NHE activity was detected by single-cell fluorescent ratiometric imaging with the use of the pH-sensitive dye 2', 7'-bis-(2carboxyethyl) -5-(and-6)-carboxyfluorescein. RESULTS In both NEC and control rats, NHE1 was basolateral and NHE3 was apical. A similar distribution was observed in polarized IEC-6 cells. LPS caused a dose-dependent reduction in basolateral NHE1 activity in IEC-6 cells, but had no effect on apical NHE3 activity. This effect could not be accounted for by reduced expression or impaired plasma membrane localization of NHE isoforms. Strikingly, LPS-mediated NHE1 impairment caused marked cytoplasmic acidification under conditions of extracellular acidosis, whereas functional NHE1 maintained cytoplasmic pH homeostasis in control cells. CONCLUSIONS LPS selectively impairs basolateral NHE1 but not apical NHE3, leading to cytoplasmic acidification during extracellular acidosis. This effect could mediate impaired enterocyte function after LPS translocation and suggests a mechanism leading to barrier disruption in NEC.
Collapse
Affiliation(s)
- Selma Cetin
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh, and the Center of Biologic Imaging, PA 15213, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Pedrosa R, Gomes P, Hopfer U, Jose PA, Soares-da-Silva P. Gialpha3 protein-coupled dopamine D3 receptor-mediated inhibition of renal NHE3 activity in SHR proximal tubular cells is a PLC-PKC-mediated event. Am J Physiol Renal Physiol 2004; 287:F1059-66. [PMID: 15265766 DOI: 10.1152/ajprenal.00139.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study evaluated the transduction pathway associated with type 3 Na(+)/H(+) exchanger (NHE3) activity-induced inhibition during dopamine D(3) receptor activation in immortalized renal proximal tubular epithelial cells from the spontaneously hypertensive rat. The dopamine D(3) receptor agonist 7-OH-DPAT decreased NHE3 activity, which was prevented by the D(2)-like receptor antagonist S-sulpiride, pertussis toxin (PTX; overnight treatment), and the PKC inhibitor chelerythrine, but not by cholera toxin (overnight treatment), the MAPK inhibitor PD-098059, or the p38 inhibitor SB-203580. The PKA inhibitor H-89 abolished the inhibitory effects of forskolin on NHE3 activity, but not that of 7-OH-DPAT. The phospholipase C (PLC) inhibitor U-73122 prevented the inhibitory effects of 7-OH-DPAT, whereas PDBu and 7-OH-DPAT increased PLC activity and reduced NHE3 activity; downregulation of PKC abolished the inhibitory effects of both PDBu and 7-OH-DPAT on NHE activity. The inhibition of NHE3 activity by GTPgammaS and the prevention of the effect of 7-OH-DPAT by PTX suggest an involvement of a G(i/o) protein coupled to the dopamine D(3) receptor. Indeed, the 7-OH-DPAT-induced decrease in NHE3 activity was abolished in cells treated overnight with the anti-G(i)alpha3 antibody, but not in cells treated with antibodies against G(q/11), G(s)alpha, G(beta), and G(i)alpha1,2 proteins. The calcium ionophore A-23187 and the Ca(2+)-ATPase inhibitor thapsigargin increased intracellular Ca(2+) but did not affect NHE3 activity. However, the inhibitory effects of PDBu and 7-OH-DPAT on NHE3 activity were completely abolished by A-23287 and thapsigargin. It is concluded that inhibition of NHE3 activity by dopamine D(3) receptors coupled to G(i)alpha3 proteins is a PLC-PKC-mediated event, modulated by intracellular Ca(2+).
Collapse
Affiliation(s)
- Rui Pedrosa
- Institute of Pharmacology and Therapeutics, Faculty of Medicine, 4200-319 Porto, Portugal
| | | | | | | | | |
Collapse
|