1
|
Lange MD, Huang L, Yu Y, Li S, Liao H, Zemlin M, Su K, Zhang Z. Accumulation of VH Replacement Products in IgH Genes Derived from Autoimmune Diseases and Anti-Viral Responses in Human. Front Immunol 2014; 5:345. [PMID: 25101087 PMCID: PMC4105631 DOI: 10.3389/fimmu.2014.00345] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/06/2014] [Indexed: 11/24/2022] Open
Abstract
VH replacement refers to RAG-mediated secondary recombination of the IgH genes, which renews almost the entire VH gene coding region but retains a short stretch of nucleotides as a VH replacement footprint at the newly generated VH–DH junction. To explore the biological significance of VH replacement to the antibody repertoire, we developed a Java-based VH replacement footprint analyzer program and analyzed the distribution of VH replacement products in 61,851 human IgH gene sequences downloaded from the NCBI database. The initial assignment of the VH, DH, and JH gene segments provided a comprehensive view of the human IgH repertoire. To our interest, the overall frequency of VH replacement products is 12.1%; the frequencies of VH replacement products in IgH genes using different VH germline genes vary significantly. Importantly, the frequencies of VH replacement products are significantly elevated in IgH genes derived from different autoimmune diseases, including rheumatoid arthritis, systemic lupus erythematosus, and allergic rhinitis, and in IgH genes encoding various autoantibodies or anti-viral antibodies. The identified VH replacement footprints preferentially encoded charged amino acids to elongate IgH CDR3 regions, which may contribute to their autoreactivities or anti-viral functions. Analyses of the mutation status of the identified VH replacement products suggested that they had been actively involved in immune responses. These results provide a global view of the distribution of VH replacement products in human IgH genes, especially in IgH genes derived from autoimmune diseases and anti-viral immune responses.
Collapse
Affiliation(s)
- Miles D Lange
- Department of Pathology and Microbiology, University of Nebraska Medical Center , Omaha, NE , USA
| | - Lin Huang
- Department of Pathology and Microbiology, University of Nebraska Medical Center , Omaha, NE , USA
| | - Yangsheng Yu
- Department of Pathology and Microbiology, University of Nebraska Medical Center , Omaha, NE , USA
| | - Song Li
- Department of Pathology and Microbiology, University of Nebraska Medical Center , Omaha, NE , USA
| | - Hongyan Liao
- Department of Pathology and Microbiology, University of Nebraska Medical Center , Omaha, NE , USA
| | - Michael Zemlin
- Department of Pediatrics, Philipps-University Marburg , Marburg , Germany
| | - Kaihong Su
- Department of Pathology and Microbiology, University of Nebraska Medical Center , Omaha, NE , USA ; The Eppley Cancer Institute, University of Nebraska Medical Center , Omaha, NE , USA ; Department of Internal Medicine, University of Nebraska Medical Center , Omaha, NE , USA
| | - Zhixin Zhang
- Department of Pathology and Microbiology, University of Nebraska Medical Center , Omaha, NE , USA ; The Eppley Cancer Institute, University of Nebraska Medical Center , Omaha, NE , USA
| |
Collapse
|
2
|
Ouled-Haddou H, Ghamlouch H, Regnier A, Trudel S, Herent D, Lefranc MP, Marolleau JP, Gubler B. Characterization of a new V gene replacement in the absence of activation-induced cytidine deaminase and its contribution to human B-cell receptor diversity. Immunology 2014; 141:268-75. [PMID: 24134819 DOI: 10.1111/imm.12192] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 10/11/2013] [Accepted: 10/11/2013] [Indexed: 11/29/2022] Open
Abstract
In B cells, B-cell receptor (BCR) immunoglobulin revision is a common route for modifying unwanted antibody specificities via a mechanism called VH replacement. This in vivo process, mostly affecting heavy-chain rearrangement, involves the replacement of all or part of a previously rearranged IGHV gene with another germline IGHV gene located upstream. Two different mechanisms of IGHV replacement have been reported: type 1, involving the recombination activating genes complex and requiring a framework region 3 internal recombination signal; and type 2, involving an unidentified mechanism different from that of type 1. In the case of light-chain loci, BCR immunoglobulin editing ensures that a second V-J rearrangement occurs. This helps to maintain tolerance, by generating a novel BCR with a new antigenic specificity. We report that human B cells can, surprisingly, undergo type 2 replacement associated with κ light-chain rearrangements. The de novo IGKV-IGKJ products result from the partial replacement of a previously rearranged IGKV gene by a new germline IGKV gene, in-frame and without deletion or addition of nucleotides. There are wrcy/rgyw motifs at the 'IGKV donor-IGKV recipient chimera junction' as described for type 2 IGHV replacement, but activation-induced cytidine deaminase (AID) expression was not detected. This unusual mechanism of homologous recombination seems to be a variant of gene conversion-like recombination, which does not require AID. The recombination phenomenon described here provides new insight into immunoglobulin locus recombination and BCR immunoglobulin repertoire diversity.
Collapse
Affiliation(s)
- Hakim Ouled-Haddou
- Unité EA4666, SFR CAP Santé, Université Picardie Jules Verne, Amiens, France; Unité Inserm U925, Université Picardie Jules Verne, Amiens, France
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Meng W, Jayaraman S, Zhang B, Schwartz GW, Daber RD, Hershberg U, Garfall AL, Carlson CS, Luning Prak ET. Trials and Tribulations with VH Replacement. Front Immunol 2014; 5:10. [PMID: 24523721 PMCID: PMC3906580 DOI: 10.3389/fimmu.2014.00010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/07/2014] [Indexed: 11/13/2022] Open
Abstract
VH replacement (VHR) is a type of antibody gene rearrangement in which an upstream heavy chain variable gene segment (VH) invades a pre-existing rearrangement (VDJ). In this Hypothesis and Theory article, we begin by reviewing the mechanism of VHR, its developmental timing and its potential biological consequences. Then we explore the hypothesis that specific sequence motifs called footprints reflect VHR versus other processes. We provide a compilation of footprint sequences from different regions of the antibody heavy chain, and include data from the literature and from a high throughput sequencing experiment to evaluate the significance of footprint sequences. We conclude by discussing the difficulties of attributing footprints to VHR.
Collapse
Affiliation(s)
- Wenzhao Meng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Sahana Jayaraman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Bochao Zhang
- School of Biomedical Engineering, Science and Health Systems, Drexel University , Philadelphia, PA , USA
| | - Gregory W Schwartz
- School of Biomedical Engineering, Science and Health Systems, Drexel University , Philadelphia, PA , USA
| | - Robert D Daber
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA ; Center for Personalized Diagnostics, University of Pennsylvania Health System , Philadelphia, PA , USA
| | - Uri Hershberg
- School of Biomedical Engineering, Science and Health Systems, Drexel University , Philadelphia, PA , USA ; Department of Microbiology and Immunology, College of Medicine, Drexel University , Philadelphia, PA , USA
| | - Alfred L Garfall
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Christopher S Carlson
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center , Seattle, WA , USA
| | - Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| |
Collapse
|
4
|
Huang L, Lange MD, Yu Y, Li S, Su K, Zhang Z. Contribution of V(H) replacement products in mouse antibody repertoire. PLoS One 2013; 8:e57877. [PMID: 23469094 PMCID: PMC3585286 DOI: 10.1371/journal.pone.0057877] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 01/30/2013] [Indexed: 11/19/2022] Open
Abstract
VH replacement occurs through RAG-mediated recombination between the cryptic recombination signal sequence (cRSS) near the 3′ end of a rearranged VH gene and the 23-bp RSS from an upstream unrearranged VH gene. Due to the location of the cRSS, VH replacement leaves a short stretch of nucleotides from the previously rearranged VH gene at the newly formed V-D junction, which can be used as a marker to identify VH replacement products. To determine the contribution of VH replacement products to mouse antibody repertoire, we developed a Java-based VH Replacement Footprint Analyzer (VHRFA) program and analyzed 17,179 mouse IgH gene sequences from the NCBI database to identify VH replacement products. The overall frequency of VH replacement products in these IgH genes is 5.29% based on the identification of pentameric VH replacement footprints at their V-D junctions. The identified VH replacement products are distributed similarly in IgH genes using most families of VH genes, although different families of VH genes are used differentially. The frequencies of VH replacement products are significantly elevated in IgH genes derived from several strains of autoimmune prone mice and in IgH genes encoding autoantibodies. Moreover, the identified VH replacement footprints in IgH genes from autoimmune prone mice or IgH genes encoding autoantibodies preferentially encode positively charged amino acids. These results revealed a significant contribution of VH replacement products to the diversification of antibody repertoire and potentially, to the generation of autoantibodies in mice.
Collapse
Affiliation(s)
- Lin Huang
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Miles D. Lange
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Yangsheng Yu
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Song Li
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Kaihong Su
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- The Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Zhixin Zhang
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- The Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
5
|
Yu KK, Aguilar K, Tsai J, Galimidi R, Gnanapragasam P, Yang L, Baltimore D. Use of mutated self-cleaving 2A peptides as a molecular rheostat to direct simultaneous formation of membrane and secreted anti-HIV immunoglobulins. PLoS One 2012; 7:e50438. [PMID: 23209743 PMCID: PMC3508920 DOI: 10.1371/journal.pone.0050438] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 10/22/2012] [Indexed: 01/21/2023] Open
Abstract
In nature, B cells produce surface immunoglobulin and secreted antibody from the same immunoglobulin gene via alternative splicing of the pre-messenger RNA. Here we present a novel system for genetically programming B cells to direct the simultaneous formation of membrane-bound and secreted immunoglobulins that we term a "Molecular Rheostat", based on the use of mutated "self-cleaving" 2A peptides. The Molecular Rheostat is designed so that the ratio of secreted to membrane-bound immunoglobulins can be controlled by selecting appropriate mutations in the 2A peptide. Lentiviral transgenesis of Molecular Rheostat constructs into B cell lines enables the simultaneous expression of functional b12-based IgM-like BCRs that signal to the cells and mediate the secretion of b12 IgG broadly neutralizing antibodies that can bind and neutralize HIV-1 pseudovirus. We show that these b12-based Molecular Rheostat constructs promote the maturation of EU12 B cells in an in vitro model of B lymphopoiesis. The Molecular Rheostat offers a novel tool for genetically manipulating B cell specificity for B-cell based gene therapy.
Collapse
Affiliation(s)
- Kenneth K. Yu
- California Institute of Technology, Pasadena, California, United States of America
- Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Kiefer Aguilar
- California Institute of Technology, Pasadena, California, United States of America
| | - Jonathan Tsai
- California Institute of Technology, Pasadena, California, United States of America
| | - Rachel Galimidi
- California Institute of Technology, Pasadena, California, United States of America
| | | | - Lili Yang
- California Institute of Technology, Pasadena, California, United States of America
| | - David Baltimore
- California Institute of Technology, Pasadena, California, United States of America
- * E-mail:
| |
Collapse
|
6
|
Liao H, Guo JT, Lange MD, Fan R, Zemlin M, Su K, Guan Y, Zhang Z. Contribution of V(H) replacement products to the generation of anti-HIV antibodies. Clin Immunol 2012; 146:46-55. [PMID: 23220404 DOI: 10.1016/j.clim.2012.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 09/24/2012] [Accepted: 11/07/2012] [Indexed: 11/24/2022]
Abstract
V(H) replacement occurs through RAG-mediated secondary recombination to change unwanted IgH genes and diversify antibody repertoire. The biological significance of V(H) replacement remains to be explored. Here, we show that V(H) replacement products are highly enriched in IgH genes encoding anti-HIV antibodies, including anti-gp41, anti-V3 loop, anti-gp120, CD4i, and PGT antibodies. In particular, 73% of the CD4i antibodies and 100% of the PGT antibodies are encoded by potential VH replacement products. Such frequencies are significantly higher than those in IgH genes derived from HIV infected individuals or autoimmune patients. The identified V(H) replacement products encoding anti-HIV antibodies are highly mutated; the V(H) replacement "footprints" within CD4i antibodies preferentially encode negatively charged amino acids within the IgH CDR3; many IgH encoding PGT antibodies are likely generated from multiple rounds of V(H) replacement. Taken together, these findings uncovered a potentially significant contribution of V(H) replacement products to the generation of anti-HIV antibodies.
Collapse
Affiliation(s)
- Hongyan Liao
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Nygren MK, Døsen-Dahl G, Stubberud H, Wälchli S, Munthe E, Rian E. beta-catenin is involved in N-cadherin-dependent adhesion, but not in canonical Wnt signaling in E2A-PBX1-positive B acute lymphoblastic leukemia cells. Exp Hematol 2008; 37:225-33. [PMID: 19101069 DOI: 10.1016/j.exphem.2008.10.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 09/29/2008] [Accepted: 10/13/2008] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The t(1;19)(q23;13) translocation, resulting in the production of the E2A-PBX1 chimeric protein, is a common nonrandom translocation in pediatric B-lineage acute lymphoblastic leukemia (B-ALL). The E2A-PBX1 chimeric protein activates expression of several genes, including Wnt16. In the present study, we explored the role of Wnt16 and beta-catenin in t(1;19) B-ALL cells. MATERIALS AND METHODS Canonical Wnt signaling was measured by TOPflash activity. Localization of beta-catenin in the cell membrane and its involvement in leukemia-stroma interaction were studied by confocal microscopy. Adhesion to N-cadherin was analyzed by adding (3)H-thymidin-labeled cells to N-cadherin-coated wells. RESULTS In contrast to previous reports, we detected no effects on cell viability or proliferation upon modulation of the Wnt16 levels. Moreover, despite high levels of Wnt16 and beta-catenin, the cells had very low levels of canonical Wnt signaling. Instead, beta-catenin was located in the cell membrane along with N-cadherin. E2A-PBX1-positive leukemia cells adhered strongly to bone marrow stroma cells, and we showed that adherence junctions stained strongly for both proteins. Moreover, knockdown of beta-catenin reduced the adhesion of E2A-PBX1-positive leukemia cells to N-cadherin, suggesting that beta-catenin and N-cadherin play a central role in homotypic cell-to-cell adhesion and in leukemia-stroma adhesion. Interestingly, knockdown of Wnt16 by small interfering RNA reduced the level of N-cadherin. CONCLUSION Wnt16 does not activate canonical Wnt signaling in E2A-PBX1-positive cells. Instead, beta-catenin is involved in N-cadherin-dependent adherence junctions, suggesting for the first time that leukemia-stroma interactions may be mediated via an N-cadherin-dependent mechanism.
Collapse
Affiliation(s)
- Marit Kveine Nygren
- Department of Immunology, Institute for Cancer Research, Norwegian Radium Hospital, Rikshospitalet University Hospital, Montebello, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
8
|
Døsen-Dahl G, Munthe E, Nygren MK, Stubberud H, Hystad ME, Rian E. Bone marrow stroma cells regulate TIEG1 expression in acute lymphoblastic leukemia cells: Role of TGFβ/BMP-6 and TIEG1 in chemotherapy escape. Int J Cancer 2008; 123:2759-66. [DOI: 10.1002/ijc.23833] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Lutz J, Müller W, Jäck HM. VH replacement rescues progenitor B cells with two nonproductive VDJ alleles. THE JOURNAL OF IMMUNOLOGY 2007; 177:7007-14. [PMID: 17082616 DOI: 10.4049/jimmunol.177.10.7007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Inaccurate VDJ rearrangements generate a large number of progenitor (pro)-B cells with two nonproductive IgH alleles. Such cells lack essential survival signals mediated by surface IgM heavy chain (muH chain) expression and are normally eliminated. However, secondary rearrangements of upstream VH gene segments into assembled VDJ exons have been described in mice transgenic for productive muH chains, a process known as VH replacement. If VH replacement was independent of muH chain signals, it could also modify nonproductive VDJ exons and thus rescue pro-B cells with unsuccessful rearrangements on both alleles. To test this hypothesis, we homologously replaced the JH cluster of a mouse with a nonproductive VDJ exon. Surprisingly, B cell development in IgHVDJ-/VDJ- mice was only slightly impaired and significant numbers of IgM-positive B cells were produced. DNA sequencing confirmed that all VDJ sequences from muH chain-positive B lymphoid cells were generated by VH replacement in a RAG-dependent manner. Another unique feature of our transgenic mice was the presence of IgH chains with unusually long CDR3-H regions. Such IgH chains were functional and only modestly counter-selected, arguing against a strict length constraint for CDR3-H regions. In conclusion, VH replacement can occur in the absence of a muH chain signal and provides a potential rescue mechanism for pro-B cells with two nonproductive IgH alleles.
Collapse
Affiliation(s)
- Johannes Lutz
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger-Center of Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | | | | |
Collapse
|
10
|
Nygren MK, Døsen G, Hystad ME, Stubberud H, Funderud S, Rian E. Wnt3A activates canonical Wnt signalling in acute lymphoblastic leukaemia (ALL) cells and inhibits the proliferation of B-ALL cell lines. Br J Haematol 2006; 136:400-13. [PMID: 17156404 DOI: 10.1111/j.1365-2141.2006.06442.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acute lymphoblastic leukaemia (ALL) is the most common malignancy in children. Recently, there has been a growing interest in Wnt signalling in several aspects of cellular development, including cancer formation. Little is known about Wnt signalling in B-ALL. We investigated whether activation of canonical Wnt signalling could occur in B-ALL cells and thereby play a potential role in cellular growth and/or survival. This study found that Wnt3A induced beta-catenin accumulation in both primary B-ALL cells and B-ALL leukaemia cell lines. Further, Wnt3A was shown to induce nuclear translocation of beta-catenin and TCF/Lef-1 dependent transcriptions in the B-ALL cell line Nalm-6. Examination of the mRNA expression pattern of WNT ligands, FZD receptors and WNT antagonists in Nalm-6 cells identified a set of ligands and receptors available for signalling, as well as antagonists potentially available for modulating the response. Functional analyses showed that Wnt3A inhibited the proliferation of several, but not all, B-ALL cell lines studied. Finally, microarray analysis was used to identify several Wnt3A target genes involved in a diverse range of cellular activities, which are potential mediators of the Wnt3A-restrained proliferation.
Collapse
Affiliation(s)
- Marit Kveine Nygren
- Department of Immunology, Institute for Cancer Research, The University Clinic Rikshospitalet-Radiumhospitalet HF, Montebello, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
11
|
Liu Y, Fan R, Zhou S, Yu Z, Zhang Z. Potential Contribution of VH Gene Replacement in Immunity and Disease. Ann N Y Acad Sci 2005; 1062:175-81. [PMID: 16461800 DOI: 10.1196/annals.1358.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
VH replacement occurs through RAG-mediated recombination between a cryptic recombination signal sequence (cRSS) presented in a rearranged VH gene and a 23-bp RSS from an upstream VH gene. VH replacement renews the entire VH coding region and extends the immunoglobulin heavy-chain (IgH) CDR3 regions preferentially with charged amino acids. VH replacement occurs in bone marrow-immature B cells and contributes significantly to the primary B-cell repertoire in humans. However, the biological significance of VH replacement is not clear. Our recent studies revealed elevated frequencies of VH replacement products in different autoimmune diseases, including rheumatoid arthritis, systemic lupus erythematosus, and Sjögren's syndrome. Moreover, elevated frequencies of VH replacement products were also found in patients with human immunodeficiency virus or hepatitis C virus infections. These results provide the first clue that VH replacement contributes to autoimmune disease and antiviral immunity, and they also suggest a potential link between viral infection and autoimmune disease.
Collapse
Affiliation(s)
- Yanwen Liu
- Division of Developmental and Clinical Immunology, University of Alabama at Birmingham, WTI378, 1824 6th Ave. S., Birmingham, AL 35294-3300, USA
| | | | | | | | | |
Collapse
|
12
|
Abstract
Lymphocyte homeostasis encompasses a continuum of processes that together determine the production, turnover, composition, and representation of lymphocyte pools. These processes include commitment to lymphoid lineages, expansion of progenitor pools, successful transit through intermediate maturation stages, negative and positive selection based on receptor specificity, steady-state maintenance of peripheral lymphocytes, and regulation of antigen-driven activation. Understanding the impact of aging on lymphocyte homeostasis thus requires appreciation of not only the mechanisms responsible for generating and sustaining antigen-reactive B and T cells but also how age-related events can subvert these. Even under the influence of normally operating homeostatic mechanisms, lesions yielding perturbations outside of evolutionarily anticipated boundaries will yield aberrant lymphoid function and representation both upstream and downstream of the primary defect. Accordingly, determining the relative contribution of lineage-intrinsic versus compensatory homoeostatic processes throughout the continuum of lymphoid system development, selection, and maintenance are critical first steps towards understanding age-associated alterations in the immune system.
Collapse
Affiliation(s)
- Michael P Cancro
- University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Jackson SM, Capra JD. IgH V-Region Sequence Does Not Predict the Survival Fate of Human Germinal Center B Cells. THE JOURNAL OF IMMUNOLOGY 2005; 174:2805-13. [PMID: 15728490 DOI: 10.4049/jimmunol.174.5.2805] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Germinal center (GC) B cell survival fate is governed in part by the outcome of successful/failed BCR-mediated interactions with accessory cells. However, the extent to which the BCR primary sequence influences such interactions is not fully understood. Over 1000 IgV(H)4 family cDNAs were sequenced from living (annexin V(-)) and apoptotic (annexin V(+) or from within tingible body macrophages) GC B cell fractions from seven tonsils. Results surprisingly demonstrate that living and dying GC B cells do not significantly differ in IgV(H), D, or J(H) gene segment use; HCDR3 length or positive charge; or mutation frequency. Additionally, equivalent IgH cDNA sequences were identified in both fractions, suggesting that BCR sequence alone is an unreliable predictor of GC B cell survival.
Collapse
Affiliation(s)
- Stephen M Jackson
- Molecular Immunogenetics, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | |
Collapse
|
14
|
Abstract
First observed in mouse pre-B-cell lines and then in knock-in mice carrying self-reactive IgH transgenes, VH replacement has now been shown to contribute to the primary B-cell repertoire in humans. Through recombination-activating gene (RAG)-mediated recombination between a cryptic recombination signal sequence (RSS) present in almost all VH genes and the flanking 23 base pair RSS of an upstream VH gene, VH replacement renews the entire VH-coding region, while leaving behind a short stretch of nucleotides as a VH replacement footprint. In addition to extending the CDR3 region, the VH replacement footprints preferentially contribute charged amino acids. VH replacement rearrangement in immature B cells may either eliminate a self-reactive B-cell receptor or contribute to the generation of self-reactive antibodies. VH replacement may also rescue non-productive or dysfunctional VHDJH rearrangement in pro-B and pre-B cells. Conversely, VH replacement of a productive immunoglobulin H gene may generate non-productive VH replacement to disrupt or temporarily reverse the B-cell differentiation process. VH replacement can thus play a complex role in the generation of the primary B-cell repertoire.
Collapse
Affiliation(s)
- Zhixin Zhang
- Division of Developmental and Clinical Immunology, University of Alabama at Birmingham, Birmingham, AL 35294-3300, USA
| | | | | |
Collapse
|
15
|
Haynes MR, Wu GE. Evolution of the variable gene segments and recombination signal sequences of the human T-cell receptor alpha/delta locus. Immunogenetics 2004; 56:470-9. [PMID: 15378298 DOI: 10.1007/s00251-004-0706-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2004] [Indexed: 11/30/2022]
Abstract
The T-cell receptor (TCR) alpha and delta loci are particularly interesting because of their unique genomic structure, in that the gene segments for each locus are interspersed. The origin of this remarkable gene segment arrangement is obscure. In this report, we investigated the evolution of the TCRalpha and delta variable loci and their respective recombination signal sequences (RSSs). Our phylogenetic analyses divided the alpha and delta variable gene segments into two major groups each with distinguishing motifs in both the framework and complementarity determining regions (CDRs). Sequence analyses revealed that TCRdelta variable segments share similar CDR2 sequences with immunoglobulin light chain variable segments, possibly revealing similar evolutionary histories. Maximum likelihood analysis of the region on Chromosome 14q11.2 containing the loci revealed two possible ancestral TCR alpha/delta variable segments, TRDV2 and TRAV1-1/ 1-2, respectively. Maximum parsimony revealed different evolutionary patterns between the variable segment and RSS of the same variable gene arguing for dissimilar evolutionary origins. Two models could account for this difference: a V(D)J recombination activity involving embedded heptamer-like motifs in the germline genome, or, more plausibly, an unequal sister chromatid crossing-over. Either mechanism would have resulted in increased diversity for the adaptive immune system.
Collapse
MESH Headings
- Chromosomes, Human, Pair 14/genetics
- Complementarity Determining Regions/genetics
- Evolution, Molecular
- Genetic Variation
- Humans
- Immunoglobulin J-Chains/genetics
- Immunoglobulin Light Chains/genetics
- Immunoglobulin Variable Region/genetics
- Phylogeny
- Protein Sorting Signals/genetics
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Recombination, Genetic
Collapse
Affiliation(s)
- Marsha R Haynes
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, Canada M3J 1P3.
| | | |
Collapse
|
16
|
Jackson KJL, Gaeta B, Sewell W, Collins AM. Exonuclease activity and P nucleotide addition in the generation of the expressed immunoglobulin repertoire. BMC Immunol 2004; 5:19. [PMID: 15345030 PMCID: PMC517710 DOI: 10.1186/1471-2172-5-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Accepted: 09/02/2004] [Indexed: 12/03/2022] Open
Abstract
Background Immunoglobulin rearrangement involves random and imprecise processes that act to both create and constrain diversity. Two such processes are the loss of nucleotides through the action of unknown exonuclease(s) and the addition of P nucleotides. The study of such processes has been compromised by difficulties in reliably aligning immunoglobulin genes and in the partitioning of nucleotides between segment ends, and between N and P nucleotides. Results A dataset of 294 human IgM sequences was created and partitioned with the aid of a probabilistic model. Non-random removal of nucleotides is seen between the three IGH gene types with the IGHV gene averaging removals of 1.2 nucleotides compared to 4.7 for the other gene ends (p < 0.001). Individual IGHV, IGHD and IGHJ gene subgroups also display statistical differences in the level of nucleotide loss. For example, within the IGHJ group, IGHJ3 has average removals of 1.3 nucleotides compared to 6.4 nucleotides for IGHJ6 genes (p < 0.002). Analysis of putative P nucleotides within the IgM and pooled datasets revealed only a single putative P nucleotide motif (GTT at the 3' D-REGION end) to occur at a frequency significantly higher then would be expected from random N nucleotide addition. Conclusions The loss of nucleotides due to the action of exonucleases is not random, but is influenced by the nucleotide composition of the genes. P nucleotides do not make a significant contribution to diversity of immunoglobulin sequences. Although palindromic sequences are present in 10% of immunologlobulin rearrangements, most of the 'palindromic' nucleotides are likely to have been inserted into the junction during the process of N nucleotide addition. P nucleotides can only be stated with confidence to contribute to diversity of less than 1% of sequences. Any attempt to identify P nucleotides in immunoglobulins is therefore likely to introduce errors into the partitioning of such sequences.
Collapse
Affiliation(s)
- Katherine JL Jackson
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Bruno Gaeta
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - William Sewell
- Garvan Institute of Medical Research, Sydney, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Andrew M Collins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|