1
|
Bloom AJ, Upadhyaya P, Kharasch ED. Strain-specific altered nicotine metabolism in 3,3'-diindolylmethane (DIM) exposed mice. Biopharm Drug Dispos 2019; 40:188-194. [PMID: 31016737 DOI: 10.1002/bdd.2182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 12/25/2022]
Abstract
Two indole compounds, indole-3-carbinol (I3C) and its acid condensation product, 3,3'-diindolymethane (DIM), have been shown to suppress the expression of flavin-containing monooxygenases (FMO) and to induce some hepatic cytochrome P450s (CYPs) in rats. In liver microsomes prepared from rats fed I3C or DIM, FMO-mediated nicotine N-oxygenation was decreased, whereas CYP-mediated nicotine metabolism to nicotine iminium and subsequently to cotinine was unchanged. Therefore, it was hypothesized that in mice DIM would also suppress nicotine N-oxygenation without affecting CYP-mediated nicotine metabolism. Liver microsomes were produced from male and female C57BL/6 J and CD1 mice fed 2500 parts per million (ppm) DIM for 14 days. In liver microsomes from DIM-fed mice, FMO-mediated nicotine N-oxygenation did not differ from the controls, but CYP-mediated nicotine metabolism was significantly increased, with results varying by sex and strain. To confirm the effects of DIM in vivo, control and DIM-fed CD1 male mice were injected subcutaneously with nicotine, and the plasma concentrations of nicotine, cotinine and nicotine-N-oxide were measured over 30 minutes. The DIM-fed mice showed greater cotinine concentrations compared with the controls 10 minutes following injection. It is concluded that the effects of DIM on nicotine metabolism in vitro and in vivo differ between mice and rats and between mouse strains, and that DIM is an effective inducer of CYP-mediated nicotine metabolism in commonly studied mouse strains.
Collapse
Affiliation(s)
- A Joseph Bloom
- Department of Genetics, Washington University, St Louis, MO
| | | | - Evan D Kharasch
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC
| |
Collapse
|
2
|
The Role of Cell Adhesion Molecule Genes Regulating Neuroplasticity in Addiction. Neural Plast 2018; 2018:9803764. [PMID: 29675039 PMCID: PMC5838467 DOI: 10.1155/2018/9803764] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/10/2017] [Indexed: 01/06/2023] Open
Abstract
A variety of genetic approaches, including twin studies, linkage studies, and candidate gene studies, has established a firm genetic basis for addiction. However, there has been difficulty identifying the precise genes that underlie addiction liability using these approaches. This situation became especially clear in genome-wide association studies (GWAS) of addiction. Moreover, the results of GWAS brought into clarity many of the shortcomings of those early genetic approaches. GWAS studies stripped away those preconceived notions, examining genes that would not previously have been considered in the study of addiction, consequently creating a shift in our understanding. Most importantly, those studies implicated a class of genes that had not previously been considered in the study of addiction genetics: cell adhesion molecules (CAMs). Considering the well-documented evidence supporting a role for various CAMs in synaptic plasticity, axonal growth, and regeneration, it is not surprising that allelic variation in CAM genes might also play a role in addiction liability. This review focuses on the role of various cell adhesion molecules in neuroplasticity that might contribute to addictive processes and emphasizes the importance of ongoing research on CAM genes that have been implicated in addiction by GWAS.
Collapse
|
3
|
Podgórski T, Szmyt G, Szmyt A, Gronek J, Celka R, Gronek P. Aerobic and concentration training and allele 7 in the dopamine receptor D4 ( D4DR) gene increase chances of smoking cessation in young Polish women. Arch Med Sci 2018; 14:199-206. [PMID: 29379551 PMCID: PMC5778432 DOI: 10.5114/aoms.2018.72243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/29/2017] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION One reason for the limited effectiveness of the available smoking cessation methods is the fact that the causes of tobacco addiction have not been adequately explained yet. Numerous anti-smoking programs aimed at women involve intense physical activity. The goal of the study was to evaluate the effectiveness of health training for smoking cessation by young women in connection with the dopamine receptor gene (D4DR) in their genetic profile. MATERIAL AND METHODS Forty-eight adult female smokers were randomly assigned to: 1) a concentration training group, or 2) an aerobic and concentration training group. Genetic and phenotypic data were obtained from 48 participants. Genotyping was performed for allele 7 in the D4DR gene. RESULTS Individuals with allele 7 in the dopamine receptor D4 gene have two times greater chances (OR = 2.13: 95% CI: 0.91-4.96) of quitting smoking than individuals without allele 7. No statistical significance was revealed (p = 0.0805). Individuals undertaking aerobic training in combination with concentration training are three times more likely (OR = 3.06: 95% CI: 1.03-9.05) to quit smoking than individuals who do not perform aerobic training (p = 0.0439). CONCLUSIONS The results of the study show that an intensive, 6-week health training program had a significant influence on smoking cessation. Smoking quitters, who are genetically predisposed and decide to take up aerobic training in combination with concentration training, have much greater chances of quitting smoking.
Collapse
Affiliation(s)
- Tomasz Podgórski
- Department of Biochemistry, Poznan University of Physical Education, Poznan, Poland
| | - Grażyna Szmyt
- Cosmetology, College of Health, Beauty and Education, Poznan, Poland
| | - Agnieszka Szmyt
- Cosmetology, College of Health, Beauty and Education, Poznan, Poland
| | - Joanna Gronek
- Department of Gymnastics, Poznan University of Physical Education, Poznan, Poland
| | - Roman Celka
- Department of Gymnastics, Poznan University of Physical Education, Poznan, Poland
| | - Piotr Gronek
- Department of Dance Sciences, Poznan University of Physical Education, Poznan, Poland
| |
Collapse
|
4
|
Pogun S, Yararbas G, Nesil T, Kanit L. Sex differences in nicotine preference. J Neurosci Res 2017; 95:148-162. [PMID: 27870459 DOI: 10.1002/jnr.23858] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/29/2016] [Accepted: 07/11/2016] [Indexed: 01/01/2023]
Abstract
Smoking is the major cause of preventable deaths worldwide, and although there is a decline in overall smoking prevalence in developed countries, the decline in women is less pronounced than in men. Women become dependent faster and experience greater difficulties in quitting. Similar trends have been observed in animal models of nicotine/tobacco addiction. Individual differences in vulnerability to drug abuse are also observed in nicotine/tobacco addiction and point to the importance of sex differences. This Review, summarizes findings from three experimental approaches used to depict nicotine preference in animal models, intravenous and oral nicotine self-administration and nicotine-induced conditioned place preference. Nicotine preference is considered to be reflected in the animal's motivation to administer the drug (intravenously or orally) or to prefer an environment paired with the presence of the drug (conditioned place preference). These approaches all point to the importance of sex and age of the subjects; the preference of females and adolescents appear to be more pronounced than that of males and adults, respectively. A closer look at these factors will help us understand the mechanisms that underlie nicotine addiction and develop strategies to cope. Ignoring sex differences and reaching conclusions based only on studies using male subjects has resulted in erroneous generalizations in the past. Sex differences in nicotine preference have been clearly documented, and awareness on this aspect of nicotine dependence will significantly impact our success in translational research. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sakire Pogun
- Center for Brain Research, Ege University, Izmir, Turkey
| | - Gorkem Yararbas
- Institute on Drug Abuse, Toxicology and Pharmaceutical Science, Ege University, Izmir, Turkey
| | - Tanseli Nesil
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia
| | - Lutfiye Kanit
- Center for Brain Research, Ege University, Izmir, Turkey.,Physiology Department, School of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
5
|
Research Domain Criteria versus DSM V: How does this debate affect attempts to model corticostriatal dysfunction in animals? Neurosci Biobehav Rev 2016; 76:301-316. [PMID: 27826070 DOI: 10.1016/j.neubiorev.2016.10.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/03/2016] [Accepted: 10/31/2016] [Indexed: 01/29/2023]
Abstract
For decades, the nosology of mental illness has been based largely upon the descriptions in the Diagnostic and Statistical Manual of the American Psychiatric Association (DSM). A recent challenge to the DSM approach to psychiatric nosology from the National Institute on Mental Health (USA) defines Research Domain Criteria (RDoC) as an alternative. For RDoC, psychiatric illnesses are not defined as discrete categories, but instead as specific behavioral dysfunctions irrespective of DSM diagnostic categories. This approach was driven by two primary weaknesses noted in the DSM: (1) the same symptoms occur in very different disease states; and (2) DSM criteria lack grounding in the underlying biological causes of mental illness. RDoC intends to ground psychiatric nosology in those underlying mechanisms. This review addresses the suitability of RDoC vs. DSM from the view of modeling mental illness in animals. A consideration of all types of psychiatric dysfunction is beyond the scope of this review, which will focus on models of conditions associated with frontostriatal dysfunction.
Collapse
|
6
|
Hall FS, Der-Avakian A, Gould TJ, Markou A, Shoaib M, Young JW. Negative affective states and cognitive impairments in nicotine dependence. Neurosci Biobehav Rev 2015; 58:168-85. [PMID: 26054790 DOI: 10.1016/j.neubiorev.2015.06.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 02/13/2015] [Accepted: 06/03/2015] [Indexed: 10/23/2022]
Abstract
Smokers have substantial individual differences in quit success in response to current treatments for nicotine dependence. This observation may suggest that different underlying motivations for continued tobacco use across individuals and nicotine cessation may require different treatments in different individuals. Although most animal models of nicotine dependence emphasize the positive reinforcing effects of nicotine as the major motivational force behind nicotine use, smokers generally report that other consequences of nicotine use, including the ability of nicotine to alleviate negative affective states or cognitive impairments, as reasons for continued smoking. These states could result from nicotine withdrawal, but also may be associated with premorbid differences in affective and/or cognitive function. Effects of nicotine on cognition and affect may alleviate these impairments regardless of their premorbid or postmorbid origin (e.g., before or after the development of nicotine dependence). The ability of nicotine to alleviate these symptoms would thus negatively reinforce behavior, and thus maintain subsequent nicotine use, contributing to the initiation of smoking, the progression to dependence and relapse during quit attempts. The human and animal studies reviewed here support the idea that self-medication for pre-morbid and withdrawal-induced impairments may be more important factors in nicotine addiction and relapse than has been previously appreciated in preclinical research into nicotine dependence. Given the diverse beneficial effects of nicotine under these conditions, individuals might smoke for quite different reasons. This review suggests that inter-individual differences in the diverse effects of nicotine associated with self-medication and negative reinforcement are an important consideration in studies attempting to understand the causes of nicotine addiction, as well as in the development of effective, individualized nicotine cessation treatments.
Collapse
Affiliation(s)
- F Scott Hall
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA.
| | - Andre Der-Avakian
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Thomas J Gould
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | - Athina Markou
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Mohammed Shoaib
- Institute of Neuroscience, Newcastle University, Newcastle, UK
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
7
|
Abstract
The problem of lying as a feature of medication compliance has been well documented in anthropological and clinical literatures. Yet the role of the lie-its destabilizing effects on the continuity of drug treatment and therapy, as a technology of drug misuse, or as a way to understand the neuro-chemical processes of treatment (pharmacotherapy "tricking" or lying to the brain)-has been less considered, particularly in the context of opioid replacement therapy. The following paper is set against the backdrop of a three-year study of adolescents receiving a relatively new drug (buprenorphine) for the treatment of opiate dependency inside and outside of highly monitored treatment environments in the United States. Lies give order not only to the experience of addiction but also to the experience of therapy as well. In order to better understand this ordering of experience, the paper puts the widely discussed conceptual duality of the pharmakon (healing and poison) in conversation with a perilously overlooked subject in the critical study of pharmacotherapy, namely the pharmakos or the personification of sacrifice. The paper demonstrates how the patient-subject comes to represent therapeutic promise by allowing for the possibility of (and often performing) deceit.
Collapse
|
8
|
Uhl GR, Drgonova J, Hall FS. Curious cases: Altered dose-response relationships in addiction genetics. Pharmacol Ther 2013; 141:335-46. [PMID: 24189489 DOI: 10.1016/j.pharmthera.2013.10.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/24/2013] [Indexed: 01/10/2023]
Abstract
Dose-response relationships for most addictive substances are "inverted U"-shaped. Addictive substances produce both positive features that include reward, euphoria, anxiolysis, withdrawal-relief, and negative features that include aversion, dysphoria, anxiety and withdrawal symptoms. A simple model differentially associates ascending and descending limbs of dose-response curves with rewarding and aversive influences, respectively. However, Diagnostic and Statistical Manual (DSM) diagnoses of substance dependence fail to incorporate dose-response criteria and don't directly consider balances between euphoric and dysphoric drug effects. Classical genetic studies document substantial heritable influences on DSM substance dependence. Linkage and genome-wide association studies identify modest-sized effects at any locus. Nevertheless, clusters of SNPs within selected genes display 10(-2)>p>10(-8) associations with dependence in many independent samples. For several of these genes, evidence for cis-regulatory, level-of-expression differences supports the validity of mouse models in which levels of expression are also altered. This review documents surprising, recently defined cases in which convergent evidence from humans and mouse models supports central influences of altered dose-response relationships in mediating the impact of relevant genomic variation on addiction phenotypes. For variation at loci for the α5 nicotinic acetylcholine receptor, cadherin 13, receptor type protein tyrosine phosphatase Δ and neuronal cell adhesion molecule genes, changed dose-response relationships conferred by gene knockouts in mice are accompanied by supporting human data. These observations emphasize desirability of carefully elucidating dose-response relationships for both rewarding and aversive features of abused substances wherever possible. They motivate consideration of individual differences in dose-response relationships in addiction nosology and therapeutics.
Collapse
Affiliation(s)
- George R Uhl
- Molecular Neurobiology Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD 21224, United States.
| | - Jana Drgonova
- Molecular Neurobiology Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD 21224, United States
| | - F Scott Hall
- Molecular Neurobiology Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD 21224, United States
| |
Collapse
|
9
|
Nine generations of selection for high and low nicotine intake in outbred Sprague-Dawley rats. Behav Genet 2013; 43:436-44. [PMID: 23912820 DOI: 10.1007/s10519-013-9605-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 07/26/2013] [Indexed: 01/27/2023]
Abstract
Previous animal studies have revealed significant involvement of genetics in nicotine intake; however, the extent of the genetic contribution to this behavior has not been well addressed. We report the first study of nine generations of selection for high and low voluntary nicotine intake in outbred Sprague-Dawley rats. Bidirectional mass selection resulted in progressively greater nicotine consumption in the high nicotine-preferring line but no decrease in nicotine intake in the low nicotine-preferring line across generations. Our estimated realized heritability for high voluntary nicotine intake is 0.26 vs close to zero for low voluntary nicotine intake. In contrast, we found no differences between the lines across generations for saccharine intake. These selected lines may provide useful animal models for identifying susceptibility and resistance genes and variants for controlling voluntary nicotine intake in rodents, although we recognize that more generations of selection of these two lines and independent replication of our selection for high and low nicotine-preferring lines are needed.
Collapse
|
10
|
Uchiumi O, Kasahara Y, Fukui A, Hall FS, Uhl GR, Sora I. Serotonergic involvement in the amelioration of behavioral abnormalities in dopamine transporter knockout mice by nicotine. Neuropharmacology 2012; 64:348-56. [PMID: 22809709 DOI: 10.1016/j.neuropharm.2012.07.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 07/05/2012] [Accepted: 07/06/2012] [Indexed: 11/19/2022]
Abstract
Dopamine transporter knockout (DAT KO) mice exhibit elevated extracellular dopamine levels in brain regions that include the striatum and the nucleus accumbens, but not the prefrontal cortex. DAT KO mice model some aspects of psychiatric disorders, including schizophrenia. Smoking is more common in patients with schizophrenia, suggesting that nicotine might ameliorate aspects of the behavioral abnormalities and/or treatment side effects seen in these individuals. We report nicotine-induced normalization of effects on locomotion and prepulse inhibition of acoustic startle (PPI) in DAT KO mice that require intact serotonin 5-HT1A systems. First, we observed that the marked hyperactivity displayed by DAT KO mice was reduced by administration of nicotine. This nicotine effect was blocked by pretreatment with the non-specific nicotinic acetylcholine (nACh) receptor antagonist mecamylamine, or the 5-HT1A antagonist WAY100635. Secondly, we examined the effects of nicotine on PPI in DAT KO mice. Treatment with nicotine significantly ameliorated the PPI deficits observed in DAT KO mice. The ameliorating action of nicotine on PPI deficits in DAT KO mice was blocked by mecamylamine, the α₇ nACh receptor antagonist methyllycaconitine or WAY100635, while the α₄β₂ nACh receptor antagonist dihydro-β-erythroidinehydrobromide (DHβE) produced only a non-significant trend toward attenuation of nicotine effects. Finally, we observed that administration of the 5-HT1A receptor agonist 8-OH-DPAT also ameliorated the deficit in PPI observed in DAT KO mice. This amelioration was antagonized by pretreatment with WAY100635. These data support the idea that nicotine might ameliorate some of the cognitive dysfunctions found in schizophrenia in a 5-HT1A-dependent fashion. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
Collapse
Affiliation(s)
- Osamu Uchiumi
- Department of Biological Psychiatry, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Sendai 980-8574, Japan
| | | | | | | | | | | |
Collapse
|