1
|
Kumar A, Mali P. Mapping regulators of cell fate determination: Approaches and challenges. APL Bioeng 2020; 4:031501. [PMID: 32637855 PMCID: PMC7332300 DOI: 10.1063/5.0004611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/01/2020] [Indexed: 12/25/2022] Open
Abstract
Given the limited regenerative capacities of most organs, strategies are needed to efficiently generate large numbers of parenchymal cells capable of integration into the diseased organ. Although it was initially thought that terminally differentiated cells lacked the ability to transdifferentiate, it has since been shown that cellular reprogramming of stromal cells to parenchymal cells through direct lineage conversion holds great potential for the replacement of post-mitotic parenchymal cells lost to disease. To this end, an assortment of genetic, chemical, and mechanical cues have been identified to reprogram cells to different lineages both in vitro and in vivo. However, some key challenges persist that limit broader applications of reprogramming technologies. These include: (1) low reprogramming efficiencies; (2) incomplete functional maturation of derived cells; and (3) difficulty in determining the typically multi-factor combinatorial recipes required for successful transdifferentiation. To improve efficiency by comprehensively identifying factors that regulate cell fate, large scale genetic and chemical screening methods have thus been utilized. Here, we provide an overview of the underlying concept of cell reprogramming as well as the rationale, considerations, and limitations of high throughput screening methods. We next follow with a summary of unique hits that have been identified by high throughput screens to induce reprogramming to various parenchymal lineages. Finally, we discuss future directions of applying this technology toward human disease biology via disease modeling, drug screening, and regenerative medicine.
Collapse
Affiliation(s)
- Aditya Kumar
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Prashant Mali
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
2
|
Rosa FF, Pires CF, Zimmermannova O, Pereira CF. Direct Reprogramming of Mouse Embryonic Fibroblasts to Conventional Type 1 Dendritic Cells by Enforced Expression of Transcription Factors. Bio Protoc 2020; 10:e3619. [PMID: 33659292 PMCID: PMC7842401 DOI: 10.21769/bioprotoc.3619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/11/2020] [Accepted: 03/29/2020] [Indexed: 02/02/2023] Open
Abstract
Ectopic expression of transcription factor combinations has been recently demonstrated to reprogram differentiated somatic cells towards the dendritic cell (DC) lineage without reversion to a multipotent state. DCs have the ability to induce potent and long-lasting adaptive immune responses. In particular, conventional type 1 DCs (cDC1s) excel on antigen cross-presentation, a critical step for inducing CD8+ T cell cytotoxic responses. The rarity of naturally occurring cDC1s and lack of in vitro methodologies for the generation of pure cDC1 populations strongly hinders the study of cDC1 lineage specification and function. Here, we describe a protocol for the generation of induced DCs (iDCs) by lentiviral-mediated expression of the transcription factors PU.1, IRF8 and BATF3 in mouse embryonic fibroblasts. iDCs acquire DC morphology, cDC1 phenotype and transcriptional signatures within 9 days. iDCs generated with this protocol acquire functional ability to respond to inflammatory stimuli, engulf dead cells, process and cross-present antigens to CD8+ T cells. DC reprogramming provides a simple and tractable system to generate high numbers of cDC1-like cells for high content screening, opening new avenues to better understand cDC1 specification and function. In the future, faithful induction of cDC1 fate in fibroblasts may lead to the generation of patient-specific DCs for vaccination.
Collapse
Affiliation(s)
- Fábio F. Rosa
- Cell Reprogramming in Hematopoiesis and Immunity Laboratory, Lund Stem Cell Center, Department of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Cristiana F. Pires
- Cell Reprogramming in Hematopoiesis and Immunity Laboratory, Lund Stem Cell Center, Department of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Olga Zimmermannova
- Cell Reprogramming in Hematopoiesis and Immunity Laboratory, Lund Stem Cell Center, Department of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Carlos-Filipe Pereira
- Cell Reprogramming in Hematopoiesis and Immunity Laboratory, Lund Stem Cell Center, Department of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
3
|
Pires CF, Rosa FF, Kurochkin I, Pereira CF. Understanding and Modulating Immunity With Cell Reprogramming. Front Immunol 2019; 10:2809. [PMID: 31921109 PMCID: PMC6917620 DOI: 10.3389/fimmu.2019.02809] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/15/2019] [Indexed: 12/30/2022] Open
Abstract
Cell reprogramming concepts have been classically developed in the fields of developmental and stem cell biology and are currently being explored for regenerative medicine, given its potential to generate desired cell types for replacement therapy. Cell fate can be experimentally reversed or modified by enforced expression of lineage specific transcription factors leading to pluripotency or attainment of another somatic cell type identity. The possibility to reprogram fibroblasts into induced dendritic cells (DC) competent for antigen presentation creates a paradigm shift for understanding and modulating the immune system with direct cell reprogramming. PU.1, IRF8, and BATF3 were identified as sufficient and necessary to impose DC fate in unrelated cell types, taking advantage of Clec9a, a C-type lectin receptor with restricted expression in conventional DC type 1. The identification of such minimal gene regulatory networks helps to elucidate the molecular mechanisms governing development and lineage heterogeneity along the hematopoietic hierarchy. Furthermore, the generation of patient-tailored reprogrammed immune cells provides new and exciting tools for the expanding field of cancer immunotherapy. Here, we summarize cell reprogramming concepts and experimental approaches, review current knowledge at the intersection of cell reprogramming with hematopoiesis, and propose how cell fate engineering can be merged to immunology, opening new opportunities to understand the immune system in health and disease.
Collapse
Affiliation(s)
- Cristiana F. Pires
- Cell Reprogramming in Hematopoiesis and Immunity Laboratory, Lund Stem Cell Center, Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Fábio F. Rosa
- Cell Reprogramming in Hematopoiesis and Immunity Laboratory, Lund Stem Cell Center, Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ilia Kurochkin
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Carlos-Filipe Pereira
- Cell Reprogramming in Hematopoiesis and Immunity Laboratory, Lund Stem Cell Center, Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
4
|
Rosa FF, Pires CF, Kurochkin I, Ferreira AG, Gomes AM, Palma LG, Shaiv K, Solanas L, Azenha C, Papatsenko D, Schulz O, e Sousa CR, Pereira CF. Direct reprogramming of fibroblasts into antigen-presenting dendritic cells. Sci Immunol 2018; 3:3/30/eaau4292. [DOI: 10.1126/sciimmunol.aau4292] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 10/03/2018] [Indexed: 12/31/2022]
Abstract
Ectopic expression of transcription factors has been used to reprogram differentiated somatic cells toward pluripotency or to directly reprogram them to other somatic cell lineages. This concept has been explored in the context of regenerative medicine. Here, we set out to generate dendritic cells (DCs) capable of presenting antigens from mouse and human fibroblasts. By screening combinations of 18 transcription factors that are expressed in DCs, we have identified PU.1, IRF8, and BATF3 transcription factors as being sufficient to reprogram both mouse and human fibroblasts to induced DCs (iDCs). iDCs acquire a conventional DC type 1–like transcriptional program, with features of interferon-induced maturation. iDCs secrete inflammatory cytokines and have the ability to engulf, process, and present antigens to T cells. Furthermore, we demonstrate that murine iDCs generated here were able to cross-present antigens to CD8+ T cells. Our reprogramming system should facilitate better understanding of DC specification programs and serve as a platform for the development of patient-specific DCs for immunotherapy.
Collapse
|
5
|
Ivanovs A, Rybtsov S, Ng ES, Stanley EG, Elefanty AG, Medvinsky A. Human haematopoietic stem cell development: from the embryo to the dish. Development 2017; 144:2323-2337. [PMID: 28676567 DOI: 10.1242/dev.134866] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Haematopoietic stem cells (HSCs) emerge during embryogenesis and give rise to the adult haematopoietic system. Understanding how early haematopoietic development occurs is of fundamental importance for basic biology and medical sciences, but our knowledge is still limited compared with what we know of adult HSCs and their microenvironment. This is particularly true for human haematopoiesis, and is reflected in our current inability to recapitulate the development of HSCs from pluripotent stem cells in vitro In this Review, we discuss what is known of human haematopoietic development: the anatomical sites at which it occurs, the different temporal waves of haematopoiesis, the emergence of the first HSCs and the signalling landscape of the haematopoietic niche. We also discuss the extent to which in vitro differentiation of human pluripotent stem cells recapitulates bona fide human developmental haematopoiesis, and outline some future directions in the field.
Collapse
Affiliation(s)
- Andrejs Ivanovs
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK.,Institute of Anatomy and Anthropology, Riga Stradiņš University, Riga LV-1007, Latvia
| | - Stanislav Rybtsov
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Elizabeth S Ng
- Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, Victoria 3052, Australia.,Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Edouard G Stanley
- Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, Victoria 3052, Australia.,Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Andrew G Elefanty
- Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, Victoria 3052, Australia .,Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Alexander Medvinsky
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| |
Collapse
|
6
|
Shi Y, Inoue H, Wu JC, Yamanaka S. Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov 2017; 16:115-130. [PMID: 27980341 PMCID: PMC6416143 DOI: 10.1038/nrd.2016.245] [Citation(s) in RCA: 985] [Impact Index Per Article: 123.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since the advent of induced pluripotent stem cell (iPSC) technology a decade ago, enormous progress has been made in stem cell biology and regenerative medicine. Human iPSCs have been widely used for disease modelling, drug discovery and cell therapy development. Novel pathological mechanisms have been elucidated, new drugs originating from iPSC screens are in the pipeline and the first clinical trial using human iPSC-derived products has been initiated. In particular, the combination of human iPSC technology with recent developments in gene editing and 3D organoids makes iPSC-based platforms even more powerful in each area of their application, including precision medicine. In this Review, we discuss the progress in applications of iPSC technology that are particularly relevant to drug discovery and regenerative medicine, and consider the remaining challenges and the emerging opportunities in the field.
Collapse
Affiliation(s)
- Yanhong Shi
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, California 91010, USA
| | - Haruhisa Inoue
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Joseph C Wu
- Stanford Cardiovascular Institute, 265 Campus Drive, Room G1120B, Stanford, California 94305-5454, USA
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
- Gladstone Institute of Cardiovascular Disease, San Francisco, California 94158, USA
| |
Collapse
|
7
|
Kaminski MM, Tosic J, Kresbach C, Engel H, Klockenbusch J, Müller AL, Pichler R, Grahammer F, Kretz O, Huber TB, Walz G, Arnold SJ, Lienkamp SS. Direct reprogramming of fibroblasts into renal tubular epithelial cells by defined transcription factors. Nat Cell Biol 2016; 18:1269-1280. [PMID: 27820600 DOI: 10.1038/ncb3437] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/06/2016] [Indexed: 12/12/2022]
Abstract
Direct reprogramming by forced expression of transcription factors can convert one cell type into another. Thus, desired cell types can be generated bypassing pluripotency. However, direct reprogramming towards renal cells remains an unmet challenge. Here, we identify renal cell fate-inducing factors on the basis of their tissue specificity and evolutionarily conserved expression, and demonstrate that combined expression of Emx2, Hnf1b, Hnf4a and Pax8 converts mouse and human fibroblasts into induced renal tubular epithelial cells (iRECs). iRECs exhibit epithelial features, a global gene expression profile resembling their native counterparts, functional properties of differentiated renal tubule cells and sensitivity to nephrotoxic substances. Furthermore, iRECs integrate into kidney organoids and form tubules in decellularized kidneys. Our approach demonstrates that reprogramming factors can be identified by targeted in silico analysis. Renal tubular epithelial cells generated ex vivo by forced expression of transcription factors may facilitate disease modelling, drug and nephrotoxicity testing, and regenerative approaches.
Collapse
Affiliation(s)
- Michael M Kaminski
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Jelena Tosic
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany.,Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Faculty of Medicine, Albertstraße 25, 79104 Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstraße 19a, 79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Catena Kresbach
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Hannes Engel
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Jonas Klockenbusch
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Anna-Lena Müller
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Roman Pichler
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Florian Grahammer
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Oliver Kretz
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany.,Department of Neuroanatomy, University of Freiburg, Albertstraße 17, 79104 Freiburg, Germany
| | - Tobias B Huber
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany.,BIOSS Centre of Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
| | - Gerd Walz
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany.,BIOSS Centre of Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
| | - Sebastian J Arnold
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany.,Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Faculty of Medicine, Albertstraße 25, 79104 Freiburg, Germany.,BIOSS Centre of Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
| | - Soeren S Lienkamp
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany.,BIOSS Centre of Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
| |
Collapse
|
8
|
Hematopoietic Reprogramming In Vitro Informs In Vivo Identification of Hemogenic Precursors to Definitive Hematopoietic Stem Cells. Dev Cell 2016; 36:525-39. [PMID: 26954547 DOI: 10.1016/j.devcel.2016.02.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 01/14/2016] [Accepted: 02/09/2016] [Indexed: 12/22/2022]
Abstract
Definitive hematopoiesis emerges via an endothelial-to-hematopoietic transition in the embryo and placenta; however, the precursor cells to hemogenic endothelium are not defined phenotypically. We previously demonstrated that the induction of hematopoietic progenitors from fibroblasts progresses through hemogenic precursors that are Prom1(+)Sca1(+)CD34(+)CD45(-) (PS34CD45(-)). Guided by these studies, we analyzed mouse placentas and identified a population with this phenotype. These cells express endothelial markers, are heterogeneous for early hematopoietic markers, and localize to the vascular labyrinth. Remarkably, global gene expression profiles of PS34CD45(-) cells correlate with reprogrammed precursors and establish a hemogenic precursor cell molecular signature. PS34CD45(-) cells are also present in intra-embryonic hemogenic sites. After stromal co-culture, PS34CD45(-) cells give rise to all blood lineages and engraft primary and secondary immunodeficient mice. In summary, we show that reprogramming reveals a phenotype for in vivo precursors to hemogenic endothelium, establishing that direct in vitro conversion informs developmental processes in vivo.
Collapse
|
9
|
Daniel MG, Lemischka IR, Moore K. Converting cell fates: generating hematopoietic stem cells de novo via transcription factor reprogramming. Ann N Y Acad Sci 2016; 1370:24-35. [PMID: 26748878 DOI: 10.1111/nyas.12989] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Even though all paradigms of stem cell therapy and regenerative medicine emerged from the study of hematopoietic stem cells (HSCs), the inability to generate these cells de novo or expand them in vitro persists. Initial efforts to obtain these cells began with the use of embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) technologies, but these strategies have yet to yield fully functional cells. Subsequently, more recent approaches involve transcription factor (TF) overexpression to reprogram PSCs and various somatic cells. The induction of pluripotency with just four TFs by Yamanaka informs our ability to convert cell fates and demonstrates the feasibility of utilizing terminally differentiated cells to generate cells with multilineage potential. In this review, we discuss the recent efforts undertaken using TF-based reprogramming strategies to convert several cell types into HSCs.
Collapse
Affiliation(s)
- Michael G Daniel
- Department of Developmental and Regenerative Biology, Icahn School of Medicine, New York, New York.,Black Family Stem Cell Institute, Icahn School of Medicine, New York, New York.,The Graduate School of Biomedical Science, Icahn School of Medicine, New York, New York
| | - Ihor R Lemischka
- Department of Developmental and Regenerative Biology, Icahn School of Medicine, New York, New York.,Black Family Stem Cell Institute, Icahn School of Medicine, New York, New York.,Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine, New York, New York
| | - Kateri Moore
- Department of Developmental and Regenerative Biology, Icahn School of Medicine, New York, New York.,Black Family Stem Cell Institute, Icahn School of Medicine, New York, New York
| |
Collapse
|
10
|
Daniel MG, Pereira CF, Lemischka IR, Moore KA. Making a Hematopoietic Stem Cell. Trends Cell Biol 2015; 26:202-214. [PMID: 26526106 DOI: 10.1016/j.tcb.2015.10.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/29/2015] [Accepted: 10/01/2015] [Indexed: 12/22/2022]
Abstract
Previous attempts to either generate or expand hematopoietic stem cells (HSCs) in vitro have involved either ex vivo expansion of pre-existing patient or donor HSCs or de novo generation from pluripotent stem cells (PSCs), comprising both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). iPSCs alleviated ESC ethical issues but attempts to generate functional mature hematopoietic stem and progenitor cells (HSPCs) have been largely unsuccessful. New efforts focus on directly reprogramming somatic cells into definitive HSCs and HSPCs. To meet clinical needs and to advance drug discovery and stem cell therapy, alternative approaches are necessary. In this review, we synthesize the strategies used and the key findings made in recent years by those trying to make an HSC.
Collapse
Affiliation(s)
- Michael G Daniel
- Department of Developmental and Regenerative Biology, Icahn School of Medicine, New York, NY, USA; Black Family Stem Cell Institute, Icahn School of Medicine, New York, NY, USA; The Graduate School of Biomedical Science, Icahn School of Medicine, New York, NY, USA
| | - Carlos-Filipe Pereira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech Building, Biocant Park, 3060-197 Cantanhede, Portugal
| | - Ihor R Lemischka
- Department of Developmental and Regenerative Biology, Icahn School of Medicine, New York, NY, USA; Black Family Stem Cell Institute, Icahn School of Medicine, New York, NY, USA; Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine, New York, NY, USA
| | - Kateri A Moore
- Department of Developmental and Regenerative Biology, Icahn School of Medicine, New York, NY, USA; Black Family Stem Cell Institute, Icahn School of Medicine, New York, NY, USA.
| |
Collapse
|
11
|
Gene Signature of Human Oral Mucosa Fibroblasts: Comparison with Dermal Fibroblasts and Induced Pluripotent Stem Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:121575. [PMID: 26339586 PMCID: PMC4538314 DOI: 10.1155/2015/121575] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/03/2015] [Accepted: 04/10/2015] [Indexed: 01/27/2023]
Abstract
Oral mucosa is a useful material for regeneration therapy with the advantages of its accessibility and versatility regardless of age and gender. However, little is known about the molecular characteristics of oral mucosa. Here we report the first comparative profiles of the gene signatures of human oral mucosa fibroblasts (hOFs), human dermal fibroblasts (hDFs), and hOF-derived induced pluripotent stem cells (hOF-iPSCs), linking these with biological roles by functional annotation and pathway analyses. As a common feature of fibroblasts, both hOFs and hDFs expressed glycolipid metabolism-related genes at higher levels compared with hOF-iPSCs. Distinct characteristics of hOFs compared with hDFs included a high expression of glycoprotein genes, involved in signaling, extracellular matrix, membrane, and receptor proteins, besides a low expression of HOX genes, the hDFs-markers. The results of the pathway analyses indicated that tissue-reconstructive, proliferative, and signaling pathways are active, whereas senescence-related genes in p53 pathway are inactive in hOFs. Furthermore, more than half of hOF-specific genes were similarly expressed to those of hOF-iPSC genes and might be controlled by WNT signaling. Our findings demonstrated that hOFs have unique cellular characteristics in specificity and plasticity. These data may provide useful insight into application of oral fibroblasts for direct reprograming.
Collapse
|
12
|
Abstract
Pluripotent cells in embryos are situated near the apex of the hierarchy of developmental potential. They are capable of generating all cell types of the mammalian body proper. Therefore, they are the exemplar of stem cells. In vivo, pluripotent cells exist transiently and become expended within a few days of their establishment. Yet, when explanted into artificial culture conditions, they can be indefinitely propagated in vitro as pluripotent stem cell lines. A host of transcription factors and regulatory genes are now known to underpin the pluripotent state. Nonetheless, how pluripotent cells are equipped with their vast multilineage differentiation potential remains elusive. Consensus holds that pluripotency transcription factors prevent differentiation by inhibiting the expression of differentiation genes. However, this does not explain the developmental potential of pluripotent cells. We have presented another emergent perspective, namely, that pluripotency factors function as lineage specifiers that enable pluripotent cells to differentiate into specific lineages, therefore endowing pluripotent cells with their multilineage potential. Here we provide a comprehensive overview of the developmental biology, transcription factors, and extrinsic signaling associated with pluripotent cells, and their accompanying subtypes, in vitro heterogeneity and chromatin states. Although much has been learned since the appreciation of mammalian pluripotency in the 1950s and the derivation of embryonic stem cell lines in 1981, we will specifically emphasize what currently remains unclear. However, the view that pluripotency factors capacitate differentiation, recently corroborated by experimental evidence, might perhaps address the long-standing question of how pluripotent cells are endowed with their multilineage differentiation potential.
Collapse
Affiliation(s)
- Kyle M. Loh
- Department of Developmental Biology and the Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Genome Institute of Singapore, Stem Cell & Regenerative Biology Group, Agency for Science, Technology & Research, Singapore; and Department of Medicine and the Beth Israel Deaconess Medical Center, Division of Hematology/Oncology, Harvard Medical School, Boston, Massachusetts
| | - Bing Lim
- Department of Developmental Biology and the Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Genome Institute of Singapore, Stem Cell & Regenerative Biology Group, Agency for Science, Technology & Research, Singapore; and Department of Medicine and the Beth Israel Deaconess Medical Center, Division of Hematology/Oncology, Harvard Medical School, Boston, Massachusetts
| | - Lay Teng Ang
- Department of Developmental Biology and the Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Genome Institute of Singapore, Stem Cell & Regenerative Biology Group, Agency for Science, Technology & Research, Singapore; and Department of Medicine and the Beth Israel Deaconess Medical Center, Division of Hematology/Oncology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
13
|
Vereide DT, Vickerman V, Swanson SA, Chu LF, McIntosh BE, Thomson JA. An expandable, inducible hemangioblast state regulated by fibroblast growth factor. Stem Cell Reports 2014; 3:1043-57. [PMID: 25458896 PMCID: PMC4264065 DOI: 10.1016/j.stemcr.2014.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 12/18/2022] Open
Abstract
During development, the hematopoietic and vascular lineages are thought to descend from common mesodermal progenitors called hemangioblasts. Here we identify six transcription factors, Gata2, Lmo2, Mycn, Pitx2, Sox17, and Tal1, that “trap” murine cells in a proliferative state and endow them with a hemangioblast potential. These “expandable” hemangioblasts (eHBs) are capable, once released from the control of the ectopic factors, to give rise to functional endothelial cells, multilineage hematopoietic cells, and smooth muscle cells. The eHBs can be derived from embryonic stem cells, from fetal liver cells, or poorly from fibroblasts. The eHBs reveal a central role for fibroblast growth factor, which not only promotes their expansion, but also facilitates their ability to give rise to endothelial cells and leukocytes, but not erythrocytes. This study serves as a demonstration that ephemeral progenitor states can be harnessed in vitro, enabling the creation of tractable progenitor cell lines. Gata2, Lmo2, Mycn, Pitx2, Sox17, and Tal1 induce and maintain a hemangioblast state FGF2 promotes the expansion of these progenitors and impacts their potency
Collapse
Affiliation(s)
- David T Vereide
- Morgridge Institute for Research, Madison, WI 53715, USA; Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | | | - Li-Fang Chu
- Morgridge Institute for Research, Madison, WI 53715, USA
| | | | - James A Thomson
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
14
|
Pereira CF, Lemischka IR, Moore K. "There will be blood" from fibroblasts. Cell Cycle 2013; 13:335-6. [PMID: 24335410 PMCID: PMC3956521 DOI: 10.4161/cc.27507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 09/28/2013] [Indexed: 01/06/2023] Open
Affiliation(s)
- Carlos-Filipe Pereira
- Department of Developmental and Regenerative Biology; Black Family Stem Cell Institute; Icahn School of Medicine at Mount Sinai; New York, NY USA
| | - Ihor R Lemischka
- Department of Developmental and Regenerative Biology; Black Family Stem Cell Institute; Icahn School of Medicine at Mount Sinai; New York, NY USA
| | - Kateri Moore
- Department of Developmental and Regenerative Biology; Black Family Stem Cell Institute; Icahn School of Medicine at Mount Sinai; New York, NY USA
| |
Collapse
|
15
|
Pereira CF, Chang B, Qiu J, Niu X, Papatsenko D, Hendry CE, Clark NR, Nomura-Kitabayashi A, Kovacic JC, Ma'ayan A, Schaniel C, Lemischka IR, Moore K. Induction of a hemogenic program in mouse fibroblasts. Cell Stem Cell 2013; 13:205-18. [PMID: 23770078 DOI: 10.1016/j.stem.2013.05.024] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 05/16/2013] [Accepted: 05/29/2013] [Indexed: 12/21/2022]
Abstract
Definitive hematopoiesis emerges during embryogenesis via an endothelial-to-hematopoietic transition. We attempted to induce this process in mouse fibroblasts by screening a panel of factors for hemogenic activity. We identified a combination of four transcription factors, Gata2, Gfi1b, cFos, and Etv6, that efficiently induces endothelial-like precursor cells, with the subsequent appearance of hematopoietic cells. The precursor cells express a human CD34 reporter, Sca1, and Prominin1 within a global endothelial transcription program. Emergent hematopoietic cells possess nascent hematopoietic stem cell gene-expression profiles and cell-surface phenotypes. After transgene silencing and reaggregation culture, the specified cells generate hematopoietic colonies in vitro. Thus, we show that a simple combination of transcription factors is sufficient to induce a complex, dynamic, and multistep developmental program in vitro. These findings provide insights into the specification of definitive hemogenesis and a platform for future development of patient-specific stem and progenitor cells, as well as more-differentiated blood products.
Collapse
Affiliation(s)
- Carlos-Filipe Pereira
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1496, New York, NY 10029, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Embryonic stem cells (ESCs) can self renew and retain the potential to differentiate into each of the cell types within the body. During experimental reprogramming, many of the features of ESCs can be acquired by differentiated target cells. One of these is the unusual cell division cycle that characterizes ESCs in which the Gap (G) phases are short and DNA Synthesis (S) phase predominates. Growing evidence has suggested that this atypical cell-cycle structure may be important for maintaining pluripotency and for enhancing pluripotent conversion. Here, we review current knowledge of cell-cycle regulation in ESCs and outline how this unique cell-cycle structure might contribute to successful reprogramming.
Collapse
Affiliation(s)
- Tomomi Tsubouchi
- MRC Genome Damage and Stability Centre, University of Sussex, Falmer, United Kingdom
| | | |
Collapse
|