1
|
Rajasingham T, Rodriguez HM, Betz A, Sproule DM, Sinha U. Validation of a novel western blot assay to monitor patterns and levels of alpha dystroglycan in skeletal muscle of patients with limb girdle muscular dystrophies. J Muscle Res Cell Motil 2024; 45:123-138. [PMID: 38635147 PMCID: PMC11316722 DOI: 10.1007/s10974-024-09670-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/20/2024] [Indexed: 04/19/2024]
Abstract
The cell membrane protein, dystroglycan, plays a crucial role in connecting the cytoskeleton of a variety of mammalian cells to the extracellular matrix. The α-subunit of dystroglycan (αDG) is characterized by a high level of glycosylation, including a unique O-mannosyl matriglycan. This specific glycosylation is essential for binding of αDG to extracellular matrix ligands effectively. A subset of muscular dystrophies, called dystroglycanopathies, are associated with aberrant, dysfunctional glycosylation of αDG. This defect prevents myocytes from attaching to the basal membrane, leading to contraction-induced injury. Here, we describe a novel Western blot (WB) assay for determining levels of αDG glycosylation in skeletal muscle tissue. The assay described involves extracting proteins from fine needle tibialis anterior (TA) biopsies and separation using SDS-PAGE followed by WB. Glycosylated and core αDG are then detected in a multiplexed format using fluorescent antibodies. A practical application of this assay is demonstrated with samples from normal donors and patients diagnosed with LGMD2I/R9. Quantitative analysis of the WB, which employed the use of a normal TA derived calibration curve, revealed significantly reduced levels of αDG in patient biopsies relative to unaffected TA. Importantly, the assay was able to distinguish between the L276I homozygous patients and a more severe form of clinical disease observed with other FKRP variants. Data demonstrating the accuracy and reliability of the assay are also presented, which further supports the potential utility of this novel assay to monitor changes in ⍺DG of TA muscle biopsies in the evaluation of potential therapeutics.
Collapse
Affiliation(s)
- Thulashitha Rajasingham
- Department of Preclinical/Clinical Pharmacology, ML Bio Solutions, a BridgeBio company, Palo Alto, USA.
| | - Hector M Rodriguez
- Department of Preclinical/Clinical Pharmacology, ML Bio Solutions, a BridgeBio company, Palo Alto, USA
| | - Andreas Betz
- Department of Preclinical/Clinical Pharmacology, ML Bio Solutions, a BridgeBio company, Palo Alto, USA
| | - Douglas M Sproule
- Department of Clinical Development, ML Bio Solutions, a BridgeBio company, Palo Alto, USA
| | - Uma Sinha
- Department of Preclinical/Clinical Pharmacology, ML Bio Solutions, a BridgeBio company, Palo Alto, USA
| |
Collapse
|
2
|
Tan RL, Sciandra F, Hübner W, Bozzi M, Reimann J, Schoch S, Brancaccio A, Blaess S. The missense mutation C667F in murine β-dystroglycan causes embryonic lethality, myopathy and blood-brain barrier destabilization. Dis Model Mech 2024; 17:dmm050594. [PMID: 38616731 PMCID: PMC11212641 DOI: 10.1242/dmm.050594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/08/2024] [Indexed: 04/16/2024] Open
Abstract
Dystroglycan (DG) is an extracellular matrix receptor consisting of an α- and a β-DG subunit encoded by the DAG1 gene. The homozygous mutation (c.2006G>T, p.Cys669Phe) in β-DG causes muscle-eye-brain disease with multicystic leukodystrophy in humans. In a mouse model of this primary dystroglycanopathy, approximately two-thirds of homozygous embryos fail to develop to term. Mutant mice that are born undergo a normal postnatal development but show a late-onset myopathy with partially penetrant histopathological changes and an impaired performance on an activity wheel. Their brains and eyes are structurally normal, but the localization of mutant β-DG is altered in the glial perivascular end-feet, resulting in a perturbed protein composition of the blood-brain and blood-retina barrier. In addition, α- and β-DG protein levels are significantly reduced in muscle and brain of mutant mice. Owing to the partially penetrant developmental phenotype of the C669F β-DG mice, they represent a novel and highly valuable mouse model with which to study the molecular effects of β-DG functional alterations both during embryogenesis and in mature muscle, brain and eye, and to gain insight into the pathogenesis of primary dystroglycanopathies.
Collapse
Affiliation(s)
- Rui Lois Tan
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Francesca Sciandra
- Institute of Chemical Sciences and Technologies 'Giulio Natta' (SCITEC)-CNR, 00168 Rome, Italy
| | - Wolfgang Hübner
- Biomolecular Photonics, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Manuela Bozzi
- Institute of Chemical Sciences and Technologies 'Giulio Natta' (SCITEC)-CNR, 00168 Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie. Sezione di Biochimica. Università Cattolica del Sacro Cuore di Roma, 00168 Rome, Italy
| | - Jens Reimann
- Department of Neurology, Neuromuscular Diseases Section, University Hospital Bonn, 53127 Bonn, Germany
| | - Susanne Schoch
- Synaptic Neuroscience Team, Institute of Neuropathology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Andrea Brancaccio
- Institute of Chemical Sciences and Technologies 'Giulio Natta' (SCITEC)-CNR, 00168 Rome, Italy
- School of Biochemistry, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | - Sandra Blaess
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| |
Collapse
|
3
|
Lu QL, Holbrook MC, Cataldi MP, Blaeser A. Break Down of the Complexity and Inconsistency Between Levels of Matriglycan and Disease Phenotype in FKRP-Related Dystroglycanopathies: A Review and Model of Interpretation. J Neuromuscul Dis 2024; 11:275-284. [PMID: 38277301 DOI: 10.3233/jnd-230205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Dystroglycanopathies are a group of muscle degenerative diseases characterized with significant reduction in matriglycan expression critical in disease pathogenesis. Missense point mutations in the Fukutin-related protein (FKRP) gene cause variable reduction in the synthesis of matriglycan on alpha-dystroglycan (α-DG) and a wide range of disease severity. Data analyses of muscle biopsies from patients fail to show consistent correlation between the levels of matriglycan and clinical phenotypes. By reviewing clinical reports in conjunction with analysis of clinically relevant mouse models, we identify likely causes for the confusion. Nearly all missense FKRP mutations retain variable, but sufficient function for the synthesis of matriglycan during the later stage of muscle development and periods of muscle regeneration. These factors lead to a highly heterogenous pattern of matriglycan expression in diseased muscles, depending on age and stages of muscle regeneration. The limited size in clinical biopsy samples from different parts of even a single muscle tissue at different time points of disease progression may well mis-represent the residual function (base-levels) of the mutated FKRPs and phenotypes. We propose to use a simple Multi Point tool from ImageJ to more accurately measure the signal intensity of matriglycan expression on fiber membrane for assessing mutant FKRP function and therapeutic efficacy. A robust and sensitive immunohistochemical protocol would further improve reliability and comparability for the detection of matriglycan.
Collapse
Affiliation(s)
- Qi L Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Molly C Holbrook
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Marcela P Cataldi
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Anthony Blaeser
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| |
Collapse
|
4
|
Tanboon J, Nishino I. Autosomal Recessive Limb-Girdle Muscular Dystrophies. CURRENT CLINICAL NEUROLOGY 2023:93-121. [DOI: 10.1007/978-3-031-44009-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Boyd A, Montandon M, Wood AJ, Currie PD. FKRP directed fibronectin glycosylation: A novel mechanism giving insights into muscular dystrophies? Bioessays 2022; 44:e2100270. [PMID: 35229908 DOI: 10.1002/bies.202100270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 12/15/2022]
Abstract
The recently uncovered role of Fukutin-related protein (FKRP) in fibronectin glycosylation has challenged our understanding of the basis of disease pathogenesis in the muscular dystrophies. FKRP is a Golgi-resident glycosyltransferase implicated in a broad spectrum of muscular dystrophy (MD) pathologies that are not fully attributable to the well-described α-Dystroglycan hypoglycosylation. By revealing a new role for FKRP in the glycosylation of fibronectin, a modification critical for the development of the muscle basement membrane (MBM) and its associated muscle linkages, new possibilities for understanding clinical phenotype arise. This modification involves an interaction between FKRP and myosin-10, a protein involved in the Golgi organization and function. These observations suggest a FKRP nexus exists that controls two critical aspects to muscle fibre integrity, both fibre stability at the MBM and its elastic properties. This review explores the new potential disease axis in the context of our current knowledge of muscular dystrophies.
Collapse
Affiliation(s)
- Andrew Boyd
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Margo Montandon
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Alasdair J Wood
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,EMBL Australia, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
6
|
Ortiz-Cordero C, Bincoletto C, Dhoke NR, Selvaraj S, Magli A, Zhou H, Kim DH, Bang AG, Perlingeiro RCR. Defective autophagy and increased apoptosis contribute toward the pathogenesis of FKRP-associated muscular dystrophies. Stem Cell Reports 2021; 16:2752-2767. [PMID: 34653404 PMCID: PMC8581053 DOI: 10.1016/j.stemcr.2021.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022] Open
Abstract
Fukutin-related protein (FKRP) is a glycosyltransferase involved in glycosylation of alpha-dystroglycan (α-DG). Mutations in FKRP are associated with muscular dystrophies (MD) ranging from limb-girdle LGMDR9 to Walker-Warburg Syndrome (WWS), a severe type of congenital MD. Although hypoglycosylation of α-DG is the main hallmark of this group of diseases, a full understanding of the underlying pathophysiology is still missing. Here, we investigated molecular mechanisms impaired by FKRP mutations in pluripotent stem (PS) cell–derived myotubes. FKRP-deficient myotubes show transcriptome alterations in genes involved in extracellular matrix receptor interactions, calcium signaling, PI3K-Akt pathway, and lysosomal function. Accordingly, using a panel of patient-specific LGMDR9 and WWS induced PS cell–derived myotubes, we found a significant reduction in the autophagy-lysosome pathway for both disease phenotypes. In addition, we show that WWS myotubes display decreased ERK1/2 activity and increased apoptosis, which were restored in gene edited myotubes. Our results suggest the autophagy-lysosome pathway and apoptosis may contribute to the FKRP-associated MD pathogenesis. The lysosome pathway is deregulated in FKRP-deficient myotubes Autophagy is decreased in patient-specific LGMDR9 and WWS iPS cell–derived myotubes FKRP WWS and LGMDR9 iPS cell–derived myotubes have increased apoptosis FKRP correction in WWS myotubes rescues changes in autophagy and apoptosis
Collapse
Affiliation(s)
- Carolina Ortiz-Cordero
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN 55455, USA; Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Claudia Bincoletto
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN 55455, USA; Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Neha R Dhoke
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN 55455, USA
| | - Sridhar Selvaraj
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN 55455, USA
| | - Alessandro Magli
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN 55455, USA
| | - Haowen Zhou
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Do-Hyung Kim
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Anne G Bang
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Rita C R Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN 55455, USA; Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
7
|
Awano H, Saito Y, Shimizu M, Sekiguchi K, Niijima S, Matsuo M, Maegaki Y, Izumi I, Kikuchi C, Ishibashi M, Okazaki T, Komaki H, Iijima K, Nishino I. FKRP mutations cause congenital muscular dystrophy 1C and limb-girdle muscular dystrophy 2I in Asian patients. J Clin Neurosci 2021; 92:215-221. [PMID: 34509255 DOI: 10.1016/j.jocn.2021.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 06/18/2021] [Accepted: 08/15/2021] [Indexed: 11/19/2022]
Abstract
Mutation in the fukutin-related protein (FKRP) gene causes alpha-dystroglycanopathies, a group of autosomal recessive disorders associated with defective glycosylated alpha-dystroglycan (α-DG). The disease phenotype shows a broad spectrum, from the most severe congenital form involving brain and eye anomalies to milder limb-girdle form. FKRP-related alpha-dystroglycanopathies are common in European countries. However, a limited number of patients have been reported in Asian countries. Here, we presented the clinical, pathological, and genetic findings of nine patients with FKRP mutations identified at a single muscle repository center in Japan. Three and six patients were diagnosed with congenital muscular dystrophy type 1C and limb-girdle muscular dystrophy 2I, respectively. None of our Asian patients showed the most severe form of alpha-dystroglycanopathy. While all patients showed a reduction in glycosylated α-DG levels, to variable degrees, these levels did not correlate to clinical severity. Fifteen distinct pathogenic mutations were identified in our cohort, including five novel mutations. Unlike in the populations belonging to European countries, no common mutation was found in our cohort.
Collapse
Affiliation(s)
- Hiroyuki Awano
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo, Kobe, Hyogo 650-0017, Japan.
| | - Yoshihiko Saito
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi-cho, Kodaira, Tokyo 187-8502, Japan
| | - Mamiko Shimizu
- Shimizu Children's Clinic, 3-152 Komaki, Komaki, Aichi 485-0041, Japan
| | - Kenji Sekiguchi
- Division of Neurology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo, Kobe, Hyogo 650-0017, Japan
| | - Shinichi Niijima
- Department of Pediatrics, Juntendo University, Nerima Hospital, 3-1-10 Takanodai, Nerima, Tokyo 177-8521, Japan
| | - Masafumi Matsuo
- Research Center for Locomotion Biology, Kobe Gakuin Univesity, 518 Arise, Ikawadani-cho, Nishi, Kobe, Hyogo 651-2180, Japan
| | - Yoshihiro Maegaki
- Division of Child Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8504, Japan
| | - Isho Izumi
- Ibaraki Children's Hospital, 3-3-1 Futabadai, Mito, Ibaraki 311-4145, Japan
| | - Chiya Kikuchi
- Department of Pediatrics, National Hospital Organization Ehime Medical Center, 366 Yokogawara, Toon, Ehime 791-0281, Japan
| | - Masato Ishibashi
- Department of Neurology, Faculty of Medicine, Oita University, 1-1 Hasamamachi-idaigaoka, Yufu, Oita 879-5593, Japan
| | - Tetsuya Okazaki
- Department of Clinical Genetics, Tottori University Hospital, 36-1 Nishi-cho, Yonago, Tottori 683-8504, Japan
| | - Hirofumi Komaki
- Translational Medical Center, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi-cho, Kodaira, Tokyo 187-8502, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo, Kobe, Hyogo 650-0017, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi-cho, Kodaira, Tokyo 187-8502, Japan
| |
Collapse
|
8
|
Hargett AA, Marcella AM, Yu H, Li C, Orwenyo J, Battistel MD, Wang LX, Freedberg DI. Glycosylation States on Intact Proteins Determined by NMR Spectroscopy. Molecules 2021; 26:4308. [PMID: 34299586 PMCID: PMC8303171 DOI: 10.3390/molecules26144308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/23/2022] Open
Abstract
Protein glycosylation is important in many organisms for proper protein folding, signaling, cell adhesion, protein-protein interactions, and immune responses. Thus, effectively determining the extent of glycosylation in glycoprotein therapeutics is crucial. Up to now, characterizing protein glycosylation has been carried out mostly by liquid chromatography mass spectrometry (LC-MS), which requires careful sample processing, e.g., glycan removal or protein digestion and glycopeptide enrichment. Herein, we introduce an NMR-based method to better characterize intact glycoproteins in natural abundance. This non-destructive method relies on exploiting differences in nuclear relaxation to suppress the NMR signals of the protein while maintaining glycan signals. Using RNase B Man5 and RNase B Man9, we establish reference spectra that can be used to determine the different glycoforms present in heterogeneously glycosylated commercial RNase B.
Collapse
Affiliation(s)
- Audra A. Hargett
- Center for Biologics Evaluation and Review, Laboratory of Bacterial Polysaccharides, Food and Drug Administration (FDA), Silver Spring, MD 20993, USA; (A.A.H.); (A.M.M.); (H.Y.); (M.D.B.)
| | - Aaron M. Marcella
- Center for Biologics Evaluation and Review, Laboratory of Bacterial Polysaccharides, Food and Drug Administration (FDA), Silver Spring, MD 20993, USA; (A.A.H.); (A.M.M.); (H.Y.); (M.D.B.)
| | - Huifeng Yu
- Center for Biologics Evaluation and Review, Laboratory of Bacterial Polysaccharides, Food and Drug Administration (FDA), Silver Spring, MD 20993, USA; (A.A.H.); (A.M.M.); (H.Y.); (M.D.B.)
| | - Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA; (C.L.); (J.O.); (L.-X.W.)
| | - Jared Orwenyo
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA; (C.L.); (J.O.); (L.-X.W.)
| | - Marcos D. Battistel
- Center for Biologics Evaluation and Review, Laboratory of Bacterial Polysaccharides, Food and Drug Administration (FDA), Silver Spring, MD 20993, USA; (A.A.H.); (A.M.M.); (H.Y.); (M.D.B.)
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA; (C.L.); (J.O.); (L.-X.W.)
| | - Darón I. Freedberg
- Center for Biologics Evaluation and Review, Laboratory of Bacterial Polysaccharides, Food and Drug Administration (FDA), Silver Spring, MD 20993, USA; (A.A.H.); (A.M.M.); (H.Y.); (M.D.B.)
| |
Collapse
|
9
|
FKRP-dependent glycosylation of fibronectin regulates muscle pathology in muscular dystrophy. Nat Commun 2021; 12:2951. [PMID: 34012031 PMCID: PMC8134429 DOI: 10.1038/s41467-021-23217-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/19/2021] [Indexed: 12/18/2022] Open
Abstract
The muscular dystrophies encompass a broad range of pathologies with varied clinical outcomes. In the case of patients carrying defects in fukutin-related protein (FKRP), these diverse pathologies arise from mutations within the same gene. This is surprising as FKRP is a glycosyltransferase, whose only identified function is to transfer ribitol-5-phosphate to α-dystroglycan (α-DG). Although this modification is critical for extracellular matrix attachment, α-DG's glycosylation status relates poorly to disease severity, suggesting the existence of unidentified FKRP targets. Here we reveal that FKRP directs sialylation of fibronectin, a process essential for collagen recruitment to the muscle basement membrane. Thus, our results reveal that FKRP simultaneously regulates the two major muscle-ECM linkages essential for fibre survival, and establishes a new disease axis for the muscular dystrophies.
Collapse
|
10
|
Bryan L, Clynes M, Meleady P. The emerging role of cellular post-translational modifications in modulating growth and productivity of recombinant Chinese hamster ovary cells. Biotechnol Adv 2021; 49:107757. [PMID: 33895332 DOI: 10.1016/j.biotechadv.2021.107757] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023]
Abstract
Chinese hamster ovary (CHO) cells are one of the most commonly used host cell lines used for the production human therapeutic proteins. Much research over the past two decades has focussed on improving the growth, titre and cell specific productivity of CHO cells and in turn lowering the costs associated with production of recombinant proteins. CHO cell engineering has become of particular interest in recent years following the publication of the CHO cell genome and the availability of data relating to the proteome, transcriptome and metabolome of CHO cells. However, data relating to the cellular post-translational modification (PTMs) which can affect the functionality of CHO cellular proteins has only begun to be presented in recent years. PTMs are important to many cellular processes and can further alter proteins by increasing the complexity of proteins and their interactions. In this review, we describe the research presented from CHO cells to date related on three of the most important PTMs; glycosylation, phosphorylation and ubiquitination.
Collapse
Affiliation(s)
- Laura Bryan
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
11
|
Ortiz-Cordero C, Azzag K, Perlingeiro RCR. Fukutin-Related Protein: From Pathology to Treatments. Trends Cell Biol 2020; 31:197-210. [PMID: 33272829 DOI: 10.1016/j.tcb.2020.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/27/2022]
Abstract
Fukutin-related protein (FKRP) is a glycosyltransferase involved in the functional glycosylation of α-dystroglycan (DG), a key component in the link between the cytoskeleton and the extracellular matrix (ECM). Mutations in FKRP lead to dystroglycanopathies with broad severity, including limb-girdle and congenital muscular dystrophy. Studies over the past 5 years have elucidated the function of FKRP, which has expanded the number of therapeutic opportunities for patients carrying FKRP mutations. These include small molecules, gene delivery, and cell therapy. Here we summarize recent findings on the function of FKRP and describe available models for studying diseases and testing therapeutics. Lastly, we highlight preclinical studies that hold potential for the treatment of FKRP-associated dystroglycanopathies.
Collapse
Affiliation(s)
- Carolina Ortiz-Cordero
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Karim Azzag
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rita C R Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
12
|
CDG biochemical screening: Where do we stand? Biochim Biophys Acta Gen Subj 2020; 1864:129652. [DOI: 10.1016/j.bbagen.2020.129652] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/18/2020] [Accepted: 05/28/2020] [Indexed: 12/22/2022]
|
13
|
Mercuri E, Bönnemann CG, Muntoni F. Muscular dystrophies. Lancet 2019; 394:2025-2038. [PMID: 31789220 DOI: 10.1016/s0140-6736(19)32910-1] [Citation(s) in RCA: 286] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 09/02/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022]
Abstract
Muscular dystrophies are primary diseases of muscle due to mutations in more than 40 genes, which result in dystrophic changes on muscle biopsy. Now that most of the genes responsible for these conditions have been identified, it is possible to accurately diagnose them and implement subtype-specific anticipatory care, as complications such as cardiac and respiratory muscle involvement vary greatly. This development and advances in the field of supportive medicine have changed the standard of care, with an overall improvement in the clinical course, survival, and quality of life of affected individuals. The improved understanding of the pathogenesis of these diseases is being used for the development of novel therapies. In the most common form, Duchenne muscular dystrophy, a few personalised therapies have recently achieved conditional approval and many more are at advanced stages of clinical development. In this Seminar, we concentrate on clinical manifestations, molecular pathogenesis, diagnostic strategy, and therapeutic developments for this group of conditions.
Collapse
Affiliation(s)
- Eugenio Mercuri
- Pediatric Neurology Unit, Università Cattolica del Sacro Cuore Roma, Rome, Italy; Nemo Clinical Centre, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, University College London, Great Ormond Street Institute of Child Health, London, UK; National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, London, UK.
| |
Collapse
|
14
|
Fisher P, Thomas-Oates J, Wood AJ, Ungar D. The N-Glycosylation Processing Potential of the Mammalian Golgi Apparatus. Front Cell Dev Biol 2019; 7:157. [PMID: 31457009 PMCID: PMC6700225 DOI: 10.3389/fcell.2019.00157] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/26/2019] [Indexed: 11/16/2022] Open
Abstract
Heterogeneity is an inherent feature of the glycosylation process. Mammalian cells often produce a variety of glycan structures on separate molecules of the same protein, known as glycoforms. This heterogeneity is not random but is controlled by the organization of the glycosylation machinery in the Golgi cisternae. In this work, we use a computational model of the N-glycosylation process to probe how the organization of the glycosylation machinery into different cisternae drives N-glycan biosynthesis toward differing degrees of heterogeneity. Using this model, we demonstrate the N-glycosylation potential and limits of the mammalian Golgi apparatus, for example how the number of cisternae limits the goal of achieving near homogeneity for N-glycans. The production of specific glycoforms guided by this computational study could pave the way for “glycoform engineering,” which will find uses in the functional investigation of glycans, the modulation of glycan-mediated physiological functions, and in biotechnology.
Collapse
Affiliation(s)
- Peter Fisher
- Department of Biology, University of York, York, United Kingdom
| | - Jane Thomas-Oates
- Department of Chemistry and Centre of Excellence in Mass Spectrometry, University of York, York, United Kingdom
| | - A Jamie Wood
- Department of Biology, University of York, York, United Kingdom.,Department of Mathematics, University of York, York, United Kingdom
| | - Daniel Ungar
- Department of Biology, University of York, York, United Kingdom
| |
Collapse
|
15
|
Nguyen Q, Lim KRQ, Yokota T. Current understanding and treatment of cardiac and skeletal muscle pathology in laminin-α2 chain-deficient congenital muscular dystrophy. APPLICATION OF CLINICAL GENETICS 2019; 12:113-130. [PMID: 31308722 PMCID: PMC6618038 DOI: 10.2147/tacg.s187481] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/08/2019] [Indexed: 01/04/2023]
Abstract
Congenital muscular dystrophy (CMD) is a class of severe early-onset muscular dystrophies affecting skeletal/cardiac muscles as well as the central nervous system (CNS). Laminin-α2 chain-deficient congenital muscular dystrophy (LAMA2 MD), also known as merosin-deficient congenital muscular dystrophy type 1A (MDC1A), is an autosomal recessive CMD characterized by severe muscle weakness and degeneration apparent at birth or in the first 6 months of life. LAMA2 MD is the most common congenital muscular dystrophy, affecting approximately 4 in 500,000 children. The most common cause of death in early-onset LAMA2 MD is respiratory tract infection, with 30% of them dying within the first decade of life. LAMA2 MD is caused by loss-of-function mutations in the LAMA2 gene encoding for the laminin-α2 chain, one of the subunits of laminin-211. Laminin-211 is an extracellular matrix protein that functions to stabilize the basement membrane and muscle fibers during contraction. Since laminin-α2 is expressed in many tissue types including skeletal muscle, cardiac muscle, Schwann cells, and trophoblasts, patients with LAMA2 MD experience a multi-systemic clinical presentation depending on the extent of laminin-α2 chain deficiency. Cardiac manifestations are typically associated with a complete absence of laminin-α2; however, recent case reports highlight cardiac involvement in partial laminin-α2 chain deficiency. Laminin-211 is also expressed in the brain, and many patients have abnormalities on brain imaging; however, mental retardation and/or seizures are rarely seen. Currently, there is no cure for LAMA2 MD, but various therapies are being investigated in an effort to lessen the severity of LAMA2 MD. For example, antisense oligonucleotide-mediated exon skipping and CRISPR-Cas9 genome editing have efficiently restored the laminin-α2 chain in mouse models in vivo. This review consolidates information on the clinical presentation, genetic basis, pathology, and current treatment approaches for LAMA2 MD.
Collapse
Affiliation(s)
- Quynh Nguyen
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Kenji Rowel Q Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,The Friends of Garrett Cumming Research & Muscular Dystrophy Canada, HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada
| |
Collapse
|
16
|
Lee AJ, Jones KA, Butterfield RJ, Cox MO, Konersman CG, Grosmann C, Abdenur JE, Boyer M, Beson B, Wang C, Dowling JJ, Gibbons MA, Ballard A, Janas JS, Leshner RT, Donkervoort S, Bönnemann CG, Malicki DM, Weiss RB, Moore SA, Mathews KD. Clinical, genetic, and pathologic characterization of FKRP Mexican founder mutation c.1387A>G. NEUROLOGY-GENETICS 2019; 5:e315. [PMID: 31041397 PMCID: PMC6454397 DOI: 10.1212/nxg.0000000000000315] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/02/2019] [Indexed: 01/28/2023]
Abstract
Objective To characterize the clinical phenotype, genetic origin, and muscle pathology of patients with the FKRP c.1387A>G mutation. Methods Standardized clinical data were collected for all patients known to the authors with c.1387A>G mutations in FKRP. Muscle biopsies were reviewed and used for histopathology, immunostaining, Western blotting, and DNA extraction. Genetic analysis was performed on extracted DNA. Results We report the clinical phenotypes of 6 patients homozygous for the c.1387A>G mutation in FKRP. Onset of symptoms was <2 years, and 5 of the 6 patients never learned to walk. Brain MRIs were normal. Cognition was normal to mildly impaired. Microarray analysis of 5 homozygous FKRP c.1387A>G patients revealed a 500-kb region of shared homozygosity at 19q13.32, including FKRP. All 4 muscle biopsies available for review showed end-stage dystrophic pathology, near absence of glycosylated α-dystroglycan (α-DG) by immunofluorescence, and reduced molecular weight of α-DG compared with controls and patients with homozygous FKRP c.826C>A limb-girdle muscular dystrophy. Conclusions The clinical features and muscle pathology in these newly reported patients homozygous for FKRP c.1387A>G confirm that this mutation causes congenital muscular dystrophy. The clinical severity might be explained by the greater reduction in α-DG glycosylation compared with that seen with the c.826C>A mutation. The shared region of homozygosity at 19q13.32 indicates that FKRP c.1387A>G is a founder mutation with an estimated age of 60 generations (∼1,200–1,500 years).
Collapse
Affiliation(s)
- Angela J Lee
- University of Iowa (A.J.L.), Carver College of Medicine; Department of Pathology (K.A.J., M.O.C., S.A.M.), University of Iowa; Departments of Pediatrics and Neurology (R.J.B.), University of Utah; Department of Neurology (C.G.K.), University of California San Diego; Department of Neurology (C.G.), Gillette Children's Specialty Healthcare; Division of Metabolic Disorders (J.E.A., M.B.), CHOC Children's; Department of Neurology (B.B.), Integris Southwest Medical Center; Departments of Pediatrics and Neurology (C.W.), Driscoll Children's Hospital; Departments of Paediatrics and Molecular Genetics (J.J.D.), Hospital for Sick Children, University of Toronto; Departments of Pediatrics and Neurology (M.A.G., J.S.J.), University of Colorado; Department of Physical Medicine and Rehabilitation (A.B.), University of Colorado; Department of Neurosciences (R.T.L.), University of California San Diego; National Institutes of Health (S.D., C.G.B.), Institute of Neurological Disorders and Stroke; Department of Pathology (D.M.M.), University of California San Diego; Department of Human Genetics (R.B.W.), University of Utah; and Departments of Pediatrics and Neurology (K.D.M.), University of Iowa
| | - Karra A Jones
- University of Iowa (A.J.L.), Carver College of Medicine; Department of Pathology (K.A.J., M.O.C., S.A.M.), University of Iowa; Departments of Pediatrics and Neurology (R.J.B.), University of Utah; Department of Neurology (C.G.K.), University of California San Diego; Department of Neurology (C.G.), Gillette Children's Specialty Healthcare; Division of Metabolic Disorders (J.E.A., M.B.), CHOC Children's; Department of Neurology (B.B.), Integris Southwest Medical Center; Departments of Pediatrics and Neurology (C.W.), Driscoll Children's Hospital; Departments of Paediatrics and Molecular Genetics (J.J.D.), Hospital for Sick Children, University of Toronto; Departments of Pediatrics and Neurology (M.A.G., J.S.J.), University of Colorado; Department of Physical Medicine and Rehabilitation (A.B.), University of Colorado; Department of Neurosciences (R.T.L.), University of California San Diego; National Institutes of Health (S.D., C.G.B.), Institute of Neurological Disorders and Stroke; Department of Pathology (D.M.M.), University of California San Diego; Department of Human Genetics (R.B.W.), University of Utah; and Departments of Pediatrics and Neurology (K.D.M.), University of Iowa
| | - Russell J Butterfield
- University of Iowa (A.J.L.), Carver College of Medicine; Department of Pathology (K.A.J., M.O.C., S.A.M.), University of Iowa; Departments of Pediatrics and Neurology (R.J.B.), University of Utah; Department of Neurology (C.G.K.), University of California San Diego; Department of Neurology (C.G.), Gillette Children's Specialty Healthcare; Division of Metabolic Disorders (J.E.A., M.B.), CHOC Children's; Department of Neurology (B.B.), Integris Southwest Medical Center; Departments of Pediatrics and Neurology (C.W.), Driscoll Children's Hospital; Departments of Paediatrics and Molecular Genetics (J.J.D.), Hospital for Sick Children, University of Toronto; Departments of Pediatrics and Neurology (M.A.G., J.S.J.), University of Colorado; Department of Physical Medicine and Rehabilitation (A.B.), University of Colorado; Department of Neurosciences (R.T.L.), University of California San Diego; National Institutes of Health (S.D., C.G.B.), Institute of Neurological Disorders and Stroke; Department of Pathology (D.M.M.), University of California San Diego; Department of Human Genetics (R.B.W.), University of Utah; and Departments of Pediatrics and Neurology (K.D.M.), University of Iowa
| | - Mary O Cox
- University of Iowa (A.J.L.), Carver College of Medicine; Department of Pathology (K.A.J., M.O.C., S.A.M.), University of Iowa; Departments of Pediatrics and Neurology (R.J.B.), University of Utah; Department of Neurology (C.G.K.), University of California San Diego; Department of Neurology (C.G.), Gillette Children's Specialty Healthcare; Division of Metabolic Disorders (J.E.A., M.B.), CHOC Children's; Department of Neurology (B.B.), Integris Southwest Medical Center; Departments of Pediatrics and Neurology (C.W.), Driscoll Children's Hospital; Departments of Paediatrics and Molecular Genetics (J.J.D.), Hospital for Sick Children, University of Toronto; Departments of Pediatrics and Neurology (M.A.G., J.S.J.), University of Colorado; Department of Physical Medicine and Rehabilitation (A.B.), University of Colorado; Department of Neurosciences (R.T.L.), University of California San Diego; National Institutes of Health (S.D., C.G.B.), Institute of Neurological Disorders and Stroke; Department of Pathology (D.M.M.), University of California San Diego; Department of Human Genetics (R.B.W.), University of Utah; and Departments of Pediatrics and Neurology (K.D.M.), University of Iowa
| | - Chamindra G Konersman
- University of Iowa (A.J.L.), Carver College of Medicine; Department of Pathology (K.A.J., M.O.C., S.A.M.), University of Iowa; Departments of Pediatrics and Neurology (R.J.B.), University of Utah; Department of Neurology (C.G.K.), University of California San Diego; Department of Neurology (C.G.), Gillette Children's Specialty Healthcare; Division of Metabolic Disorders (J.E.A., M.B.), CHOC Children's; Department of Neurology (B.B.), Integris Southwest Medical Center; Departments of Pediatrics and Neurology (C.W.), Driscoll Children's Hospital; Departments of Paediatrics and Molecular Genetics (J.J.D.), Hospital for Sick Children, University of Toronto; Departments of Pediatrics and Neurology (M.A.G., J.S.J.), University of Colorado; Department of Physical Medicine and Rehabilitation (A.B.), University of Colorado; Department of Neurosciences (R.T.L.), University of California San Diego; National Institutes of Health (S.D., C.G.B.), Institute of Neurological Disorders and Stroke; Department of Pathology (D.M.M.), University of California San Diego; Department of Human Genetics (R.B.W.), University of Utah; and Departments of Pediatrics and Neurology (K.D.M.), University of Iowa
| | - Carla Grosmann
- University of Iowa (A.J.L.), Carver College of Medicine; Department of Pathology (K.A.J., M.O.C., S.A.M.), University of Iowa; Departments of Pediatrics and Neurology (R.J.B.), University of Utah; Department of Neurology (C.G.K.), University of California San Diego; Department of Neurology (C.G.), Gillette Children's Specialty Healthcare; Division of Metabolic Disorders (J.E.A., M.B.), CHOC Children's; Department of Neurology (B.B.), Integris Southwest Medical Center; Departments of Pediatrics and Neurology (C.W.), Driscoll Children's Hospital; Departments of Paediatrics and Molecular Genetics (J.J.D.), Hospital for Sick Children, University of Toronto; Departments of Pediatrics and Neurology (M.A.G., J.S.J.), University of Colorado; Department of Physical Medicine and Rehabilitation (A.B.), University of Colorado; Department of Neurosciences (R.T.L.), University of California San Diego; National Institutes of Health (S.D., C.G.B.), Institute of Neurological Disorders and Stroke; Department of Pathology (D.M.M.), University of California San Diego; Department of Human Genetics (R.B.W.), University of Utah; and Departments of Pediatrics and Neurology (K.D.M.), University of Iowa
| | - Jose E Abdenur
- University of Iowa (A.J.L.), Carver College of Medicine; Department of Pathology (K.A.J., M.O.C., S.A.M.), University of Iowa; Departments of Pediatrics and Neurology (R.J.B.), University of Utah; Department of Neurology (C.G.K.), University of California San Diego; Department of Neurology (C.G.), Gillette Children's Specialty Healthcare; Division of Metabolic Disorders (J.E.A., M.B.), CHOC Children's; Department of Neurology (B.B.), Integris Southwest Medical Center; Departments of Pediatrics and Neurology (C.W.), Driscoll Children's Hospital; Departments of Paediatrics and Molecular Genetics (J.J.D.), Hospital for Sick Children, University of Toronto; Departments of Pediatrics and Neurology (M.A.G., J.S.J.), University of Colorado; Department of Physical Medicine and Rehabilitation (A.B.), University of Colorado; Department of Neurosciences (R.T.L.), University of California San Diego; National Institutes of Health (S.D., C.G.B.), Institute of Neurological Disorders and Stroke; Department of Pathology (D.M.M.), University of California San Diego; Department of Human Genetics (R.B.W.), University of Utah; and Departments of Pediatrics and Neurology (K.D.M.), University of Iowa
| | - Monica Boyer
- University of Iowa (A.J.L.), Carver College of Medicine; Department of Pathology (K.A.J., M.O.C., S.A.M.), University of Iowa; Departments of Pediatrics and Neurology (R.J.B.), University of Utah; Department of Neurology (C.G.K.), University of California San Diego; Department of Neurology (C.G.), Gillette Children's Specialty Healthcare; Division of Metabolic Disorders (J.E.A., M.B.), CHOC Children's; Department of Neurology (B.B.), Integris Southwest Medical Center; Departments of Pediatrics and Neurology (C.W.), Driscoll Children's Hospital; Departments of Paediatrics and Molecular Genetics (J.J.D.), Hospital for Sick Children, University of Toronto; Departments of Pediatrics and Neurology (M.A.G., J.S.J.), University of Colorado; Department of Physical Medicine and Rehabilitation (A.B.), University of Colorado; Department of Neurosciences (R.T.L.), University of California San Diego; National Institutes of Health (S.D., C.G.B.), Institute of Neurological Disorders and Stroke; Department of Pathology (D.M.M.), University of California San Diego; Department of Human Genetics (R.B.W.), University of Utah; and Departments of Pediatrics and Neurology (K.D.M.), University of Iowa
| | - Brent Beson
- University of Iowa (A.J.L.), Carver College of Medicine; Department of Pathology (K.A.J., M.O.C., S.A.M.), University of Iowa; Departments of Pediatrics and Neurology (R.J.B.), University of Utah; Department of Neurology (C.G.K.), University of California San Diego; Department of Neurology (C.G.), Gillette Children's Specialty Healthcare; Division of Metabolic Disorders (J.E.A., M.B.), CHOC Children's; Department of Neurology (B.B.), Integris Southwest Medical Center; Departments of Pediatrics and Neurology (C.W.), Driscoll Children's Hospital; Departments of Paediatrics and Molecular Genetics (J.J.D.), Hospital for Sick Children, University of Toronto; Departments of Pediatrics and Neurology (M.A.G., J.S.J.), University of Colorado; Department of Physical Medicine and Rehabilitation (A.B.), University of Colorado; Department of Neurosciences (R.T.L.), University of California San Diego; National Institutes of Health (S.D., C.G.B.), Institute of Neurological Disorders and Stroke; Department of Pathology (D.M.M.), University of California San Diego; Department of Human Genetics (R.B.W.), University of Utah; and Departments of Pediatrics and Neurology (K.D.M.), University of Iowa
| | - Ching Wang
- University of Iowa (A.J.L.), Carver College of Medicine; Department of Pathology (K.A.J., M.O.C., S.A.M.), University of Iowa; Departments of Pediatrics and Neurology (R.J.B.), University of Utah; Department of Neurology (C.G.K.), University of California San Diego; Department of Neurology (C.G.), Gillette Children's Specialty Healthcare; Division of Metabolic Disorders (J.E.A., M.B.), CHOC Children's; Department of Neurology (B.B.), Integris Southwest Medical Center; Departments of Pediatrics and Neurology (C.W.), Driscoll Children's Hospital; Departments of Paediatrics and Molecular Genetics (J.J.D.), Hospital for Sick Children, University of Toronto; Departments of Pediatrics and Neurology (M.A.G., J.S.J.), University of Colorado; Department of Physical Medicine and Rehabilitation (A.B.), University of Colorado; Department of Neurosciences (R.T.L.), University of California San Diego; National Institutes of Health (S.D., C.G.B.), Institute of Neurological Disorders and Stroke; Department of Pathology (D.M.M.), University of California San Diego; Department of Human Genetics (R.B.W.), University of Utah; and Departments of Pediatrics and Neurology (K.D.M.), University of Iowa
| | - James J Dowling
- University of Iowa (A.J.L.), Carver College of Medicine; Department of Pathology (K.A.J., M.O.C., S.A.M.), University of Iowa; Departments of Pediatrics and Neurology (R.J.B.), University of Utah; Department of Neurology (C.G.K.), University of California San Diego; Department of Neurology (C.G.), Gillette Children's Specialty Healthcare; Division of Metabolic Disorders (J.E.A., M.B.), CHOC Children's; Department of Neurology (B.B.), Integris Southwest Medical Center; Departments of Pediatrics and Neurology (C.W.), Driscoll Children's Hospital; Departments of Paediatrics and Molecular Genetics (J.J.D.), Hospital for Sick Children, University of Toronto; Departments of Pediatrics and Neurology (M.A.G., J.S.J.), University of Colorado; Department of Physical Medicine and Rehabilitation (A.B.), University of Colorado; Department of Neurosciences (R.T.L.), University of California San Diego; National Institutes of Health (S.D., C.G.B.), Institute of Neurological Disorders and Stroke; Department of Pathology (D.M.M.), University of California San Diego; Department of Human Genetics (R.B.W.), University of Utah; and Departments of Pediatrics and Neurology (K.D.M.), University of Iowa
| | - Melissa A Gibbons
- University of Iowa (A.J.L.), Carver College of Medicine; Department of Pathology (K.A.J., M.O.C., S.A.M.), University of Iowa; Departments of Pediatrics and Neurology (R.J.B.), University of Utah; Department of Neurology (C.G.K.), University of California San Diego; Department of Neurology (C.G.), Gillette Children's Specialty Healthcare; Division of Metabolic Disorders (J.E.A., M.B.), CHOC Children's; Department of Neurology (B.B.), Integris Southwest Medical Center; Departments of Pediatrics and Neurology (C.W.), Driscoll Children's Hospital; Departments of Paediatrics and Molecular Genetics (J.J.D.), Hospital for Sick Children, University of Toronto; Departments of Pediatrics and Neurology (M.A.G., J.S.J.), University of Colorado; Department of Physical Medicine and Rehabilitation (A.B.), University of Colorado; Department of Neurosciences (R.T.L.), University of California San Diego; National Institutes of Health (S.D., C.G.B.), Institute of Neurological Disorders and Stroke; Department of Pathology (D.M.M.), University of California San Diego; Department of Human Genetics (R.B.W.), University of Utah; and Departments of Pediatrics and Neurology (K.D.M.), University of Iowa
| | - Alison Ballard
- University of Iowa (A.J.L.), Carver College of Medicine; Department of Pathology (K.A.J., M.O.C., S.A.M.), University of Iowa; Departments of Pediatrics and Neurology (R.J.B.), University of Utah; Department of Neurology (C.G.K.), University of California San Diego; Department of Neurology (C.G.), Gillette Children's Specialty Healthcare; Division of Metabolic Disorders (J.E.A., M.B.), CHOC Children's; Department of Neurology (B.B.), Integris Southwest Medical Center; Departments of Pediatrics and Neurology (C.W.), Driscoll Children's Hospital; Departments of Paediatrics and Molecular Genetics (J.J.D.), Hospital for Sick Children, University of Toronto; Departments of Pediatrics and Neurology (M.A.G., J.S.J.), University of Colorado; Department of Physical Medicine and Rehabilitation (A.B.), University of Colorado; Department of Neurosciences (R.T.L.), University of California San Diego; National Institutes of Health (S.D., C.G.B.), Institute of Neurological Disorders and Stroke; Department of Pathology (D.M.M.), University of California San Diego; Department of Human Genetics (R.B.W.), University of Utah; and Departments of Pediatrics and Neurology (K.D.M.), University of Iowa
| | - Joanne S Janas
- University of Iowa (A.J.L.), Carver College of Medicine; Department of Pathology (K.A.J., M.O.C., S.A.M.), University of Iowa; Departments of Pediatrics and Neurology (R.J.B.), University of Utah; Department of Neurology (C.G.K.), University of California San Diego; Department of Neurology (C.G.), Gillette Children's Specialty Healthcare; Division of Metabolic Disorders (J.E.A., M.B.), CHOC Children's; Department of Neurology (B.B.), Integris Southwest Medical Center; Departments of Pediatrics and Neurology (C.W.), Driscoll Children's Hospital; Departments of Paediatrics and Molecular Genetics (J.J.D.), Hospital for Sick Children, University of Toronto; Departments of Pediatrics and Neurology (M.A.G., J.S.J.), University of Colorado; Department of Physical Medicine and Rehabilitation (A.B.), University of Colorado; Department of Neurosciences (R.T.L.), University of California San Diego; National Institutes of Health (S.D., C.G.B.), Institute of Neurological Disorders and Stroke; Department of Pathology (D.M.M.), University of California San Diego; Department of Human Genetics (R.B.W.), University of Utah; and Departments of Pediatrics and Neurology (K.D.M.), University of Iowa
| | - Robert T Leshner
- University of Iowa (A.J.L.), Carver College of Medicine; Department of Pathology (K.A.J., M.O.C., S.A.M.), University of Iowa; Departments of Pediatrics and Neurology (R.J.B.), University of Utah; Department of Neurology (C.G.K.), University of California San Diego; Department of Neurology (C.G.), Gillette Children's Specialty Healthcare; Division of Metabolic Disorders (J.E.A., M.B.), CHOC Children's; Department of Neurology (B.B.), Integris Southwest Medical Center; Departments of Pediatrics and Neurology (C.W.), Driscoll Children's Hospital; Departments of Paediatrics and Molecular Genetics (J.J.D.), Hospital for Sick Children, University of Toronto; Departments of Pediatrics and Neurology (M.A.G., J.S.J.), University of Colorado; Department of Physical Medicine and Rehabilitation (A.B.), University of Colorado; Department of Neurosciences (R.T.L.), University of California San Diego; National Institutes of Health (S.D., C.G.B.), Institute of Neurological Disorders and Stroke; Department of Pathology (D.M.M.), University of California San Diego; Department of Human Genetics (R.B.W.), University of Utah; and Departments of Pediatrics and Neurology (K.D.M.), University of Iowa
| | - Sandra Donkervoort
- University of Iowa (A.J.L.), Carver College of Medicine; Department of Pathology (K.A.J., M.O.C., S.A.M.), University of Iowa; Departments of Pediatrics and Neurology (R.J.B.), University of Utah; Department of Neurology (C.G.K.), University of California San Diego; Department of Neurology (C.G.), Gillette Children's Specialty Healthcare; Division of Metabolic Disorders (J.E.A., M.B.), CHOC Children's; Department of Neurology (B.B.), Integris Southwest Medical Center; Departments of Pediatrics and Neurology (C.W.), Driscoll Children's Hospital; Departments of Paediatrics and Molecular Genetics (J.J.D.), Hospital for Sick Children, University of Toronto; Departments of Pediatrics and Neurology (M.A.G., J.S.J.), University of Colorado; Department of Physical Medicine and Rehabilitation (A.B.), University of Colorado; Department of Neurosciences (R.T.L.), University of California San Diego; National Institutes of Health (S.D., C.G.B.), Institute of Neurological Disorders and Stroke; Department of Pathology (D.M.M.), University of California San Diego; Department of Human Genetics (R.B.W.), University of Utah; and Departments of Pediatrics and Neurology (K.D.M.), University of Iowa
| | - Carsten G Bönnemann
- University of Iowa (A.J.L.), Carver College of Medicine; Department of Pathology (K.A.J., M.O.C., S.A.M.), University of Iowa; Departments of Pediatrics and Neurology (R.J.B.), University of Utah; Department of Neurology (C.G.K.), University of California San Diego; Department of Neurology (C.G.), Gillette Children's Specialty Healthcare; Division of Metabolic Disorders (J.E.A., M.B.), CHOC Children's; Department of Neurology (B.B.), Integris Southwest Medical Center; Departments of Pediatrics and Neurology (C.W.), Driscoll Children's Hospital; Departments of Paediatrics and Molecular Genetics (J.J.D.), Hospital for Sick Children, University of Toronto; Departments of Pediatrics and Neurology (M.A.G., J.S.J.), University of Colorado; Department of Physical Medicine and Rehabilitation (A.B.), University of Colorado; Department of Neurosciences (R.T.L.), University of California San Diego; National Institutes of Health (S.D., C.G.B.), Institute of Neurological Disorders and Stroke; Department of Pathology (D.M.M.), University of California San Diego; Department of Human Genetics (R.B.W.), University of Utah; and Departments of Pediatrics and Neurology (K.D.M.), University of Iowa
| | - Denise M Malicki
- University of Iowa (A.J.L.), Carver College of Medicine; Department of Pathology (K.A.J., M.O.C., S.A.M.), University of Iowa; Departments of Pediatrics and Neurology (R.J.B.), University of Utah; Department of Neurology (C.G.K.), University of California San Diego; Department of Neurology (C.G.), Gillette Children's Specialty Healthcare; Division of Metabolic Disorders (J.E.A., M.B.), CHOC Children's; Department of Neurology (B.B.), Integris Southwest Medical Center; Departments of Pediatrics and Neurology (C.W.), Driscoll Children's Hospital; Departments of Paediatrics and Molecular Genetics (J.J.D.), Hospital for Sick Children, University of Toronto; Departments of Pediatrics and Neurology (M.A.G., J.S.J.), University of Colorado; Department of Physical Medicine and Rehabilitation (A.B.), University of Colorado; Department of Neurosciences (R.T.L.), University of California San Diego; National Institutes of Health (S.D., C.G.B.), Institute of Neurological Disorders and Stroke; Department of Pathology (D.M.M.), University of California San Diego; Department of Human Genetics (R.B.W.), University of Utah; and Departments of Pediatrics and Neurology (K.D.M.), University of Iowa
| | - Robert B Weiss
- University of Iowa (A.J.L.), Carver College of Medicine; Department of Pathology (K.A.J., M.O.C., S.A.M.), University of Iowa; Departments of Pediatrics and Neurology (R.J.B.), University of Utah; Department of Neurology (C.G.K.), University of California San Diego; Department of Neurology (C.G.), Gillette Children's Specialty Healthcare; Division of Metabolic Disorders (J.E.A., M.B.), CHOC Children's; Department of Neurology (B.B.), Integris Southwest Medical Center; Departments of Pediatrics and Neurology (C.W.), Driscoll Children's Hospital; Departments of Paediatrics and Molecular Genetics (J.J.D.), Hospital for Sick Children, University of Toronto; Departments of Pediatrics and Neurology (M.A.G., J.S.J.), University of Colorado; Department of Physical Medicine and Rehabilitation (A.B.), University of Colorado; Department of Neurosciences (R.T.L.), University of California San Diego; National Institutes of Health (S.D., C.G.B.), Institute of Neurological Disorders and Stroke; Department of Pathology (D.M.M.), University of California San Diego; Department of Human Genetics (R.B.W.), University of Utah; and Departments of Pediatrics and Neurology (K.D.M.), University of Iowa
| | - Steven A Moore
- University of Iowa (A.J.L.), Carver College of Medicine; Department of Pathology (K.A.J., M.O.C., S.A.M.), University of Iowa; Departments of Pediatrics and Neurology (R.J.B.), University of Utah; Department of Neurology (C.G.K.), University of California San Diego; Department of Neurology (C.G.), Gillette Children's Specialty Healthcare; Division of Metabolic Disorders (J.E.A., M.B.), CHOC Children's; Department of Neurology (B.B.), Integris Southwest Medical Center; Departments of Pediatrics and Neurology (C.W.), Driscoll Children's Hospital; Departments of Paediatrics and Molecular Genetics (J.J.D.), Hospital for Sick Children, University of Toronto; Departments of Pediatrics and Neurology (M.A.G., J.S.J.), University of Colorado; Department of Physical Medicine and Rehabilitation (A.B.), University of Colorado; Department of Neurosciences (R.T.L.), University of California San Diego; National Institutes of Health (S.D., C.G.B.), Institute of Neurological Disorders and Stroke; Department of Pathology (D.M.M.), University of California San Diego; Department of Human Genetics (R.B.W.), University of Utah; and Departments of Pediatrics and Neurology (K.D.M.), University of Iowa
| | - Katherine D Mathews
- University of Iowa (A.J.L.), Carver College of Medicine; Department of Pathology (K.A.J., M.O.C., S.A.M.), University of Iowa; Departments of Pediatrics and Neurology (R.J.B.), University of Utah; Department of Neurology (C.G.K.), University of California San Diego; Department of Neurology (C.G.), Gillette Children's Specialty Healthcare; Division of Metabolic Disorders (J.E.A., M.B.), CHOC Children's; Department of Neurology (B.B.), Integris Southwest Medical Center; Departments of Pediatrics and Neurology (C.W.), Driscoll Children's Hospital; Departments of Paediatrics and Molecular Genetics (J.J.D.), Hospital for Sick Children, University of Toronto; Departments of Pediatrics and Neurology (M.A.G., J.S.J.), University of Colorado; Department of Physical Medicine and Rehabilitation (A.B.), University of Colorado; Department of Neurosciences (R.T.L.), University of California San Diego; National Institutes of Health (S.D., C.G.B.), Institute of Neurological Disorders and Stroke; Department of Pathology (D.M.M.), University of California San Diego; Department of Human Genetics (R.B.W.), University of Utah; and Departments of Pediatrics and Neurology (K.D.M.), University of Iowa
| |
Collapse
|
17
|
Vannoy CH, Blaeser A, Lu QL. Dystroglycanopathy Gene Therapy: Unlocking the Potential of Genetic Engineering. MUSCLE GENE THERAPY 2019:469-490. [DOI: 10.1007/978-3-030-03095-7_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
18
|
Nickolls AR, Bönnemann CG. The roles of dystroglycan in the nervous system: insights from animal models of muscular dystrophy. Dis Model Mech 2018; 11:11/12/dmm035931. [PMID: 30578246 PMCID: PMC6307911 DOI: 10.1242/dmm.035931] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Dystroglycan is a cell membrane protein that binds to the extracellular matrix in a variety of mammalian tissues. The α-subunit of dystroglycan (αDG) is heavily glycosylated, including a special O-mannosyl glycoepitope, relying upon this unique glycosylation to bind its matrix ligands. A distinct group of muscular dystrophies results from specific hypoglycosylation of αDG, and they are frequently associated with central nervous system involvement, ranging from profound brain malformation to intellectual disability without evident morphological defects. There is an expanding literature addressing the function of αDG in the nervous system, with recent reports demonstrating important roles in brain development and in the maintenance of neuronal synapses. Much of these data are derived from an increasingly rich array of experimental animal models. This Review aims to synthesize the information from such diverse models, formulating an up-to-date understanding about the various functions of αDG in neurons and glia of the central and peripheral nervous systems. Where possible, we integrate these data with our knowledge of the human disorders to promote translation from basic mechanistic findings to clinical therapies that take the neural phenotypes into account. Summary: Dystroglycan is a ubiquitous matrix receptor linked to brain and muscle disease. Unraveling the functions of this protein will inform basic and translational research on neural development and muscular dystrophies.
Collapse
Affiliation(s)
- Alec R Nickolls
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.,Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Carsten G Bönnemann
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
19
|
Balci-Hayta B, Talim B, Kale G, Dincer P. LARGE expression in different types of muscular dystrophies other than dystroglycanopathy. BMC Neurol 2018; 18:207. [PMID: 30553274 PMCID: PMC6295086 DOI: 10.1186/s12883-018-1207-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 11/27/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Alpha-dystroglycan (αDG) is an extracellular peripheral glycoprotein that acts as a receptor for both extracellular matrix proteins containing laminin globular domains and certain arenaviruses. An important enzyme, known as Like-acetylglucosaminyltransferase (LARGE), has been shown to transfer repeating units of -glucuronic acid-β1,3-xylose-α1,3- (matriglycan) to αDG that is required for functional receptor as an extracellular matrix protein scaffold. The reduction in the amount of LARGE-dependent matriglycan result in heterogeneous forms of dystroglycanopathy that is associated with hypoglycosylation of αDG and a consequent lack of ligand-binding activity. Our aim was to investigate whether LARGE expression showed correlation with glycosylation of αDG and histopathological parameters in different types of muscular dystrophies, except for dystroglycanopathies. METHODS The expression level of LARGE and glycosylation status of αDG were examined in skeletal muscle biopsies from 26 patients with various forms of muscular dystrophy [Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD), sarcoglycanopathy, dysferlinopathy, calpainopathy, and merosin and collagen VI deficient congenital muscular dystrophies (CMDs)] and correlation of results with different histopathological features was investigated. RESULTS Despite the fact that these diseases are not caused by defects of glycosyltransferases, decreased expression of LARGE was detected in many patient samples, partly correlating with the type of muscular dystrophy. Although immunolabelling of fully glycosylated αDG with VIA4-1 was reduced in dystrophinopathy patients, no significant relationship between reduction of LARGE expression and αDG hypoglycosylation was detected. Also, Merosin deficient CMD patients showed normal immunostaining with αDG despite severe reduction of LARGE expression. CONCLUSIONS Our data shows that it is not always possible to correlate LARGE expression and αDG glycosylation in different types of muscular dystrophies and suggests that there might be differences in αDG processing by LARGE which could be regulated under different pathological conditions.
Collapse
Affiliation(s)
- Burcu Balci-Hayta
- Department of Medical Biology, Hacettepe University Faculty of Medicine, 06100 Sihhiye, Ankara, Turkey
| | - Beril Talim
- Department of Pediatrics, Pathology Unit, Hacettepe University Faculty of Medicine, 06100 Sihhiye, Ankara, Turkey
| | - Gulsev Kale
- Department of Pediatrics, Pathology Unit, Hacettepe University Faculty of Medicine, 06100 Sihhiye, Ankara, Turkey
| | - Pervin Dincer
- Department of Medical Biology, Hacettepe University Faculty of Medicine, 06100 Sihhiye, Ankara, Turkey
| |
Collapse
|
20
|
Dai Y, Liang S, Dong X, Zhao Y, Ren H, Guan Y, Yin H, Li C, Chen L, Cui L, Banerjee S. Whole exome sequencing identified a novel DAG1 mutation in a patient with rare, mild and late age of onset muscular dystrophy-dystroglycanopathy. J Cell Mol Med 2018; 23:811-818. [PMID: 30450679 PMCID: PMC6349151 DOI: 10.1111/jcmm.13979] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/02/2018] [Indexed: 11/27/2022] Open
Abstract
Muscular dystrophy‐dystroglycanopathy (limb‐girdle), type C, 9 (MDDGC9) is the rarest type of autosomal recessive muscular dystrophies. MDDGC9 is manifested with an early onset in childhood. Patients with MDDGC9 usually identified with defective glycosylation of DAG1, hence it is known as “dystroglycanopathies”. Here, we report a Chinese pedigree presented with mild MDDGC9. The proband is a 64 years old Chinese man. In this family, both the proband and proband's younger brother have been suffering from mild and late onset MDDGC9. Muscle biopsy showed that the left deltoid muscle with an advanced stage of dystrophic change. Immunohistochemistry staining of dystrophin, α‐sarcoglycan, β‐sarcoglycan and dysferlin are normal. Molecular genetic analysis of the proband has been done with whole exome sequencing. A homozygous novel missense mutation (c.2326C>T; p.R776C) in the exon 3 of the DAG1 gene has been identified in the proband. Sanger sequencing revealed that this missense mutation is co‐segregated well among the affected and unaffected (carrier) family members. This mutation is not detected in 200 normal healthy control individuals. This novel homozygous missense mutation (c.2326C>T) causes substitution of arginine by cystine at the position of 776 (p.R776C) which is evolutionarily highly conserved. Immunoblotting studies revealed that a significant reduction of α‐dystroglycan expression in the muscle tissue. The novelty of our study is that it is a first report of DAG1 associated muscular dystrophy‐dystroglycanopathy (limb‐girdle), type C, 9 (MDDGC9) with mild and late age of onset. In Chinese population this is the first report of DAG1 associated MDDGC9.
Collapse
Affiliation(s)
- Yi Dai
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Shengran Liang
- School of Life Science and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xue Dong
- Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Yanhuan Zhao
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Haitao Ren
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuzhou Guan
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Haifang Yin
- Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Chen Li
- Department of Cell Biology and Medical Genetics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lin Chen
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.,Neurosciences Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Santasree Banerjee
- Department of Cell Biology and Medical Genetics, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Cataldi MP, Lu P, Blaeser A, Lu QL. Ribitol restores functionally glycosylated α-dystroglycan and improves muscle function in dystrophic FKRP-mutant mice. Nat Commun 2018; 9:3448. [PMID: 30150693 PMCID: PMC6110760 DOI: 10.1038/s41467-018-05990-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 08/09/2018] [Indexed: 02/07/2023] Open
Abstract
O-mannosylated α-dystroglycan (α-DG) serves as receptors for cell-cell and cell-extracellular matrix adhesion and signaling. Hypoglycosylation of α-DG is involved in cancer progression and underlies dystroglycanopathy with aberrant neuronal development. Here we report that ribitol, a pentose alcohol with previously unknown function in mammalian cells, partially restores functional O-mannosylation of α-DG (F-α-DG) in the dystroglycanopathy model containing a P448L mutation in fukutin-related protein (FKRP) gene, which is clinically associated with severe congenital muscular dystrophy. Oral administration of ribitol increases levels of ribitol-5-phosphate and CDP-ribitol and restores therapeutic levels of F-α-DG in skeletal and cardiac muscles. Furthermore, ribitol, given before and after the onset of disease phenotype, reduces skeletal muscle pathology, significantly decreases cardiac fibrosis and improves skeletal and respiratory functions in the FKRP mutant mice. Ribitol treatment presents a new class, low risk, and easy to administer experimental therapy to restore F-α-DG in FKRP-related muscular dystrophy.
Collapse
Affiliation(s)
- Marcela P Cataldi
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Carolinas Healthcare System, Charlotte, NC, 28203, USA
| | - Peijuan Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Carolinas Healthcare System, Charlotte, NC, 28203, USA
| | - Anthony Blaeser
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Carolinas Healthcare System, Charlotte, NC, 28203, USA
| | - Qi Long Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Carolinas Healthcare System, Charlotte, NC, 28203, USA.
| |
Collapse
|
22
|
Detection of variants in dystroglycanopathy-associated genes through the application of targeted whole-exome sequencing analysis to a large cohort of patients with unexplained limb-girdle muscle weakness. Skelet Muscle 2018; 8:23. [PMID: 30060766 PMCID: PMC6066920 DOI: 10.1186/s13395-018-0170-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/13/2018] [Indexed: 12/16/2022] Open
Abstract
Background Dystroglycanopathies are a clinically and genetically heterogeneous group of disorders that are typically characterised by limb-girdle muscle weakness. Mutations in 18 different genes have been associated with dystroglycanopathies, the encoded proteins of which typically modulate the binding of α-dystroglycan to extracellular matrix ligands by altering its glycosylation. This results in a disruption of the structural integrity of the myocyte, ultimately leading to muscle degeneration. Methods Deep phenotypic information was gathered using the PhenoTips online software for 1001 patients with unexplained limb-girdle muscle weakness from 43 different centres across 21 European and Middle Eastern countries. Whole-exome sequencing with at least 250 ng DNA was completed using an Illumina exome capture and a 38 Mb baited target. Genes known to be associated with dystroglycanopathies were analysed for disease-causing variants. Results Suspected pathogenic variants were detected in DPM3, ISPD, POMT1 and FKTN in one patient each, in POMK in two patients, in GMPPB in three patients, in FKRP in eight patients and in POMT2 in ten patients. This indicated a frequency of 2.7% for the disease group within the cohort of 1001 patients with unexplained limb-girdle muscle weakness. The phenotypes of the 27 patients were highly variable, yet with a fundamental presentation of proximal muscle weakness and elevated serum creatine kinase. Conclusions Overall, we have identified 27 patients with suspected pathogenic variants in dystroglycanopathy-associated genes. We present evidence for the genetic and phenotypic diversity of the dystroglycanopathies as a disease group, while also highlighting the advantage of incorporating next-generation sequencing into the diagnostic pathway of rare diseases. Electronic supplementary material The online version of this article (10.1186/s13395-018-0170-1) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
Blaeser A, Awano H, Lu P, Lu QL. Distinct expression of functionally glycosylated alpha-dystroglycan in muscle and non-muscle tissues of FKRP mutant mice. PLoS One 2018; 13:e0191016. [PMID: 29320543 PMCID: PMC5761899 DOI: 10.1371/journal.pone.0191016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/27/2017] [Indexed: 01/06/2023] Open
Abstract
The glycosylation of alpha-dystroglycan (α-DG) is crucial in maintaining muscle cell membrane integrity. Dystroglycanopathies are identified by the loss of this glycosylation leading to a breakdown of muscle cell membrane integrity and eventual degeneration. However, a small portion of fibers expressing functionally glycosylated α-DG (F-α-DG) (revertant fibers, RF) have been identified. These fibers are generally small in size, centrally nucleated and linked to regenerating fibers. Examination of different muscles have shown various levels of RFs but it is unclear the extent of which they are present. Here we do a body-wide examination of muscles from the FKRP-P448L mutant mouse for the prevalence of RFs. We have identified great variation in the distribution of RF in different muscles and tissues. Triceps shows a large increase in RFs and together with centrally nucleated fibers whereas the pectoralis shows a reduction in revertant but increase in centrally nucleated fibers from 6 weeks to 6 months of age. We have also identified that the sciatic nerve with near normal levels of F-α-DG in the P448Lneo- mouse with reduced levels in the P448Lneo+ and absent in LARGEmyd. The salivary gland of LARGEmyd mice expresses high levels of F-α-DG. Interestingly the same glands in the P448Lneo-and to a lesser degree in P448Lneo+ also maintain considerable amount of F-α-DG, indicating the non-proliferating epithelial cells have a molecular setting permitting glycosylation.
Collapse
Affiliation(s)
- Anthony Blaeser
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Carolinas HealthCare System, Charlotte, North Carolina, United States of America
- * E-mail: (QL); (AB)
| | - Hiroyuki Awano
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Carolinas HealthCare System, Charlotte, North Carolina, United States of America
| | - Pei Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Carolinas HealthCare System, Charlotte, North Carolina, United States of America
| | - Qi-Long Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Carolinas HealthCare System, Charlotte, North Carolina, United States of America
- * E-mail: (QL); (AB)
| |
Collapse
|
24
|
Maroofian R, Riemersma M, Jae LT, Zhianabed N, Willemsen MH, Wissink-Lindhout WM, Willemsen MA, de Brouwer APM, Mehrjardi MYV, Ashrafi MR, Kusters B, Kleefstra T, Jamshidi Y, Nasseri M, Pfundt R, Brummelkamp TR, Abbaszadegan MR, Lefeber DJ, van Bokhoven H. B3GALNT2 mutations associated with non-syndromic autosomal recessive intellectual disability reveal a lack of genotype-phenotype associations in the muscular dystrophy-dystroglycanopathies. Genome Med 2017; 9:118. [PMID: 29273094 PMCID: PMC5740572 DOI: 10.1186/s13073-017-0505-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 12/05/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The phenotypic severity of congenital muscular dystrophy-dystroglycanopathy (MDDG) syndromes associated with aberrant glycosylation of α-dystroglycan ranges from the severe Walker-Warburg syndrome or muscle-eye-brain disease to mild, late-onset, isolated limb-girdle muscular dystrophy without neural involvement. However, muscular dystrophy is invariably found across the spectrum of MDDG patients. METHODS Using linkage mapping and whole-exome sequencing in two families with an unexplained neurodevelopmental disorder, we have identified homozygous and compound heterozygous mutations in B3GALNT2. RESULTS The first family comprises two brothers of Dutch non-consanguineous parents presenting with mild ID and behavioral problems. Immunohistochemical analysis of muscle biopsy revealed no significant aberrations, in line with the absence of a muscular phenotype in the affected siblings. The second family includes five affected individuals from an Iranian consanguineous kindred with mild-to-moderate intellectual disability (ID) and epilepsy without any notable neuroimaging, muscle, or eye abnormalities. Complementation assays of the compound heterozygous mutations identified in the two brothers had a comparable effect on the O-glycosylation of α-dystroglycan as previously reported mutations that are associated with severe muscular phenotypes. CONCLUSIONS In conclusion, we show that mutations in B3GALNT2 can give rise to a novel MDDG syndrome presentation, characterized by ID associated variably with seizure, but without any apparent muscular involvement. Importantly, B3GALNT2 activity does not fully correlate with the severity of the phenotype as assessed by the complementation assay.
Collapse
Affiliation(s)
- Reza Maroofian
- Genetics and Molecular Cell Sciences Research Centre, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Moniek Riemersma
- Department of Neurology, Radboud university medical center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud university medical center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
- Department of Human Genetics 855, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Lucas T Jae
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, 81377, Munich, Germany
| | | | - Marjolein H Willemsen
- Department of Human Genetics 855, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Willemijn M Wissink-Lindhout
- Department of Human Genetics 855, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Michèl A Willemsen
- Department of Neurology, Radboud university medical center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Arjan P M de Brouwer
- Department of Human Genetics 855, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | | | - Mahmoud Reza Ashrafi
- Department of Child Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Benno Kusters
- Department of Pathology, Radboud university medical center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
- Department of Pathology, Maastricht University Medical Centre, 6229 HX, Maastricht, The Netherlands
| | - Tjitske Kleefstra
- Department of Human Genetics 855, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Yalda Jamshidi
- Genetics and Molecular Cell Sciences Research Centre, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Mojila Nasseri
- Pardis Clinical and Genetics Laboratory, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rolph Pfundt
- Department of Human Genetics 855, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Thijn R Brummelkamp
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, 81377, Munich, Germany
| | - Mohammad Reza Abbaszadegan
- Pardis Clinical and Genetics Laboratory, Mashhad, Iran
- Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Dirk J Lefeber
- Department of Neurology, Radboud university medical center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud university medical center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Hans van Bokhoven
- Department of Human Genetics 855, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
25
|
Covaceuszach S, Bozzi M, Bigotti MG, Sciandra F, Konarev PV, Brancaccio A, Cassetta A. The effect of the pathological V72I, D109N and T190M missense mutations on the molecular structure of α-dystroglycan. PLoS One 2017; 12:e0186110. [PMID: 29036200 PMCID: PMC5643065 DOI: 10.1371/journal.pone.0186110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/25/2017] [Indexed: 11/18/2022] Open
Abstract
Dystroglycan (DG) is a highly glycosylated protein complex that links the cytoskeleton with the extracellular matrix, mediating fundamental physiological functions such as mechanical stability of tissues, matrix organization and cell polarity. A crucial role in the glycosylation of the DG α subunit is played by its own N-terminal region that is required by the glycosyltransferase LARGE. Alteration in this O-glycosylation deeply impairs the high affinity binding to other extracellular matrix proteins such as laminins. Recently, three missense mutations in the gene encoding DG, mapped in the α-DG N-terminal region, were found to be responsible for hypoglycosylated states, causing congenital diseases of different severity referred as primary dystroglycanopaties.To gain insight on the molecular basis of these disorders, we investigated the crystallographic and solution structures of these pathological point mutants, namely V72I, D109N and T190M. Small Angle X-ray Scattering analysis reveals that these mutations affect the structures in solution, altering the distribution between compact and more elongated conformations. These results, supported by biochemical and biophysical assays, point to an altered structural flexibility of the mutant α-DG N-terminal region that may have repercussions on its interaction with LARGE and/or other DG-modifying enzymes, eventually reducing their catalytic efficiency.
Collapse
Affiliation(s)
| | - Manuela Bozzi
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Roma, Italy
- Istituto di Chimica del Riconoscimento Molecolare—CNR c/o Università Cattolica del Sacro Cuore, Roma, Italy
| | | | - Francesca Sciandra
- Istituto di Chimica del Riconoscimento Molecolare—CNR c/o Università Cattolica del Sacro Cuore, Roma, Italy
| | - Petr V. Konarev
- A.V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Moscow, Russia
- National Research Centre “Kurchatov Institute”, Moscow, Russia
| | - Andrea Brancaccio
- Istituto di Chimica del Riconoscimento Molecolare—CNR c/o Università Cattolica del Sacro Cuore, Roma, Italy
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Alberto Cassetta
- Istituto di Cristallografia–CNR, Trieste Outstation, Trieste, Italy
| |
Collapse
|
26
|
Gicquel E, Maizonnier N, Foltz SJ, Martin WJ, Bourg N, Svinartchouk F, Charton K, Beedle AM, Richard I. AAV-mediated transfer of FKRP shows therapeutic efficacy in a murine model but requires control of gene expression. Hum Mol Genet 2017; 26:1952-1965. [PMID: 28334834 DOI: 10.1093/hmg/ddx066] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/17/2017] [Indexed: 02/06/2023] Open
Abstract
Limb Girdle Muscular Dystrophies type 2I (LGMD2I), a recessive autosomal muscular dystrophy, is caused by mutations in the Fukutin Related Protein (FKRP) gene. It has been proposed that FKRP, a ribitol-5-phosphate transferase, is a participant in α-dystroglycan (αDG) glycosylation, which is important to ensure the cell/matrix anchor of muscle fibers. A LGMD2I knock-in mouse model was generated to express the most frequent mutation (L276I) encountered in patients. The expression of FKRP was not altered neither at transcriptional nor at translational levels, but its function was impacted since abnormal glycosylation of αDG was observed. Skeletal muscles were functionally impaired from 2 months of age and a moderate dystrophic pattern was evident starting from 6 months of age. Gene transfer with a rAAV2/9 vector expressing Fkrp restored biochemical defects, corrected the histological abnormalities and improved the resistance to eccentric stress in the mouse model. However, injection of high doses of the vector induced a decrease of αDG glycosylation and laminin binding, even in WT animals. Finally, intravenous injection of the rAAV-Fkrp vector into a dystroglycanopathy mouse model due to Fukutin (Fktn) knock-out indicated a dose-dependent toxicity. These data suggest requirement for a control of FKRP expression in muscles.
Collapse
Affiliation(s)
- Evelyne Gicquel
- INSERM, U951, INTEGRARE Research Unit, Généthon, Evry, F-91002, France
| | | | - Steven J Foltz
- Pharmaceutical & Biomedical Sciences, University of Georgia College of Pharmacy, Athens, GA 30602, USA
| | - William J Martin
- Animal Health Research Center, University of Georgia, Athens, GA 30602, USA
| | - Nathalie Bourg
- INSERM, U951, INTEGRARE Research Unit, Généthon, Evry, F-91002, France
| | | | - Karine Charton
- INSERM, U951, INTEGRARE Research Unit, Généthon, Evry, F-91002, France
| | - Aaron M Beedle
- Pharmaceutical & Biomedical Sciences, University of Georgia College of Pharmacy, Athens, GA 30602, USA.,Pharmaceutical Sciences, Binghamton University SUNY, Binghamton, NY 13902, USA
| | - Isabelle Richard
- INSERM, U951, INTEGRARE Research Unit, Généthon, Evry, F-91002, France
| |
Collapse
|
27
|
A role for dystroglycan in the pathophysiology of acute leukemic cells. Life Sci 2017; 182:1-9. [DOI: 10.1016/j.lfs.2017.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/30/2017] [Accepted: 06/03/2017] [Indexed: 11/21/2022]
|
28
|
Alhamidi M, Brox V, Stensland E, Liset M, Lindal S, Nilssen Ø. Limb girdle muscular dystrophy type 2I: No correlation between clinical severity, histopathology and glycosylated α-dystroglycan levels in patients homozygous for common FKRP mutation. Neuromuscul Disord 2017; 27:619-626. [PMID: 28479227 DOI: 10.1016/j.nmd.2017.02.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 02/05/2017] [Accepted: 02/24/2017] [Indexed: 11/19/2022]
Abstract
Limb girdle muscular dystrophy type 2I (LGMD2I) is a progressive disorder caused by mutations in the FuKutin-Related Protein gene (FKRP). LGMD2I displays clinical heterogeneity with onset of severe symptoms in early childhood to mild calf and thigh hypertrophy in the second or third decade. Patients homozygous for the common FKRP mutation c.826C>A (p.Leu276Ile) show phenotypes within the milder end of the clinical spectrum. However, this group also manifests substantial clinical variability. FKRP deficiency causes hypoglycosylation of α-dystroglycan; a component of the dystrophin associated glycoprotein complex. α-Dystroglycan hypoglycosylation is associated with loss of interaction with laminin α2, which in turn results in laminin α2 depletion. Here, we have attempted to clarify if the clinical variability seen in patients homozygous for c.826C>A is related to alterations in muscle fibre pathology, α-DG glycosylation levels, levels of laminin α2 as well as the capacity of α-DG to bind to laminin. We have assessed vastus lateralis muscle biopsies from 25 LGMD2I patients harbouring the c.826C>A/c.826C>A genotype by histological examination, immunohistochemistry and immunoblotting. No clear correlation was found between clinical severity, as determined by self-reported walking function, and the above features, suggesting that more complex molecular processes are contributing to the progression of disease.
Collapse
Affiliation(s)
- Maisoon Alhamidi
- Department of Clinical Medicine, University of Tromsø, NO-9037 Tromsø, Norway; Department of Medical Genetics, Division of Child and Adolescent Health, University Hospital of North-Norway, NO-9038 Tromsø, Norway
| | - Vigdis Brox
- Department of Clinical Medicine, University of Tromsø, NO-9037 Tromsø, Norway; Department of Medical Genetics, Division of Child and Adolescent Health, University Hospital of North-Norway, NO-9038 Tromsø, Norway
| | - Eva Stensland
- Department of Clinical Medicine, University of Tromsø, NO-9037 Tromsø, Norway; Department of Habilitation, University Hospital North Norway, NO-9038 Tromsø, Norway
| | - Merete Liset
- Department of Pathology, University Hospital of North-Norway, NO-9038 Tromsø, Norway
| | - Sigurd Lindal
- Department of Pathology, University Hospital of North-Norway, NO-9038 Tromsø, Norway; Institute of Medical Biology, University of Tromsø, NO-9037 Tromsø, Norway
| | - Øivind Nilssen
- Department of Clinical Medicine, University of Tromsø, NO-9037 Tromsø, Norway; Department of Medical Genetics, Division of Child and Adolescent Health, University Hospital of North-Norway, NO-9038 Tromsø, Norway.
| |
Collapse
|
29
|
Hu P, Wu S, Yuan L, Lin Q, Zheng W, Xia H, Xu H, Guan L, Deng H. Compound heterozygous POMT1 mutations in a Chinese family with autosomal recessive muscular dystrophy-dystroglycanopathy C1. J Cell Mol Med 2017; 21:1388-1393. [PMID: 28157257 PMCID: PMC5487925 DOI: 10.1111/jcmm.13068] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/24/2016] [Indexed: 11/29/2022] Open
Abstract
Muscular dystrophy-dystroglycanopathy (MDDG) is a genetically and clinically heterogeneous group of muscular disorders, characterized by congenital muscular dystrophy or later-onset limb-girdle muscular dystrophy accompanied by brain and ocular abnormalities, resulting from aberrant alpha-dystroglycan glycosylation. Exome sequencing and Sanger sequencing were performed on a six-generation consanguineous Han Chinese family, members of which had autosomal recessive MDDG. Compound heterozygous mutations, c.1338+1G>A (p.H415Kfs*3) and c.1457G>C (p.W486S, rs746849558), in the protein O-mannosyltransferase 1 gene (POMT1), were identified as the genetic cause. Patients that exhibited milder MDDG manifested as later-onset progressive proximal pelvic, shoulder girdle and limb muscle weakness, joint contractures, mental retardation and elevated creatine kinase, without structural brain or ocular abnormalities, were further genetically diagnosed as MDDGC1. The POMT1 gene splice-site mutation (c.1338+1G>A) which leads to exon 13 skipping and results in a truncated protein may contribute to a severe phenotype, while the allelic missense mutation (p.W486S) may reduce MDDG severity. These findings may expand phenotype and mutation spectrum of the POMT1 gene. Clinical diagnosis supplemented with molecular screening may result in more accurate diagnoses of, prognoses for, and improved genetic counselling for this disease.
Collapse
Affiliation(s)
- Pengzhi Hu
- Center for Experimental Medicine and Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Song Wu
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lamei Yuan
- Center for Experimental Medicine and Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | | | - Wen Zheng
- Center for Experimental Medicine and Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hong Xia
- Center for Experimental Medicine and Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongbo Xu
- Center for Experimental Medicine and Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | | | - Hao Deng
- Center for Experimental Medicine and Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
30
|
Endo Y, Dong M, Noguchi S, Ogawa M, Hayashi YK, Kuru S, Sugiyama K, Nagai S, Ozasa S, Nonaka I, Nishino I. Milder forms of muscular dystrophy associated with POMGNT2 mutations. NEUROLOGY-GENETICS 2015; 1:e33. [PMID: 27066570 PMCID: PMC4811383 DOI: 10.1212/nxg.0000000000000033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 09/24/2015] [Indexed: 12/15/2022]
Abstract
Objective: To determine the genetic variants in patients with dystroglycanopathy (DGP) and assess the pathogenicity of these variants. Methods: A total of 20 patients with DGP were identified by immunohistochemistry or Western blot analysis. Whole-exome sequencing (WES) was performed using patient samples. The pathogenicity of the variants identified was evaluated on the basis of the phenotypic recovery in a knockout (KO) haploid human cell line by transfection with mutated POMGNT2 cDNA and on the basis of the in vitro enzymatic activity of mutated proteins. Results: WES identified homozygous and compound heterozygous missense variants in POMGNT2 in 3 patients with the milder limb-girdle muscular dystrophy (LGMD) and intellectual disability without brain malformation. The 2 identified variants were located in the putative glycosyltransferase domain of POMGNT2, which affected its enzymatic activity. Mutated POMGNT2 cDNAs failed to rescue the phenotype of POMGNT2-KO cells. Conclusions: Novel variants in POMGNT2 are associated with milder forms of LGMD. The findings of this study expand the clinical and pathologic spectrum of DGP associated with POMGNT2 variants from the severest Walker-Warburg syndrome to the mildest LGMD phenotypes. The simple method to verify pathogenesis of variants may allow researchers to evaluate any variants present in all of the known causative genes and the variants in novel candidate genes to detect DGPs, particularly without using patients' specimens.
Collapse
Affiliation(s)
- Yukari Endo
- Department of Neuromuscular Research (Y.E., M.D., S. Noguchi, M.O., Y.K.H., I. Nonaka, I. Nishino), National Institute of Neuroscience; and Department of Genome Medicine Development (Y.E., S. Noguchi, I. Nishino), Medical Genome Center, NCNP, Tokyo, Japan; Department of Neurology (M.D.), China-Japan Friendship Hospital, Beijing, China; Department of Pathophysiology (Y.K.H.), Tokyo Medical University; National Hospital Organization Suzuka National Hospital (S.K.), Mie, Japan; Department of Pediatrics (K.S.), Local Independent Administrative Institution, Mie Prefectural General Medical Center; Department of Child Neurology (S. Nagai), Shikoku Medical Center for Children and Adults, Kagawa, Japan; and Department of Pediatrics (S.O.), Kumamoto University, Kumamoto, Japan
| | - Mingrui Dong
- Department of Neuromuscular Research (Y.E., M.D., S. Noguchi, M.O., Y.K.H., I. Nonaka, I. Nishino), National Institute of Neuroscience; and Department of Genome Medicine Development (Y.E., S. Noguchi, I. Nishino), Medical Genome Center, NCNP, Tokyo, Japan; Department of Neurology (M.D.), China-Japan Friendship Hospital, Beijing, China; Department of Pathophysiology (Y.K.H.), Tokyo Medical University; National Hospital Organization Suzuka National Hospital (S.K.), Mie, Japan; Department of Pediatrics (K.S.), Local Independent Administrative Institution, Mie Prefectural General Medical Center; Department of Child Neurology (S. Nagai), Shikoku Medical Center for Children and Adults, Kagawa, Japan; and Department of Pediatrics (S.O.), Kumamoto University, Kumamoto, Japan
| | - Satoru Noguchi
- Department of Neuromuscular Research (Y.E., M.D., S. Noguchi, M.O., Y.K.H., I. Nonaka, I. Nishino), National Institute of Neuroscience; and Department of Genome Medicine Development (Y.E., S. Noguchi, I. Nishino), Medical Genome Center, NCNP, Tokyo, Japan; Department of Neurology (M.D.), China-Japan Friendship Hospital, Beijing, China; Department of Pathophysiology (Y.K.H.), Tokyo Medical University; National Hospital Organization Suzuka National Hospital (S.K.), Mie, Japan; Department of Pediatrics (K.S.), Local Independent Administrative Institution, Mie Prefectural General Medical Center; Department of Child Neurology (S. Nagai), Shikoku Medical Center for Children and Adults, Kagawa, Japan; and Department of Pediatrics (S.O.), Kumamoto University, Kumamoto, Japan
| | - Megumu Ogawa
- Department of Neuromuscular Research (Y.E., M.D., S. Noguchi, M.O., Y.K.H., I. Nonaka, I. Nishino), National Institute of Neuroscience; and Department of Genome Medicine Development (Y.E., S. Noguchi, I. Nishino), Medical Genome Center, NCNP, Tokyo, Japan; Department of Neurology (M.D.), China-Japan Friendship Hospital, Beijing, China; Department of Pathophysiology (Y.K.H.), Tokyo Medical University; National Hospital Organization Suzuka National Hospital (S.K.), Mie, Japan; Department of Pediatrics (K.S.), Local Independent Administrative Institution, Mie Prefectural General Medical Center; Department of Child Neurology (S. Nagai), Shikoku Medical Center for Children and Adults, Kagawa, Japan; and Department of Pediatrics (S.O.), Kumamoto University, Kumamoto, Japan
| | - Yukiko K Hayashi
- Department of Neuromuscular Research (Y.E., M.D., S. Noguchi, M.O., Y.K.H., I. Nonaka, I. Nishino), National Institute of Neuroscience; and Department of Genome Medicine Development (Y.E., S. Noguchi, I. Nishino), Medical Genome Center, NCNP, Tokyo, Japan; Department of Neurology (M.D.), China-Japan Friendship Hospital, Beijing, China; Department of Pathophysiology (Y.K.H.), Tokyo Medical University; National Hospital Organization Suzuka National Hospital (S.K.), Mie, Japan; Department of Pediatrics (K.S.), Local Independent Administrative Institution, Mie Prefectural General Medical Center; Department of Child Neurology (S. Nagai), Shikoku Medical Center for Children and Adults, Kagawa, Japan; and Department of Pediatrics (S.O.), Kumamoto University, Kumamoto, Japan
| | - Satoshi Kuru
- Department of Neuromuscular Research (Y.E., M.D., S. Noguchi, M.O., Y.K.H., I. Nonaka, I. Nishino), National Institute of Neuroscience; and Department of Genome Medicine Development (Y.E., S. Noguchi, I. Nishino), Medical Genome Center, NCNP, Tokyo, Japan; Department of Neurology (M.D.), China-Japan Friendship Hospital, Beijing, China; Department of Pathophysiology (Y.K.H.), Tokyo Medical University; National Hospital Organization Suzuka National Hospital (S.K.), Mie, Japan; Department of Pediatrics (K.S.), Local Independent Administrative Institution, Mie Prefectural General Medical Center; Department of Child Neurology (S. Nagai), Shikoku Medical Center for Children and Adults, Kagawa, Japan; and Department of Pediatrics (S.O.), Kumamoto University, Kumamoto, Japan
| | - Kenji Sugiyama
- Department of Neuromuscular Research (Y.E., M.D., S. Noguchi, M.O., Y.K.H., I. Nonaka, I. Nishino), National Institute of Neuroscience; and Department of Genome Medicine Development (Y.E., S. Noguchi, I. Nishino), Medical Genome Center, NCNP, Tokyo, Japan; Department of Neurology (M.D.), China-Japan Friendship Hospital, Beijing, China; Department of Pathophysiology (Y.K.H.), Tokyo Medical University; National Hospital Organization Suzuka National Hospital (S.K.), Mie, Japan; Department of Pediatrics (K.S.), Local Independent Administrative Institution, Mie Prefectural General Medical Center; Department of Child Neurology (S. Nagai), Shikoku Medical Center for Children and Adults, Kagawa, Japan; and Department of Pediatrics (S.O.), Kumamoto University, Kumamoto, Japan
| | - Shigehiro Nagai
- Department of Neuromuscular Research (Y.E., M.D., S. Noguchi, M.O., Y.K.H., I. Nonaka, I. Nishino), National Institute of Neuroscience; and Department of Genome Medicine Development (Y.E., S. Noguchi, I. Nishino), Medical Genome Center, NCNP, Tokyo, Japan; Department of Neurology (M.D.), China-Japan Friendship Hospital, Beijing, China; Department of Pathophysiology (Y.K.H.), Tokyo Medical University; National Hospital Organization Suzuka National Hospital (S.K.), Mie, Japan; Department of Pediatrics (K.S.), Local Independent Administrative Institution, Mie Prefectural General Medical Center; Department of Child Neurology (S. Nagai), Shikoku Medical Center for Children and Adults, Kagawa, Japan; and Department of Pediatrics (S.O.), Kumamoto University, Kumamoto, Japan
| | - Shiro Ozasa
- Department of Neuromuscular Research (Y.E., M.D., S. Noguchi, M.O., Y.K.H., I. Nonaka, I. Nishino), National Institute of Neuroscience; and Department of Genome Medicine Development (Y.E., S. Noguchi, I. Nishino), Medical Genome Center, NCNP, Tokyo, Japan; Department of Neurology (M.D.), China-Japan Friendship Hospital, Beijing, China; Department of Pathophysiology (Y.K.H.), Tokyo Medical University; National Hospital Organization Suzuka National Hospital (S.K.), Mie, Japan; Department of Pediatrics (K.S.), Local Independent Administrative Institution, Mie Prefectural General Medical Center; Department of Child Neurology (S. Nagai), Shikoku Medical Center for Children and Adults, Kagawa, Japan; and Department of Pediatrics (S.O.), Kumamoto University, Kumamoto, Japan
| | - Ikuya Nonaka
- Department of Neuromuscular Research (Y.E., M.D., S. Noguchi, M.O., Y.K.H., I. Nonaka, I. Nishino), National Institute of Neuroscience; and Department of Genome Medicine Development (Y.E., S. Noguchi, I. Nishino), Medical Genome Center, NCNP, Tokyo, Japan; Department of Neurology (M.D.), China-Japan Friendship Hospital, Beijing, China; Department of Pathophysiology (Y.K.H.), Tokyo Medical University; National Hospital Organization Suzuka National Hospital (S.K.), Mie, Japan; Department of Pediatrics (K.S.), Local Independent Administrative Institution, Mie Prefectural General Medical Center; Department of Child Neurology (S. Nagai), Shikoku Medical Center for Children and Adults, Kagawa, Japan; and Department of Pediatrics (S.O.), Kumamoto University, Kumamoto, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research (Y.E., M.D., S. Noguchi, M.O., Y.K.H., I. Nonaka, I. Nishino), National Institute of Neuroscience; and Department of Genome Medicine Development (Y.E., S. Noguchi, I. Nishino), Medical Genome Center, NCNP, Tokyo, Japan; Department of Neurology (M.D.), China-Japan Friendship Hospital, Beijing, China; Department of Pathophysiology (Y.K.H.), Tokyo Medical University; National Hospital Organization Suzuka National Hospital (S.K.), Mie, Japan; Department of Pediatrics (K.S.), Local Independent Administrative Institution, Mie Prefectural General Medical Center; Department of Child Neurology (S. Nagai), Shikoku Medical Center for Children and Adults, Kagawa, Japan; and Department of Pediatrics (S.O.), Kumamoto University, Kumamoto, Japan
| |
Collapse
|
31
|
Magri F, Colombo I, Del Bo R, Previtali S, Brusa R, Ciscato P, Scarlato M, Ronchi D, D'Angelo MG, Corti S, Moggio M, Bresolin N, Comi GP. ISPD mutations account for a small proportion of Italian Limb Girdle Muscular Dystrophy cases. BMC Neurol 2015; 15:172. [PMID: 26404900 PMCID: PMC4582941 DOI: 10.1186/s12883-015-0428-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 09/14/2015] [Indexed: 12/16/2022] Open
Abstract
Background Limb Girdle Muscular Dystrophy (LGMD), caused by defective α-dystroglycan (α-DG) glycosylation, was recently associated with mutations in Isoprenoid synthase domain-containing (ISPD) and GDP-mannose pyrophosphorylase B (GMPPB) genes. The frequency of ISPD and GMPPB gene mutations in the LGMD population is unknown. Methods We investigated the contributions of ISPD and GMPPB genes in a cohort of 174 Italian patients with LGMD, including 140 independent probands. Forty-one patients (39 probands) from this cohort had not been genetically diagnosed. The contributions of ISPD and GMPPB were estimated by sequential α-DG immunohistochemistry (IHC) and mutation screening in patients with documented α-DG defect, or by direct DNA sequencing of both genes when muscle tissue was unavailable. Results We performed α-DG IHC in 27/39 undiagnosed probands: 24 subjects had normal α-DG expression, two had a partial deficiency, and one exhibited a complete absence of signal. Direct sequencing of ISPD and GMPPB revealed two heterozygous ISPD mutations in the individual who lacked α-DG IHC signal: c.836-5 T > G (which led to the deletion of exon 6 and the production of an out-of-frame transcript) and c.676 T > C (p.Tyr226His). This patient presented with sural hypertrophy and tip-toed walking at 5 years, developed moderate proximal weakness, and was fully ambulant at 42 years. The remaining 12/39 probands did not exhibit pathogenic sequence variation in either gene. Conclusion ISPD mutations are a rare cause of LGMD in the Italian population, accounting for less than 1 % of the entire cohort studied (FKRP mutations represent 10 %), while GMPPB mutations are notably absent in this patient sample. These data suggest that the genetic heterogeneity of LGMD with and without α-DG defects is greater than previously realized. Electronic supplementary material The online version of this article (doi:10.1186/s12883-015-0428-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francesca Magri
- Dino Ferrari Centre, Department of Neurological Sciences, University of Milan, I.R.C.C.S. Foundation Cà Granda, Ospedale Maggiore Policlinico, via F. Sforza 35, 20122, Milan, Italy.
| | - Irene Colombo
- Neuromuscular and Rare Disease Unit, Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, via F. Sforza 35, 20132, Milan, Italy.
| | - Roberto Del Bo
- Dino Ferrari Centre, Department of Neurological Sciences, University of Milan, I.R.C.C.S. Foundation Cà Granda, Ospedale Maggiore Policlinico, via F. Sforza 35, 20122, Milan, Italy.
| | - Stefano Previtali
- Inspe, Division of Neuroscience, San Raffaele, Via Olgettina 60, Milan, Italy.
| | - Roberta Brusa
- Dino Ferrari Centre, Department of Neurological Sciences, University of Milan, I.R.C.C.S. Foundation Cà Granda, Ospedale Maggiore Policlinico, via F. Sforza 35, 20122, Milan, Italy.
| | - Patrizia Ciscato
- Neuromuscular and Rare Disease Unit, Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, via F. Sforza 35, 20132, Milan, Italy.
| | - Marina Scarlato
- Inspe, Division of Neuroscience, San Raffaele, Via Olgettina 60, Milan, Italy.
| | - Dario Ronchi
- Dino Ferrari Centre, Department of Neurological Sciences, University of Milan, I.R.C.C.S. Foundation Cà Granda, Ospedale Maggiore Policlinico, via F. Sforza 35, 20122, Milan, Italy.
| | | | - Stefania Corti
- Dino Ferrari Centre, Department of Neurological Sciences, University of Milan, I.R.C.C.S. Foundation Cà Granda, Ospedale Maggiore Policlinico, via F. Sforza 35, 20122, Milan, Italy.
| | - Maurizio Moggio
- Neuromuscular and Rare Disease Unit, Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, via F. Sforza 35, 20132, Milan, Italy.
| | - Nereo Bresolin
- Dino Ferrari Centre, Department of Neurological Sciences, University of Milan, I.R.C.C.S. Foundation Cà Granda, Ospedale Maggiore Policlinico, via F. Sforza 35, 20122, Milan, Italy.
| | - Giacomo Pietro Comi
- Dino Ferrari Centre, Department of Neurological Sciences, University of Milan, I.R.C.C.S. Foundation Cà Granda, Ospedale Maggiore Policlinico, via F. Sforza 35, 20122, Milan, Italy.
| |
Collapse
|
32
|
Restoration of Functional Glycosylation of α-Dystroglycan in FKRP Mutant Mice Is Associated with Muscle Regeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2025-37. [DOI: 10.1016/j.ajpath.2015.03.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 03/19/2015] [Accepted: 03/23/2015] [Indexed: 11/19/2022]
|
33
|
Yoshida-Moriguchi T, Campbell KP. Matriglycan: a novel polysaccharide that links dystroglycan to the basement membrane. Glycobiology 2015; 25:702-13. [PMID: 25882296 PMCID: PMC4453867 DOI: 10.1093/glycob/cwv021] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 04/08/2015] [Indexed: 01/01/2023] Open
Abstract
Associations between cells and the basement membrane are critical for a variety of biological events including cell proliferation, cell migration, cell differentiation and the maintenance of tissue integrity. Dystroglycan is a highly glycosylated basement membrane receptor, and is involved in physiological processes that maintain integrity of the skeletal muscle, as well as development and function of the central nervous system. Aberrant O-glycosylation of the α subunit of this protein, and a concomitant loss of dystroglycan's ability to function as a receptor for extracellular matrix (ECM) ligands that bear laminin globular (LG) domains, occurs in several congenital/limb-girdle muscular dystrophies (also referred to as dystroglycanopathies). Recent genetic studies revealed that mutations in DAG1 (which encodes dystroglycan) and at least 17 other genes disrupt the ECM receptor function of dystroglycan and cause disease. Here, we summarize recent advances in our understanding of the enzymatic functions of two of these disease genes: the like-glycosyltransferase (LARGE) and protein O-mannose kinase (POMK, previously referred to as SGK196). In addition, we discuss the structure of the glycan that directly binds the ECM ligands and the mechanisms by which this functional motif is linked to dystroglycan. In light of the fact that dystroglycan functions as a matrix receptor and the polysaccharide synthesized by LARGE is the binding motif for matrix proteins, we propose to name this novel polysaccharide structure matriglycan.
Collapse
Affiliation(s)
- Takako Yoshida-Moriguchi
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, 4283 Carver Biomedical Research Building, 285 Newton Road, Iowa City, IA 52242-1101, USA
| | - Kevin P Campbell
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, 4283 Carver Biomedical Research Building, 285 Newton Road, Iowa City, IA 52242-1101, USA
| |
Collapse
|
34
|
Humphrey EL, Lacey E, Le LT, Feng L, Sciandra F, Morris CR, Hewitt JE, Holt I, Brancaccio A, Barresi R, Sewry CA, Brown SC, Morris GE. A new monoclonal antibody DAG-6F4 against human alpha-dystroglycan reveals reduced core protein in some, but not all, dystroglycanopathy patients. Neuromuscul Disord 2015; 25:32-42. [DOI: 10.1016/j.nmd.2014.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/01/2014] [Accepted: 09/08/2014] [Indexed: 11/28/2022]
|
35
|
Durbeej M. Laminin-α2 Chain-Deficient Congenital Muscular Dystrophy: Pathophysiology and Development of Treatment. CURRENT TOPICS IN MEMBRANES 2015; 76:31-60. [PMID: 26610911 DOI: 10.1016/bs.ctm.2015.05.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Laminin-211 is a major constituent of the skeletal muscle basement membrane. It stabilizes skeletal muscle and influences signal transduction events from the myomatrix to the muscle cell. Mutations in the gene encoding the α2 chain of laminin-211 lead to congenital muscular dystrophy type 1A (MDC1A), a life-threatening disease characterized by severe hypotonia, progressive muscle weakness, and joint contractures. Common complications include severely impaired motor ability, respiratory failure, and feeding difficulties. Several adequate animal models for laminin-α2 chain deficiency exist and analyses of different MDC1A mouse models have led to a significant improvement in our understanding of MDC1A pathogenesis. Importantly, the animal models have been indispensable tools for the preclinical development of new therapeutic approaches for laminin-α2 chain deficiency, highlighting a number of important disease driving mechanisms that can be targeted by pharmacological approaches. In this chapter, I will describe laminin-211 and discuss the cellular and molecular pathophysiology of MDC1A as well as progression toward development of treatment.
Collapse
Affiliation(s)
- Madeleine Durbeej
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
36
|
Limb girdle muscular dystrophy due to LAMA2 mutations: diagnostic difficulties due to associated peripheral neuropathy. Neuromuscul Disord 2014; 24:677-83. [PMID: 24957499 DOI: 10.1016/j.nmd.2014.05.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 04/14/2014] [Accepted: 05/20/2014] [Indexed: 11/23/2022]
Abstract
We report an eleven year old girl with early motor difficulties initially diagnosed with a peripheral neuropathy in another hospital based on abnormal electrophysiological findings. Our clinical assessment did not highlight obvious clinical features supporting a peripheral neuropathy but evidence of mild proximal weakness. Electrophysiological studies performed at our hospital revealed evidence of a sensorimotor demyelinating polyneuropathy with possible axonal involvement. Brain magnetic resonance imaging (MRI) revealed subtle white matter signal abnormalities, interpreted as nonspecific. Given the patient's proximal weakness and a mildly elevated serum creatine kinase, we performed a muscle biopsy. The muscle had mildly dystrophic features and subtly depleted laminin α2 expression. There was diffusely upregulated laminin α5 expression, and depletion of laminin α2 in intramuscular motor nerves, which made us suspect a partial laminin α2 (merosin) deficiency. Muscle MRI showed predominant posterior and medial compartments involvement. The patient was found to have autosomal recessively inherited double heterozygous LAMA2 mutations. This case illustrates the mild end of the partial merosin deficiency phenotypic spectrum, and highlights how careful assessment of laminin α2 expression in intramuscular motor nerves can be a helpful diagnostic clue in partial merosin deficiency.
Collapse
|
37
|
Praissman JL, Wells L. Mammalian O-mannosylation pathway: glycan structures, enzymes, and protein substrates. Biochemistry 2014; 53:3066-78. [PMID: 24786756 PMCID: PMC4033628 DOI: 10.1021/bi500153y] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
mammalian O-mannosylation pathway for protein post-translational
modification is intricately involved in modulating cell–matrix
interactions in the musculature and nervous system. Defects in enzymes
of this biosynthetic pathway are causative for multiple forms of congenital
muscular dystophy. The application of advanced genetic and biochemical
technologies has resulted in remarkable progress in this field over
the past few years, culminating with the publication of three landmark
papers in 2013 alone. In this review, we will highlight recent progress
focusing on the dramatic expansion of the set of genes known to be
involved in O-mannosylation and disease processes, the concurrent
acceleration of the rate of O-mannosylation pathway protein functional
assignments, the tremendous increase in the number of proteins now
known to be modified by O-mannosylation, and the recent progress in
protein O-mannose glycan quantification and site assignment. Also,
we attempt to highlight key outstanding questions raised by this abundance
of new information.
Collapse
Affiliation(s)
- Jeremy L Praissman
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, The University of Georgia , Athens, Georgia 30602, United States
| | | |
Collapse
|
38
|
A fourth case of POMT2-related limb girdle muscle dystrophy with mild reduction of α-dystroglycan glycosylation. Eur J Paediatr Neurol 2014; 18:404-8. [PMID: 24183756 DOI: 10.1016/j.ejpn.2013.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/17/2013] [Accepted: 10/17/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND POMT2 mutations have been identified in Walker-Warburg syndrome or muscle-eye-brain-like, but rarely in limb girdle muscular dystrophy (LGMD). RESULTS Two POMT2 mutations, one null and one missense, were found in a patient with LGMD and mild mental impairment, no brain or ocular involvement, minor histopathological features, and slight reduction of α-dystroglycan (α-DG) glycosylation and α-DG laminin binding. CONCLUSIONS Our case, the fourth LGMD POMT2-mutated reported to date, provides further evidence of correlation between level of α-DG glycosylation and phenotype severity.
Collapse
|
39
|
Freeze HH, Chong JX, Bamshad MJ, Ng BG. Solving glycosylation disorders: fundamental approaches reveal complicated pathways. Am J Hum Genet 2014; 94:161-75. [PMID: 24507773 DOI: 10.1016/j.ajhg.2013.10.024] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Indexed: 11/30/2022] Open
Abstract
Over 100 human genetic disorders result from mutations in glycosylation-related genes. In 2013, a new glycosylation disorder was reported every 17 days. This trend will probably continue given that at least 2% of the human genome encodes glycan-biosynthesis and -recognition proteins. Established biosynthetic pathways provide many candidate genes, but finding unanticipated mutated genes will offer new insights into glycosylation. Simple glycobiomarkers can be used in narrowing the candidates identified by exome and genome sequencing, and those can be validated by glycosylation analysis of serum or cells from affected individuals. Model organisms will expand the understanding of these mutations' impact on glycosylation and pathology. Here, we highlight some recently discovered glycosylation disorders and the barriers, breakthroughs, and surprises they presented. We predict that some glycosylation disorders might occur with greater frequency than current estimates of their prevalence. Moreover, the prevalence of some disorders differs substantially between European and African Americans.
Collapse
Affiliation(s)
- Hudson H Freeze
- Human Genetics Program, Sanford Children's Health Research Center, Sanford Burnham Medical Research Institute, La Jolla, CA 92037, USA.
| | - Jessica X Chong
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Michael J Bamshad
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Bobby G Ng
- Human Genetics Program, Sanford Children's Health Research Center, Sanford Burnham Medical Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
40
|
Raducu M, Cotarelo RP, Simón R, Camacho A, Rubio-Fernández M, Hernández-Laín A, Cruces J. Clinical features and molecular characterization of a patient with muscle-eye-brain disease: a novel mutation in the POMGNT1 gene. J Child Neurol 2014; 29:289-94. [PMID: 24282183 DOI: 10.1177/0883073813509119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Muscle-eye-brain disease is a congenital muscular dystrophy characterized by structural brain and eye defects. Here, we describe a 12-year-old boy with partial agenesis of corpus callosum, ventriculomegaly, flattened brain stem, diffuse pachygyria, blindness, profound cognitive deficiencies, and generalized muscle weakness, yet without a clear dystrophic pattern on muscle biopsy. There was no glycosylation of α-dystroglycan and the genetic screening revealed a novel truncating mutation, c.1545delC (p.Tyr516Thrfs*21), and a previously identified missense mutation, c.1469G>A (p.Cys490Tyr), in the protein O-mannose beta-1,2-N-acetylglucosaminyltransferase 1 (POMGNT1) gene. These findings broaden the clinical spectrum of muscle-eye-brain disease to include pronounced hypotonia with severe brain and eye malformations, yet with mild histopathologic changes in the muscle specimen, despite the absence of glycosylated α-dystroglycan.
Collapse
Affiliation(s)
- Madalina Raducu
- 1Departamento de Bioquímica, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, IdIPAZ, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
41
|
Wu MP, Doyle JR, Barry B, Beauvais A, Rozkalne A, Piao X, Lawlor MW, Kopin AS, Walsh CA, Gussoni E. G-protein coupled receptor 56 promotes myoblast fusion through serum response factor- and nuclear factor of activated T-cell-mediated signalling but is not essential for muscle development in vivo. FEBS J 2013; 280:6097-113. [PMID: 24102982 PMCID: PMC3877849 DOI: 10.1111/febs.12529] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/24/2013] [Accepted: 09/04/2013] [Indexed: 12/28/2022]
Abstract
Mammalian muscle cell differentiation is a complex process of multiple steps for which many of the factors involved have not yet been defined. In a screen to identify the regulators of myogenic cell fusion, we found that the gene for G-protein coupled receptor 56 (GPR56) was transiently up-regulated during the early fusion of human myoblasts. Human mutations in the gene for GPR56 cause the disease bilateral frontoparietal polymicrogyria; however, the consequences of receptor dysfunction on muscle development have not been explored. Using knockout mice, we defined the role of GPR56 in skeletal muscle. GPR56(-/-) myoblasts have decreased fusion and smaller myotube sizes in culture. In addition, a loss of GPR56 expression in muscle cells results in decreases or delays in the expression of myogenic differentiation 1, myogenin and nuclear factor of activated T-cell (NFAT)c2. Our data suggest that these abnormalities result from decreased GPR56-mediated serum response element and NFAT signalling. Despite these changes, no overt differences in phenotype were identified in the muscle of GPR56 knockout mice, which presented only a mild but statistically significant elevation of serum creatine kinase compared to wild-type. In agreement with these findings, clinical data from 13 bilateral frontoparietal polymicrogyria patients revealed mild serum creatine kinase increase in only two patients. In summary, targeted disruption of GPR56 in mice results in myoblast abnormalities. The absence of a severe muscle phenotype in GPR56 knockout mice and human patients suggests that other factors may compensate for the lack of this G-protein coupled receptor during muscle development and that the motor delay observed in these patients is likely not a result of primary muscle abnormalities.
Collapse
Affiliation(s)
- Melissa P. Wu
- Biological and Biomedical Sciences, Harvard Medical School, Boston MA 02115, USA
- Division of Genetics, Boston Children’s Hospital, Boston MA 02115, USA
| | - Jamie R. Doyle
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Brenda Barry
- Division of Genetics, Boston Children’s Hospital, Boston MA 02115, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston MA 02115, USA
| | - Ariane Beauvais
- Division of Genetics, Boston Children’s Hospital, Boston MA 02115, USA
| | - Anete Rozkalne
- Division of Genetics, Boston Children’s Hospital, Boston MA 02115, USA
| | - Xianhua Piao
- Division of Newborn Medicine, Boston Children’s Hospital, Boston MA 02115, USA
| | - Michael W. Lawlor
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Wisconsin and Medical College of Wisconsin, Milwaukee WI 53226, USA
| | - Alan S. Kopin
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Christopher A. Walsh
- Division of Genetics, Boston Children’s Hospital, Boston MA 02115, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston MA 02115, USA
| | - Emanuela Gussoni
- Division of Genetics, Boston Children’s Hospital, Boston MA 02115, USA
| |
Collapse
|
42
|
Novel mutations in the fukutin gene in a boy with asymptomatic hyperCKemia. Neuromuscul Disord 2013; 23:1010-5. [DOI: 10.1016/j.nmd.2013.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 09/03/2013] [Accepted: 09/23/2013] [Indexed: 11/17/2022]
|
43
|
Live D, Wells L, Boons GJ. Dissecting the molecular basis of the role of the O-mannosylation pathway in disease: α-dystroglycan and forms of muscular dystrophy. Chembiochem 2013; 14:2392-402. [PMID: 24318691 DOI: 10.1002/cbic.201300417] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Indexed: 11/10/2022]
Abstract
Dystroglycanopathies form a subgroup of muscular dystrophies that arise from defects in enzymes that are implicated in the recently elucidated O-mannosylation pathway, thereby resulting in underglycosylation of α-dystroglycan. The emerging identification of additional brain proteins modified by O-mannosylation provides a broader context for interpreting the range of neurological consequences associated with dystroglycanopathies. This form of glycosylation is associated with protein mucin-like domains that present numerous serine and threonine residues as possible sites for modification. Furthermore, the O-Man glycans coexist in this region with O-GalNAc glycans (conventionally associated with such protein sequences), thus resulting in a complex glycoconjugate landscape. Sorting out the relationships between the various molecular defects in glycosylation and the modes of disease presentation, as well as the regulatory interplay among the O-Man glycans and the effects on other modes of glycosylation in the same domain, is challenging. Here we provide a perspective on chemical biology approaches employing synthetic and analytical methods to address these questions.
Collapse
Affiliation(s)
- David Live
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 (USA)
| | | | | |
Collapse
|
44
|
Goddeeris MM, Wu B, Venzke D, Yoshida-Moriguchi T, Saito F, Matsumura K, Moore SA, Campbell KP. LARGE glycans on dystroglycan function as a tunable matrix scaffold to prevent dystrophy. Nature 2013; 503:136-40. [PMID: 24132234 DOI: 10.1038/nature12605] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 08/27/2013] [Indexed: 01/11/2023]
Abstract
The dense glycan coat that surrounds every cell is essential for cellular development and physiological function, and it is becoming appreciated that its composition is highly dynamic. Post-translational addition of the polysaccharide repeating unit [-3-xylose-α1,3-glucuronic acid-β1-]n by like-acetylglucosaminyltransferase (LARGE) is required for the glycoprotein dystroglycan to function as a receptor for proteins in the extracellular matrix. Reductions in the amount of [-3-xylose-α1,3-glucuronic acid-β1-]n (hereafter referred to as LARGE-glycan) on dystroglycan result in heterogeneous forms of muscular dystrophy. However, neither patient nor mouse studies has revealed a clear correlation between glycosylation status and phenotype. This disparity can be attributed to our lack of knowledge of the cellular function of the LARGE-glycan repeat. Here we show that coordinated upregulation of Large and dystroglycan in differentiating mouse muscle facilitates rapid extension of LARGE-glycan repeat chains. Using synthesized LARGE-glycan repeats we show a direct correlation between LARGE-glycan extension and its binding capacity for extracellular matrix ligands. Blocking Large upregulation during muscle regeneration results in the synthesis of dystroglycan with minimal LARGE-glycan repeats in association with a less compact basement membrane, immature neuromuscular junctions and dysfunctional muscle predisposed to dystrophy. This was consistent with the finding that patients with increased clinical severity of disease have fewer LARGE-glycan repeats. Our results reveal that the LARGE-glycan of dystroglycan serves as a tunable extracellular matrix protein scaffold, the extension of which is required for normal skeletal muscle function.
Collapse
Affiliation(s)
- Matthew M Goddeeris
- 1] Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA [2] Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Flow cytometry for the analysis of α-dystroglycan glycosylation in fibroblasts from patients with dystroglycanopathies. PLoS One 2013; 8:e68958. [PMID: 23894383 PMCID: PMC3718821 DOI: 10.1371/journal.pone.0068958] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/10/2013] [Indexed: 01/26/2023] Open
Abstract
α-dystroglycan (α-DG) is a peripheral membrane protein that is an integral component of the dystrophin-glycoprotein complex. In an inherited subset of muscular dystrophies known as dystroglycanopathies, α-DG has reduced glycosylation which results in lower affinity binding to several extracellular matrix proteins including laminins. The glycosylation status of α-DG is normally assessed by the binding of the α-DG antibody IIH6 to a specific glycan epitope on α-DG involved in laminin binding. Immunocytochemistry and immunoblotting are two of the most widely used methods to detect the amount of α-DG glycosylation in muscle. While the interpretation of the presence or absence of the epitope on muscle using these techniques is straightforward, the assessment of a mild defect can be challenging. In this study, flow cytometry was used to compare the amount of IIH6-reactive glycans in fibroblasts from dystroglycanopathy patients with defects in genes known to cause α-DG hypoglycosylation to the amount in fibroblasts from healthy and pathological control subjects. A total of twenty one dystroglycanopathy patient fibroblasts were assessed, as well as fibroblasts from three healthy controls and seven pathological controls. Control fibroblasts have clearly detectable amounts of IIH6-reactive glycans, and there is a significant difference in the amount of this glycosylation, as measured by the mean fluorescence intensity of an antibody recognising the epitope and the percentage of cells positive for the epitope, between these controls and dystroglycanopathy patient fibroblasts (p<0.0001 for both). Our results indicate that the amount of α-DG glycosylation in patient fibroblasts is comparable to that in patient skeletal muscle. This method could complement existing immunohistochemical assays in skeletal muscle as it is quantitative and simple to perform, and could be used when a muscle biopsy is not available. This test could also be used to assess the pathogenicity of variants of unknown significance in genes involved in dystroglycanopathies.
Collapse
|
46
|
Abstract
Muscular dystrophies are a heterogeneous group of inherited disorders that share similar clinical features and dystrophic changes on muscle biopsy. An improved understanding of their molecular bases has led to more accurate definitions of the clinical features associated with known subtypes. Knowledge of disease-specific complications, implementation of anticipatory care, and medical advances have changed the standard of care, with an overall improvement in the clinical course, survival, and quality of life of affected people. A better understanding of the mechanisms underlying the molecular pathogenesis of several disorders and the availability of preclinical models are leading to several new experimental approaches, some of which are already in clinical trials. In this Seminar, we provide a comprehensive review that integrates clinical manifestations, molecular pathogenesis, diagnostic strategy, and therapeutic developments.
Collapse
Affiliation(s)
- Eugenio Mercuri
- Department of Paediatric Neurology, Catholic University, Rome, Italy
| | | |
Collapse
|
47
|
Stevens E, Carss K, Cirak S, Foley A, Torelli S, Willer T, Tambunan D, Yau S, Brodd L, Sewry C, Feng L, Haliloglu G, Orhan D, Dobyns W, Enns G, Manning M, Krause A, Salih M, Walsh C, Hurles M, Campbell K, Manzini M, Stemple D, Lin YY, Muntoni F. Mutations in B3GALNT2 cause congenital muscular dystrophy and hypoglycosylation of α-dystroglycan. Am J Hum Genet 2013; 92:354-65. [PMID: 23453667 PMCID: PMC3591840 DOI: 10.1016/j.ajhg.2013.01.016] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/29/2012] [Accepted: 01/22/2013] [Indexed: 02/07/2023] Open
Abstract
Mutations in several known or putative glycosyltransferases cause glycosylation defects in α-dystroglycan (α-DG), an integral component of the dystrophin glycoprotein complex. The hypoglycosylation reduces the ability of α-DG to bind laminin and other extracellular matrix ligands and is responsible for the pathogenesis of an inherited subset of muscular dystrophies known as the dystroglycanopathies. By exome and Sanger sequencing we identified two individuals affected by a dystroglycanopathy with mutations in β-1,3-N-acetylgalactosaminyltransferase 2 (B3GALNT2). B3GALNT2 transfers N-acetyl galactosamine (GalNAc) in a β-1,3 linkage to N-acetyl glucosamine (GlcNAc). A subsequent study of a separate cohort of individuals identified recessive mutations in four additional cases that were all affected by dystroglycanopathy with structural brain involvement. We show that functional dystroglycan glycosylation was reduced in the fibroblasts and muscle (when available) of these individuals via flow cytometry, immunoblotting, and immunocytochemistry. B3GALNT2 localized to the endoplasmic reticulum, and this localization was perturbed by some of the missense mutations identified. Moreover, knockdown of b3galnt2 in zebrafish recapitulated the human congenital muscular dystrophy phenotype with reduced motility, brain abnormalities, and disordered muscle fibers with evidence of damage to both the myosepta and the sarcolemma. Functional dystroglycan glycosylation was also reduced in the b3galnt2 knockdown zebrafish embryos. Together these results demonstrate a role for B3GALNT2 in the glycosylation of α-DG and show that B3GALNT2 mutations can cause dystroglycanopathy with muscle and brain involvement.
Collapse
Affiliation(s)
- Elizabeth Stevens
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Keren J. Carss
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Sebahattin Cirak
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London WC1N 1EH, UK
| | - A. Reghan Foley
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Silvia Torelli
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Tobias Willer
- Howard Hughes Medical Institute and Department of Molecular Physiology and Biophysics, Department of Neurology, Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - Dimira E. Tambunan
- Division of Genetics, Manton Center for Orphan Disease Research and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Shu Yau
- DNA Laboratory, GSTS Pathology, London SE1 9RT, UK
| | - Lina Brodd
- DNA Laboratory, GSTS Pathology, London SE1 9RT, UK
| | - Caroline A. Sewry
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London WC1N 1EH, UK
- Wolfson Centre for Inherited Neuromuscular Diseases, Oswestry SY10 7AG, UK
| | - Lucy Feng
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Goknur Haliloglu
- Faculty of Medicine, Department of Paediatric Neurology, Hacettepe University, Ankara 06100, Turkey
| | - Diclehan Orhan
- Faculty of Medicine, Department of Paediatric Neurology, Hacettepe University, Ankara 06100, Turkey
| | - William B. Dobyns
- Center for Integrative Brain Research, Seattle Children’s Hospital, Seattle, WA 98105, USA
| | - Gregory M. Enns
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Melanie Manning
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Amanda Krause
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, the University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Mustafa A. Salih
- Division of Pediatric Neurology, Department of Pediatrics, King Saud University College of Medicine, Riyadh 11461, Saudi Arabia
| | - Christopher A. Walsh
- Division of Genetics, Manton Center for Orphan Disease Research and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Matthew Hurles
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Kevin P. Campbell
- Howard Hughes Medical Institute and Department of Molecular Physiology and Biophysics, Department of Neurology, Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - M. Chiara Manzini
- Division of Genetics, Manton Center for Orphan Disease Research and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
| | | | - Derek Stemple
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Yung-Yao Lin
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Newark Street, London E1 2AT, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London WC1N 1EH, UK
| |
Collapse
|
48
|
Cirak S, Foley AR, Herrmann R, Willer T, Yau S, Stevens E, Torelli S, Brodd L, Kamynina A, Vondracek P, Roper H, Longman C, Korinthenberg R, Marrosu G, Nürnberg P, Michele DE, Plagnol V, Hurles M, Moore SA, Sewry CA, Campbell KP, Voit T, Muntoni F. ISPD gene mutations are a common cause of congenital and limb-girdle muscular dystrophies. ACTA ACUST UNITED AC 2013; 136:269-81. [PMID: 23288328 PMCID: PMC3562076 DOI: 10.1093/brain/aws312] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Dystroglycanopathies are a clinically and genetically diverse group of recessively inherited conditions ranging from the most severe of the congenital muscular dystrophies, Walker-Warburg syndrome, to mild forms of adult-onset limb-girdle muscular dystrophy. Their hallmark is a reduction in the functional glycosylation of α-dystroglycan, which can be detected in muscle biopsies. An important part of this glycosylation is a unique O-mannosylation, essential for the interaction of α-dystroglycan with extracellular matrix proteins such as laminin-α2. Mutations in eight genes coding for proteins in the glycosylation pathway are responsible for ∼50% of dystroglycanopathy cases. Despite multiple efforts using traditional positional cloning, the causative genes for unsolved dystroglycanopathy cases have escaped discovery for several years. In a recent collaborative study, we discovered that loss-of-function recessive mutations in a novel gene, called isoprenoid synthase domain containing (ISPD), are a relatively common cause of Walker-Warburg syndrome. In this article, we report the involvement of the ISPD gene in milder dystroglycanopathy phenotypes ranging from congenital muscular dystrophy to limb-girdle muscular dystrophy and identified allelic ISPD variants in nine cases belonging to seven families. In two ambulant cases, there was evidence of structural brain involvement, whereas in seven, the clinical manifestation was restricted to a dystrophic skeletal muscle phenotype. Although the function of ISPD in mammals is not yet known, mutations in this gene clearly lead to a reduction in the functional glycosylation of α-dystroglycan, which not only causes the severe Walker-Warburg syndrome but is also a common cause of the milder forms of dystroglycanopathy.
Collapse
Affiliation(s)
- Sebahattin Cirak
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
NAD+ biosynthesis ameliorates a zebrafish model of muscular dystrophy. PLoS Biol 2012; 10:e1001409. [PMID: 23109907 PMCID: PMC3479101 DOI: 10.1371/journal.pbio.1001409] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 09/06/2012] [Indexed: 01/27/2023] Open
Abstract
NAD+ improves muscle tissue structure and function in dystrophic zebrafish by increasing basement membrane organization. Muscular dystrophies are common, currently incurable diseases. A subset of dystrophies result from genetic disruptions in complexes that attach muscle fibers to their surrounding extracellular matrix microenvironment. Cell-matrix adhesions are exquisite sensors of physiological conditions and mediate responses that allow cells to adapt to changing conditions. Thus, one approach towards finding targets for future therapeutic applications is to identify cell adhesion pathways that mediate these dynamic, adaptive responses in vivo. We find that nicotinamide riboside kinase 2b-mediated NAD+ biosynthesis, which functions as a small molecule agonist of muscle fiber-extracellular matrix adhesion, corrects dystrophic phenotypes in zebrafish lacking either a primary component of the dystrophin-glycoprotein complex or integrin alpha7. Exogenous NAD+ or a vitamin precursor to NAD+ reduces muscle fiber degeneration and results in significantly faster escape responses in dystrophic embryos. Overexpression of paxillin, a cell adhesion protein downstream of NAD+ in this novel cell adhesion pathway, reduces muscle degeneration in zebrafish with intact integrin receptors but does not improve motility. Activation of this pathway significantly increases organization of laminin, a major component of the extracellular matrix basement membrane. Our results indicate that the primary protective effects of NAD+ result from changes to the basement membrane, as a wild-type basement membrane is sufficient to increase resilience of dystrophic muscle fibers to damage. The surprising result that NAD+ supplementation ameliorates dystrophy in dystrophin-glycoprotein complex– or integrin alpha7–deficient zebrafish suggests the existence of an additional laminin receptor complex that anchors muscle fibers to the basement membrane. We find that integrin alpha6 participates in this pathway, but either integrin alpha7 or the dystrophin-glycoprotein complex is required in conjunction with integrin alpha6 to reduce muscle degeneration. Taken together, these results define a novel cell adhesion pathway that may have future therapeutic relevance for a broad spectrum of muscular dystrophies. A variety of diseases, both inherited and acquired, affect muscle tissues in humans. Critical to muscle homeostasis is the anchoring of muscle fibers to their surrounding microenvironment through cell adhesion complexes that help to resist the repeated stress experienced during muscle contraction. Genetic mutations in these complexes weaken this mechanical attachment, making fibers more susceptible to damage and death. The resulting increased fiber degeneration can eventually lead to progressive muscle-wasting diseases, known collectively as muscular dystrophies. Although clinical trials are ongoing, there is presently no way to cure the loss of muscle structure and function associated with these diseases. We identified a novel cell adhesion pathway involving integrin alpha6 that promotes adhesion of muscle cells to their microenvironment. Here, we show that activation of this pathway not only significantly reduces muscle degeneration but also improves the swimming ability of dystrophic zebrafish. We explore the likely benefits and limitations of this pathway in treating symptoms of congenital muscular dystrophies. Our findings suggest that activation of this pathway (for example, by boosting levels of NAD+) has the potential to ameliorate loss of muscle structure and function in multiple muscular dystrophies.
Collapse
|