1
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bover‐Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Buchmann K, Careche M, Levsen A, Mattiucci S, Mladineo I, Santos MJ, Barcia‐Cruz R, Broglia A, Chuzhakina K, Goudjihounde SM, Guerra B, Messens W, Guajardo IM, Bolton D. Re-evaluation of certain aspects of the EFSA Scientific Opinion of April 2010 on risk assessment of parasites in fishery products, based on new scientific data. Part 1: ToRs1-3. EFSA J 2024; 22:e8719. [PMID: 38650612 PMCID: PMC11033839 DOI: 10.2903/j.efsa.2024.8719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Surveillance data published since 2010, although limited, showed that there is no evidence of zoonotic parasite infection in market quality Atlantic salmon, marine rainbow trout, gilthead seabream, turbot, meagre, Atlantic halibut, common carp and European catfish. No studies were found for greater amberjack, brown trout, African catfish, European eel and pikeperch. Anisakis pegreffii, A. simplex (s. s.) and Cryptocotyle lingua were found in European seabass, Atlantic bluefin tuna and/or cod, and Pseudamphistomum truncatum and Paracoenogonimus ovatus in tench, produced in open offshore cages or flow-through ponds or tanks. It is almost certain that fish produced in closed recirculating aquaculture systems (RAS) or flow-through facilities with filtered water intake and exclusively fed heat-treated feed are free of zoonotic parasites. Since the last EFSA opinion, the UV-press and artificial digestion methods have been developed into ISO standards to detect parasites in fish, while new UV-scanning, optical, molecular and OMICs technologies and methodologies have been developed for the detection, visualisation, isolation and/or identification of zoonotic parasites in fish. Freezing and heating continue to be the most efficient methods to kill parasites in fishery products. High-pressure processing may be suitable for some specific products. Pulsed electric field is a promising technology although further development is needed. Ultrasound treatments were not effective. Traditional dry salting of anchovies successfully inactivated Anisakis. Studies on other traditional processes - air-drying and double salting (brine salting plus dry salting) - suggest that anisakids are successfully inactivated, but more data covering these and other parasites in more fish species and products is required to determine if these processes are always effective. Marinade combinations with anchovies have not effectively inactivated anisakids. Natural products, essential oils and plant extracts, may kill parasites but safety and organoleptic data are lacking. Advanced processing techniques for intelligent gutting and trimming are being developed to remove parasites from fish.
Collapse
|
2
|
Hwang CC, Chien HI, Lee YC, Kao JC, Huang YR, Huang YL, Huang CY, Tsai YH. Physicochemical Quality Retention during Cold Storage of Prepackaged Barramundi Meat Processed with a New Microwave-Assisted Induction Heating Technology. Foods 2023; 12:3140. [PMID: 37628139 PMCID: PMC10452964 DOI: 10.3390/foods12163140] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 08/27/2023] Open
Abstract
Microwave-assisted induction heating (MAIH) is a composite microwave and induction heating to supply rapid and uniform heating of food. A recent study showed that the optimum MAIH heating condition for barramundi meat was 90 °C/110 s or 70 °C/130 s. This study examines whether the microwave-assisted induction heating (MAIH) technology (at 70 °C for 130 s or 90 °C for 110 s) can more effectively slow down the quality loss of barramundi meat during cold storage than the traditional boiling method (at 90 °C for 150 s). The results show that no microbial growth was observed in the three groups of heated barramundi meat samples during the 60 days of cold storage. However, the MAIH technology slowed down the increase in the total volatile basic nitrogen (TVBN) content more significantly than the boiling method. As the cold storage time increased, though, the L* (lightness), a* (redness), and W (whiteness) values decreased, while the b* (yellowness) and color difference (ΔE) values increased in the three treatment groups. However, the MAIH technology slowed down the decrease in the L*, a*, and W values more significantly, and produced a ΔE value smaller than the boiling method. Moreover, the MAIH technology ensured higher hardness and chewiness of the barramundi meat than the boiling method. Overall, the MAIH technology slowed down the quality loss of the barramundi meat and maintained better color and texture during cold storage.
Collapse
Affiliation(s)
- Chiu-Chu Hwang
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811213, Taiwan; (C.-C.H.); (Y.-C.L.); (J.-C.K.); (Y.-L.H.); (C.-Y.H.)
| | - Hung-I Chien
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811213, Taiwan; (C.-C.H.); (Y.-C.L.); (J.-C.K.); (Y.-L.H.); (C.-Y.H.)
| | - Yi-Chen Lee
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811213, Taiwan; (C.-C.H.); (Y.-C.L.); (J.-C.K.); (Y.-L.H.); (C.-Y.H.)
| | - Jun-Cheng Kao
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811213, Taiwan; (C.-C.H.); (Y.-C.L.); (J.-C.K.); (Y.-L.H.); (C.-Y.H.)
| | - Yu-Ru Huang
- Department of Food Science, National Ilan University, Ilan 260, Taiwan;
| | - Ya-Ling Huang
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811213, Taiwan; (C.-C.H.); (Y.-C.L.); (J.-C.K.); (Y.-L.H.); (C.-Y.H.)
| | - Chun-Yung Huang
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811213, Taiwan; (C.-C.H.); (Y.-C.L.); (J.-C.K.); (Y.-L.H.); (C.-Y.H.)
| | - Yung-Hsiang Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811213, Taiwan; (C.-C.H.); (Y.-C.L.); (J.-C.K.); (Y.-L.H.); (C.-Y.H.)
| |
Collapse
|
3
|
Bermudez-Aguirre D, Niemira BA. Radio Frequency Treatment of Food: A Review on Pasteurization and Disinfestation. Foods 2023; 12:3057. [PMID: 37628056 PMCID: PMC10452993 DOI: 10.3390/foods12163057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Radio frequency (RF) is a novel technology with several food processing and preservation applications. It is based on the volumetric heating generated from the product's dielectric properties. The dielectric properties of each material are unique and a function of several factors (i.e., temperature, moisture content). This review presents a list of dielectric properties of several foods and describes the use of RF as an innovative technology for the food industry. This paper includes several examples of pasteurization, fungi inactivation, and disinfestation in selected food products. The aim of this review is to present the potential applications of RF in pasteurization and disinfestation and research needs that should be addressed. RF has been successfully applied in the inactivation of pathogens such as Salmonella spp., Listeria monocytogenes, and Escherichia coli in low- and high-moisture food. The disinfestation of crops is possible using RF because of selective heating. This process inactivates the insects first because of the different dielectric properties between the pests and the food. The products' final quality can be considerably better than conventional thermal processes. The processing time is reduced compared to traditional heating, and thermal damage to the food is minimized. The main drawback of the technology is the lack of uniform heating, mainly when the product is surrounded by a packaging material with different dielectric properties from the food.
Collapse
Affiliation(s)
- Daniela Bermudez-Aguirre
- Food Safety and Intervention Technologies, ERRC, ARS, USDA, 600 E Mermaid Lane, Wyndmoor, PA 19038, USA;
| | | |
Collapse
|
4
|
Kim WJ, Kang DH. Synergistic effects of 915 MHz microwave heating and essential oils on inactivation of foodborne pathogen in hot-chili sauce. Int J Food Microbiol 2023; 398:110210. [PMID: 37120941 DOI: 10.1016/j.ijfoodmicro.2023.110210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 05/02/2023]
Abstract
Essential oil is a food additive with antimicrobial properties but with limitations due to strong organoleptic properties. However, thermal treatments can be applied to reduce essential oil content while ensuring antimicrobial activities in food matrices. In this study, the inactivation efficiency of essential oils on E. coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes in buffered peptone water (BPW) and hot-chili sauce was evaluated when coupled with 915 MHz microwave heating. Essential oils used in this study did not affect the dielectric properties and further heating rate of BPW and hot-chili sauce. The dielectric constant of BPW was 76.3 and dielectric loss factor was 30.9. In addition, it took 85 s to reach 100 °C for all samples. Among essential oils, synergistic microbial inactivation with microwave heating was observed from carvacrol (CL) and citral (CI), but not from eugenol (EU) and Carvone (CN). Specifically, CL and microwave heating (M) for 45 s showed the most effective inactivation (ca. 6 log reduction) for the pathogens in BPW. Similar trends were shown in hot-chili sauce. However, M + CI inactivation did not show synergistic effects in hot-chili sauce. Microwave heating time for hot-chilis sauce was 40 s. In propidium iodide uptake study, M + CL was found to cause most severe damage to cell membrane (758.5 of PI value for E. coli O157:H7) while M + CU and M + CN had little impact. In DiBAC4(3) test, CL resulted in the largest value (2.09 for E. coli O157:H7). These observations highlight that CL induces synergistic effects as it caused severe membrane damage along with destruction of membrane potential. The combined treatment did not show any significant difference in quality change compared to untreated hot-chili sauce (p > 0.05). The result indicates the potential application of CL and M combination for hot-chili sauce processes to ensure microbiological safety with acceptable quality.
Collapse
Affiliation(s)
- Woo-Ju Kim
- Department of Food science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Dong-Hyun Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, Republic of Korea.
| |
Collapse
|
5
|
Espinoza Rodezno LA, Bonilla F, Reyes V, Janes M, Sathivel S. Inactivation of Vibrio vulnificus and Vibrio parahaemolyticus in cryogenically frozen oyster meat using steam venting technology. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Estimation of Bacteriophage MS2 Inactivation Parameters During Microwave Heating of Frozen Strawberries. J Food Prot 2023; 86:100032. [PMID: 36916576 DOI: 10.1016/j.jfp.2022.100032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022]
Abstract
Frozen berries have been repeatedly linked to acute gastroenteritis caused by norovirus, the most common cause of foodborne illness in the United States. Many guidelines recommend that frozen berries be microwaved for at least 2 min, but it is unclear if this thermal treatment is effective at inactivating norovirus. The objective of this study was to model the effect of microwave heating at varying power levels on the survival of bacteriophage MS2, a norovirus surrogate, when inoculated onto frozen strawberries. Bacteriophage MS2 was inoculated onto the surface of frozen strawberries with a starting concentration of approximately 10 log PFU/g. Samples (either 3 or 5 whole strawberries) were heated in a 1300-Watt domestic research microwave oven (frequency of 2450 MHz) at power levels of 30, 50, 70, and 100% (full power), for times ranging from 15 to 300 s to determine inactivation. Temperatures at berry surfaces were monitored during heating using fiberoptic thermometry. All experiments were conducted in triplicate. The primary model for thermal inactivation was a log-linear model of logN vs. time. The secondary model was for a D-value decreasing linearly with temperature and an added term that was path-dependent on the thermal history. Parameters in the model were estimated using dynamic temperature history at the surface of the berry, via nonlinear regression using all data simultaneously. The root mean square error was ∼0.5 PFU/g out of a total 6-log reduction. Log reductions of 1.1 ± 0.4, 1.5 ± 0.5, 3.1 ± 0.1, and 3.8 ± 0.2 log PFU/g were observed for 30, 50, 70, and 100% microwave power levels when three berries were heated for 60 s. D-values were 21.4 ± 1.95 s and 10.6 ± 1.1 s at 10 and 60°C, respectively. This work demonstrates an approach to estimate inactivation parameters for viruses from dynamic temperature data during microwave heating. These findings will be useful in predicting the safety effect of microwave heating of berries in the home or food service.
Collapse
|
7
|
Novel Approaches to Environmental Monitoring and Control of Listeria monocytogenes in Food Production Facilities. Foods 2022; 11:foods11121760. [PMID: 35741961 PMCID: PMC9222551 DOI: 10.3390/foods11121760] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes is a serious public health hazard responsible for the foodborne illness listeriosis. L. monocytogenes is ubiquitous in nature and can become established in food production facilities, resulting in the contamination of a variety of food products, especially ready-to-eat foods. Effective and risk-based environmental monitoring programs and control strategies are essential to eliminate L. monocytogenes in food production environments. Key elements of the environmental monitoring program include (i) identifying the sources and prevalence of L. monocytogenes in the production environment, (ii) verifying the effectiveness of control measures to eliminate L. monocytogenes, and (iii) identifying the areas and activities to improve control. The design and implementation of the environmental monitoring program are complex, and several different approaches have emerged for sampling and detecting Listeria monocytogenes in food facilities. Traditional detection methods involve culture methods, followed by confirmation methods based on phenotypic, biochemical, and immunological characterization. These methods are laborious and time-consuming as they require at least 2 to 3 days to obtain results. Consequently, several novel detection approaches are gaining importance due to their rapidness, sensitivity, specificity, and high throughput. This paper comprehensively reviews environmental monitoring programs and novel approaches for detection based on molecular methods, immunological methods, biosensors, spectroscopic methods, microfluidic systems, and phage-based methods. Consumers have now become more interested in buying food products that are minimally processed, free of additives, shelf-stable, and have a better nutritional and sensory value. As a result, several novel control strategies have received much attention for their less adverse impact on the organoleptic properties of food and improved consumer acceptability. This paper reviews recent developments in control strategies by categorizing them into thermal, non-thermal, biocontrol, natural, and chemical methods, emphasizing the hurdle concept that involves a combination of different strategies to show synergistic impact to control L. monocytogenes in food production environments.
Collapse
|
8
|
Popelářová E, Vlková E, Švejstil R, Kouřimská L. The Effect of Microwave Irradiation on the Representation and Growth of Moulds in Nuts and Almonds. Foods 2022; 11:foods11020221. [PMID: 35053953 PMCID: PMC8775124 DOI: 10.3390/foods11020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 12/10/2022] Open
Abstract
Microwave (MW) irradiation is a non-destructive method that can be applied as an alternative method to inhibit the growth of microorganisms. The present study evaluated the effect of MW irradiation on the occurrence of moulds in nuts and almonds. Samples of unshelled natural almonds, pistachios, and in-shell peanuts were treated with different doses of MW irradiation (2400–4000 W). The effect of MW irradiation on mould counts was evaluated by cultivating immediately after irradiation and after 3 and 6 months of storage. The most represented genera in all analysed samples were Aspergillus (68%), Penicillium (21%), and a small amount of Cladosporium (3%). Mould numbers significantly decreased after MW treatment. The treatments with MW irradiations at 3000 and 4000 W significantly reduced the mould colony counts, and their effect persisted during storage; irradiation at 2400 W was partially effective. The strongest effect of MW irradiation was observed in in-shell peanuts. MW irradiation seems to be a promising method for maintaining the microbiological quality of nuts.
Collapse
|
9
|
Abd El-Hay MM. Processing and preparation of fish. POSTHARVEST AND POSTMORTEM PROCESSING OF RAW FOOD MATERIALS 2022:315-342. [DOI: 10.1016/b978-0-12-818572-8.00008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
10
|
Artés-Hernández F, Castillejo N, Martínez-Zamora L, Martínez-Hernández GB. Phytochemical Fortification in Fruit and Vegetable Beverages with Green Technologies. Foods 2021; 10:2534. [PMID: 34828814 PMCID: PMC8624109 DOI: 10.3390/foods10112534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Phytochemical, bioactive and nutraceutical compounds are terms usually found in the scientific literature related to natural compounds found in plants linked to health-promoting properties. Fruit and vegetable beverages (mainly juice and smoothies) are a convenient strategy to enhance the consumption of horticultural commodities, with the possibility of being fortified with plant byproducts to enhance the content of bioactive compounds. OBJECTIVE This review aims to analyse the different green technologies applied in beverage processing with a fortification effect on their health promoting compounds. RESULTS Fortification can be performed by several strategies, including physical elicitors (e.g., processing technologies), plant/algae extract supplementation, and fermentation with probiotics, among others. Thermal processing technologies are conventionally used to ensure the preservation of food safety with a long shelf life, but this frequently reduces nutritional and sensory quality. However, green non-thermal technologies (e.g., UV, high-pressure processing, pulsed electric fields, ultrasounds, cold plasma, etc.) are being widely investigated in order to reduce costs and make possible more sustainable production processes without affecting the nutritional and sensory quality of beverages. CONCLUSIONS Such green processing technologies may enhance the content of phytochemical compounds through improvement of their extraction/bioaccessibility and/or different biosynthetic reactions that occurred during processing.
Collapse
Affiliation(s)
- Francisco Artés-Hernández
- Department of Agronomical Engineering & Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain; (N.C.); (L.M.-Z.); (G.B.M.-H.)
| | | | | | | |
Collapse
|
11
|
Cui H, Liu D, Xia X, Yu J, Hayat K, Zhang X, Ho CT. Flavor and texture characteristics of microwave-cooked Kung Pao Chicken by different heat conduction effects and further aroma improvement with moderate enzymatic hydrolyzed chicken fat. Food Funct 2021; 12:1547-1557. [PMID: 33449984 DOI: 10.1039/d0fo02726j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ceramic dish cooking method (CDCM) and microwave absorption dish cooking method (MADCM) were used to obtain one-step microwave-cooked Kung Pao Chicken. Processing the optimization of recipes, steaming time and microwave time was conducted for microwave cooking methods. CDCM showed higher taste scores, better umami and sweet attributes, and better color and aroma than MADCM. The NMR and FITC fluorescence analysis results indicated that free water in chicken cooked by CDCM was lost more and tends to shift to immobilized water during the microwave heating as compared with MADCM. However, the aroma intensity by CDCM was weaker than the traditional cooking method (TCM). Electronic nose analysis also showed difference in the flavor profile from CDCM and TCM. According to the GC-MS analysis, aldehydes, the oxidation products of fats, were higher from TCM than from other cooking methods. Therefore, enzymatic hydrolyzed chicken fat at 5 g per 150 g chicken with a degree of enzymatic hydrolysis of 17.00% was used in CDCM to produce ideal fatty and meaty flavor. Both fatty and meaty flavor have increased by 52% and 60% respectively, with less off-flavor, thus, obtaining a similarity of 92% compared to TCM and with appropriate contents of volatiles such as hexanal, heptanal, (E)-2-octenal, (E)-2-decenal, (E)-2-nonenal and 2,4-decadienal.
Collapse
Affiliation(s)
- Heping Cui
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Dinghao Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Xue Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Jingyang Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Khizar Hayat
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, P. O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA.
| |
Collapse
|
12
|
Çağlar D, Rayman Ergün A, Baysal T. Effects of microwave pasteurization on the thermal resistance of
Zygosaccharomyces rouxii
and on the physicochemical properties of organic intermediate moisture raisin. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dilber Çağlar
- Food Engineering Department, Engineering Faculty Ege University Izmir Turkey
| | - Ahsen Rayman Ergün
- Food Engineering Department, Engineering Faculty Ege University Izmir Turkey
| | - Taner Baysal
- Food Engineering Department, Engineering Faculty Ege University Izmir Turkey
| |
Collapse
|
13
|
Combination effect of 915 MHz microwave heating and carvacrol for inactivation of Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes in hot chili sauce. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
AGIRDEMIR O, YURDAKUL O, KEYVAN E, SEN E. Effects of various chemical decontaminants on Salmonella Typhimurium survival in chicken carcasses. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.02920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | | | | | - Erdi SEN
- Burdur Mehmet Akif Ersoy University, Turkey
| |
Collapse
|
15
|
Peng K, Koubaa M, Bals O, Vorobiev E. Recent insights in the impact of emerging technologies on lactic acid bacteria: A review. Food Res Int 2020; 137:109544. [DOI: 10.1016/j.foodres.2020.109544] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022]
|
16
|
Zhang Y, Deng Z, Li H, Zheng L, Liu R, Zhang B. Degradation Kinetics of Anthocyanins from Purple Eggplant in a Fortified Food Model System during Microwave and Frying Treatments. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11817-11828. [PMID: 32975408 DOI: 10.1021/acs.jafc.0c05224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A model food system was designed with dietary fiber and crude anthocyanins from purple eggplant peel to explore the degradation mechanism of anthocyanins during microwave and frying treatments. Our results found that delphinidin-3-O-rutinoside was either hydrolyzed into delphinidin or condensed with p-coumaric acid to form p-coumaroyl-delphinidin-3-O-glucoside. Delphinidin was cleaved into gallic acid and phloroglucinaldehyde, which might be further oxidized into pyrogallol and phloroglucinol, respectively. The total anthocyanin degradation followed the first-order kinetics in fried and microwaved solid matrix samples as well as microwaved liquid matrix samples. However, the total anthocyanin degradation followed the second-order kinetics in the heated liquid matrix samples at the frying temperature. The brown/polymeric color index, which negatively correlated with the anthocyanin content, increased faster in the liquid matrix samples than in the solid matrix samples. Compared with frying treatment, a higher rate of anthocyanin degradation in solution was observed under microwave treatment. However, anthocyanins were subject to much more damage under frying treatment than microwave treatment in a solid food system.
Collapse
Affiliation(s)
- Yanfei Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Liufeng Zheng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Rong Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Bing Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| |
Collapse
|
17
|
Michalak J, Czarnowska-Kujawska M, Klepacka J, Gujska E. Effect of Microwave Heating on the Acrylamide Formation in Foods. Molecules 2020; 25:molecules25184140. [PMID: 32927728 PMCID: PMC7570677 DOI: 10.3390/molecules25184140] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/28/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022] Open
Abstract
Acrylamide (AA) is a neurotoxic and carcinogenic substance that has recently been discovered in food. One of the factors affecting its formation is the heat treatment method. This review discusses the microwave heating as one of the methods of thermal food processing and the influence of microwave radiation on the acrylamide formation in food. In addition, conventional and microwave heating were compared, especially the way they affect the AA formation in food. Available studies demonstrate differences in the mechanisms of microwave and conventional heating. These differences may be beneficial or detrimental depending on different processes. The published studies showed that microwave heating at a high power level can cause greater AA formation in products than conventional food heat treatment. The higher content of acrylamide in microwave-heated foods may be due to differences in its formation during microwave heating and conventional methods. At the same time, short exposure to microwaves (during blanching and thawing) at low power may even limit the formation of acrylamide during the final heat treatment. Considering the possible harmful effects of microwave heating on food quality (e.g., intensive formation of acrylamide), further research in this direction should be carried out.
Collapse
|
18
|
Torrealba-Melendez R, Tamariz-Flores EI, Sosa-Morales ME, Colín-Beltran E, Miranda-Díaz JE, Hernández-Ruíz L. Dielectric properties of litchi fruit ( Litchi chinensis Sonn) at microwave frequencies. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:2758-2763. [PMID: 32549626 PMCID: PMC7270439 DOI: 10.1007/s13197-020-04490-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/22/2019] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
The dielectric properties of litchi fruit were determined using the open-ended coaxial probe method. The measurements were performed in the frequency range from 0.5 to 20 GHz during 3 days of storage at room temperature (~ 24 °C). The dielectric properties increased with storage time. Additionally, measurements at different temperatures (24, 30, 40 and 50 °C) were determined. The dielectric constant (ε') decreased with increasing temperature in a frequency range of 0.5-5 GHz; at higher frequencies, ε' increased with increasing temperature. The loss factor (ε″) value increased at frequencies higher than 2 GHz and decreased with increasing temperature. The results will be useful for further applications using microwaves, such as microwave-assisted drying, sensing of quality parameters, modeling, and heating to protect against molds or insects, among other applications.
Collapse
Affiliation(s)
| | | | | | - Edgar Colín-Beltran
- Instituto Nacional de Astrofísica, Óptica Y Electrónica, CONACYT, Tonantzintla, Puebla Mexico
| | | | - Luis Hernández-Ruíz
- Facultad de Ciencias de La Electrónica, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
19
|
Gitter JH, Geidobler R, Presser I, Winter G. Microwave-Assisted Freeze-Drying of Monoclonal Antibodies: Product Quality Aspects and Storage Stability. Pharmaceutics 2019; 11:E674. [PMID: 31842296 PMCID: PMC6956074 DOI: 10.3390/pharmaceutics11120674] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 11/29/2022] Open
Abstract
In order to overcome the downside of long conventional freeze-drying (CFD) process times for monoclonal antibody formulations, microwave-assisted freeze-drying (MFD) was introduced. Recently, the general applicability and potential shortening of drying times were shown. However, little is known about the storage stability of MFD products compared to CFD references. Additionally, batch homogeneity issues were seen within MFD in the past. In this study, we examined four different formulations of two different monoclonal antibodies using three different glass-forming excipients: sucrose, trehalose, and arginine phosphate. These formulations were freeze-dried with two different drying protocols (CFD and MFD), stored for 24 weeks, and analyzed for solid-state and protein-related quality attributes. Moreover, a new microwave generator setup was investigated for its potential to improve batch homogeneity. In all investigated formulations, comparable stability profiles were found, although the classical magnetron generator led to inferior batch homogeneity with respect to residual moisture distribution. In contrast, the new MFD setup indicated the potential to approximate batch homogeneity to the level of CFD. However, for future applications, there is an unabated need for new machine designs to comply with pharmaceutical manufacturing requirements.
Collapse
Affiliation(s)
- Julian Hendryk Gitter
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Raimund Geidobler
- Boehringer Ingelheim Pharma GmbH & Co. KG, Pharmaceutical Development Biologicals, 88397 Biberach an der Riß, Germany
| | - Ingo Presser
- Boehringer Ingelheim Pharma GmbH & Co. KG, Pharmaceutical Development Biologicals, 88397 Biberach an der Riß, Germany
| | - Gerhard Winter
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| |
Collapse
|
20
|
Zhang R, Wang Y, Wang X, Luan D. Study of heating characteristics for a continuous 915 MHz pilot scale microwave thawing system. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.04.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Altemimi A, Aziz SN, Al-HiIphy ARS, Lakhssassi N, Watson DG, Ibrahim SA. Critical review of radio-frequency (RF) heating applications in food processing. FOOD QUALITY AND SAFETY 2019. [DOI: 10.1093/fqsafe/fyz002] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Ammar Altemimi
- Department of Food Science, College of Agriculture, University of Basrah, Iraq
| | - Salah Naji Aziz
- Department of Food Science, College of Agriculture, University of Basrah, Iraq
| | - Asaad R S Al-HiIphy
- Department of Food Science, College of Agriculture, University of Basrah, Iraq
| | - Naoufal Lakhssassi
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University at Carbondale, Carbondale, USA
| | - Dennis G Watson
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University at Carbondale, Carbondale, USA
| | | |
Collapse
|
22
|
Haskaraca G, Kolsarici N. An assessment of the microbial quality of “döner kebab” during cold storage: Effects of different packaging methods and microwave heating before consumption. J Food Saf 2019. [DOI: 10.1111/jfs.12592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Güliz Haskaraca
- Department of Food EngineeringFaculty of Engineering, Sakarya University Sakarya Turkey
| | - Nuray Kolsarici
- Department of Food EngineeringFaculty of Engineering, Ankara University Ankara Turkey
| |
Collapse
|
23
|
Martins CPC, Cavalcanti RN, Couto SM, Moraes J, Esmerino EA, Silva MC, Raices RSL, Gut JAW, Ramaswamy HS, Tadini CC, Cruz AG. Microwave Processing: Current Background and Effects on the Physicochemical and Microbiological Aspects of Dairy Products. Compr Rev Food Sci Food Saf 2019; 18:67-83. [DOI: 10.1111/1541-4337.12409] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 01/23/2023]
Affiliation(s)
- Carolina P. C. Martins
- Dept. of Food Technology; Federal Rural Univ. of Rio de Janeiro (UFRRJ); Rodovia BR 465, km 7 23890-000 Seropédica RJ Brazil
| | - Rodrigo N. Cavalcanti
- Dept. of Chemical Engineering; Univ. of São Paulo; Main Campus, Av. Prof. Luciano Gualberto, Trav.3, n° 380 Lab. de Eng. de Alimentos, Cidade Univ. 05508-010 São Paulo SP Brazil
- FoRC/NAPAN - Food Research Center; Univ. of São Paulo; Main campus, Av. Prof. Lineu Prestes, 580, Bloco 14 Cidade Univ. 05508-000 São Paulo SP Brazil
- Dept. of Food Science and Agricultural Chemistry; McGill Univ.; Macdonald campus, 21,111 Lakeshore H9X 3V9 Sainte Anne de Bellevue Quebec Canada
| | - Silvia M. Couto
- Nutrition Inst. Josué de Castro; Federal Univ. of Rio de Janeiro (UFRJ); Av. Carlos Chagas Filho, 373, CCS, Bloco J/2° andar, Cidade Univ., Ilha do Fundão 21941-902 Rio de Janeiro RJ Brazil
| | - Jeremias Moraes
- Federal Institute of Education, Science and Technology of Rio de Janeiro (IFRJ); Rio de Janeiro campus, Food Dept.; Rua Senador Furtado, 121/125 Maracanã 20270-021 Rio de Janeiro Brazil
| | - Erick A. Esmerino
- Dept. of Food Technology; Federal Rural Univ. of Rio de Janeiro (UFRRJ); Rodovia BR 465, km 7 23890-000 Seropédica RJ Brazil
| | - Marcia Cristina Silva
- Federal Institute of Education, Science and Technology of Rio de Janeiro (IFRJ); Rio de Janeiro campus, Food Dept.; Rua Senador Furtado, 121/125 Maracanã 20270-021 Rio de Janeiro Brazil
| | - Renata S. L. Raices
- Federal Institute of Education, Science and Technology of Rio de Janeiro (IFRJ); Rio de Janeiro campus, Food Dept.; Rua Senador Furtado, 121/125 Maracanã 20270-021 Rio de Janeiro Brazil
| | - Jorge A. W. Gut
- Dept. of Chemical Engineering; Univ. of São Paulo; Main Campus, Av. Prof. Luciano Gualberto, Trav.3, n° 380 Lab. de Eng. de Alimentos, Cidade Univ. 05508-010 São Paulo SP Brazil
- FoRC/NAPAN - Food Research Center; Univ. of São Paulo; Main campus, Av. Prof. Lineu Prestes, 580, Bloco 14 Cidade Univ. 05508-000 São Paulo SP Brazil
| | - Hosahalli S. Ramaswamy
- Dept. of Food Science and Agricultural Chemistry; McGill Univ.; Macdonald campus, 21,111 Lakeshore H9X 3V9 Sainte Anne de Bellevue Quebec Canada
| | - Carmen C. Tadini
- Dept. of Chemical Engineering; Univ. of São Paulo; Main Campus, Av. Prof. Luciano Gualberto, Trav.3, n° 380 Lab. de Eng. de Alimentos, Cidade Univ. 05508-010 São Paulo SP Brazil
- FoRC/NAPAN - Food Research Center; Univ. of São Paulo; Main campus, Av. Prof. Lineu Prestes, 580, Bloco 14 Cidade Univ. 05508-000 São Paulo SP Brazil
| | - Adriano G. Cruz
- Federal Institute of Education, Science and Technology of Rio de Janeiro (IFRJ); Rio de Janeiro campus, Food Dept.; Rua Senador Furtado, 121/125 Maracanã 20270-021 Rio de Janeiro Brazil
| |
Collapse
|
24
|
Inactivation of foodborne pathogens influenced by dielectric properties, relevant to sugar contents, in chili sauce by 915 MHz microwaves. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.04.089] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Chang FS, Chin HY, Tsai ML. Preparation of chitin with puffing pretreatment. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3346-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Sánchez-Maldonado AF, Lee A, Farber JM. Methods for the Control of Foodborne Pathogens in Low-Moisture Foods. Annu Rev Food Sci Technol 2018; 9:177-208. [DOI: 10.1146/annurev-food-030117-012304] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alma Fernanda Sánchez-Maldonado
- Department of Food Science, Canadian Research Institute for Food Safety, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Alvin Lee
- Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, Illinois 60501, USA
| | - Jeffrey M. Farber
- Department of Food Science, Canadian Research Institute for Food Safety, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
27
|
Pulikkathara M, Mark C, Kumar N, Zaske AM, Serda RE. Sucrose modulation of radiofrequency-induced heating rates and cell death. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2017; 3. [PMID: 29177085 DOI: 10.1088/2057-1739/aa757b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Applied radiofrequency (RF) energy induces hyperthermia in tissues, facilitating vascular perfusion This study explores the impact of RF radiation on the integrity of the luminal endothelium, and then predominately explores the impact of altering the conductivity of biologically-relevant solutions on RF-induced heating rates and cell death. The ability of cells to survive high sucrose (i.e. hyperosmotic conditions) to achieve lower conductivity as a mechanism for directing hyperthermia is evaluated. Methods RF radiation was generated using a capacitively-coupled radiofrequency system operating at 13.56 MHz. Temperatures were recorded using a FLIR SC 6000 infrared camera. Results RF radiation reduced cell-to-cell connections among endothelial cells and altered cell morphology towards a more rounded appearance at temperatures reported to cause in vivo vessel deformation. Isotonic solutions containing high sucrose and low levels of NaCl displayed low conductivity and faster heating rates compared to high salt solutions. Heating rates were positively correlated with cell death. Addition of sucrose to serum similarly reduced conductivity and increased heating rates in a dose-dependent manner. Cellular proliferation was normal for cells grown in media supplemented with 125 mM sucrose for 24 hours or for cells grown in 750 mM sucrose for 10 minutes followed by a 24 h recovery period. Conclusions Sucrose is known to form weak hydrogen bonds in fluids as opposed to ions, freeing water molecules to rotate in an oscillating field of electromagnetic radiation and contributing to heat induction. The ability of cells to survive temporal exposures to hyperosmotic (i.e. elevated sucrose) conditions creates an opportunity to use sucrose or other saccharides to selectively elevate heating in specific tissues upon exposure to a radiofrequency field.
Collapse
Affiliation(s)
- Merlyn Pulikkathara
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA (location where research was performed)
| | - Colette Mark
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA (location where research was performed)
| | - Natasha Kumar
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA (location where research was performed)
| | - Ana Maria Zaske
- IM Bioscope 2 UT Core Facility, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Rita E Serda
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA (location where research was performed).,Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87106, USA (current location)
| |
Collapse
|
28
|
Sanchez Alan K, Wang L, Schmidt K. Heat stability of radio frequency dielectric heat treated low heat and high heat nonfat dry milk. Int Dairy J 2017. [DOI: 10.1016/j.idairyj.2017.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Jiménez-Sánchez C, Lozano-Sánchez J, Segura-Carretero A, Fernández-Gutiérrez A. Alternatives to conventional thermal treatments in fruit-juice processing. Part 1: Techniques and applications. Crit Rev Food Sci Nutr 2016; 57:501-523. [DOI: 10.1080/10408398.2013.867828] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Cecilia Jiménez-Sánchez
- Department of Analytical Chemistry, University of Granada, Granada, Spain
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Granada, Spain
| | - Jesús Lozano-Sánchez
- Department of Analytical Chemistry, University of Granada, Granada, Spain
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Granada, Spain
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, University of Granada, Granada, Spain
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Granada, Spain
| | - Alberto Fernández-Gutiérrez
- Department of Analytical Chemistry, University of Granada, Granada, Spain
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Granada, Spain
| |
Collapse
|
30
|
Bourdoux S, Li D, Rajkovic A, Devlieghere F, Uyttendaele M. Performance of Drying Technologies to Ensure Microbial Safety of Dried Fruits and Vegetables. Compr Rev Food Sci Food Saf 2016; 15:1056-1066. [DOI: 10.1111/1541-4337.12224] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/15/2016] [Accepted: 07/20/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Siméon Bourdoux
- Laboratory of Food Microbiology and Food Preservation, Dept. of Food Safety and Food Quality, Faculty of Bioscience Engineering; Ghent Univ; Coupure Links 653 9000 Ghent Belgium
| | - Dan Li
- Laboratory of Food Microbiology and Food Preservation, Dept. of Food Safety and Food Quality, Faculty of Bioscience Engineering; Ghent Univ; Coupure Links 653 9000 Ghent Belgium
| | - Andreja Rajkovic
- Laboratory of Food Microbiology and Food Preservation, Dept. of Food Safety and Food Quality, Faculty of Bioscience Engineering; Ghent Univ; Coupure Links 653 9000 Ghent Belgium
| | - Frank Devlieghere
- Laboratory of Food Microbiology and Food Preservation, Dept. of Food Safety and Food Quality, Faculty of Bioscience Engineering; Ghent Univ; Coupure Links 653 9000 Ghent Belgium
| | - Mieke Uyttendaele
- Laboratory of Food Microbiology and Food Preservation, Dept. of Food Safety and Food Quality, Faculty of Bioscience Engineering; Ghent Univ; Coupure Links 653 9000 Ghent Belgium
| |
Collapse
|
31
|
Nagarajarao RC. Recent Advances in Processing and Packaging of Fishery Products: A Review. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.aqpro.2016.07.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Song WJ, Kang DH. Inactivation of Salmonella Senftenberg, Salmonella Typhimurium and Salmonella Tennessee in peanut butter by 915 MHz microwave heating. Food Microbiol 2016; 53:48-52. [DOI: 10.1016/j.fm.2015.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 08/15/2015] [Accepted: 08/22/2015] [Indexed: 11/26/2022]
|
33
|
MIKŠ-KRAJNIK MARTA, YUK HYUNGYUN, KUMAR AMIT, YANG YISHAN, ZHENG QIANWANG, KIM MINJEONG, GHATE VINAYAK, YUAN WENQIAN, PANG XINYI. ENSURING FOOD SECURITY THROUGH ENHANCING MICROBIOLOGICAL FOOD SAFETY. ACTA ACUST UNITED AC 2015. [DOI: 10.1142/s0219607715500056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Food safety and food security are interrelated concepts with a profound impact on the quality of human life. Food security describes the overall availability of food at different levels from global to individual household. While, food safety focuses on handling, preparation and storage of foods in order to prevent foodborne illnesses. This review focuses on innovative thermal and non-thermal technologies in the area of food processing as the means to ensure food security through improving food safety with emphasis on the reduction and control of microbiological risks. The antimicrobial efficiency and mechanism of new technologies to extend the shelf life of food product were also discussed.
Collapse
Affiliation(s)
- MARTA MIKŠ-KRAJNIK
- Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Chair of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726 Olsztyn, Poland
| | - HYUN-GYUN YUK
- Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - AMIT KUMAR
- Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - YISHAN YANG
- Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - QIANWANG ZHENG
- Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - MIN-JEONG KIM
- Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - VINAYAK GHATE
- Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - WENQIAN YUAN
- Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - XINYI PANG
- Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
34
|
|
35
|
Sung HJ, Kang DH. Effect of a 915 MHz microwave system on inactivation of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes in salsa. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2014.05.058] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
36
|
Siefarth C, Tran TBT, Mittermaier P, Pfeiffer T, Buettner A. Effect of Radio Frequency Heating on Yoghurt, I: Technological Applicability, Shelf-Life and Sensorial Quality. Foods 2014; 3:318-335. [PMID: 28234322 PMCID: PMC5302359 DOI: 10.3390/foods3020318] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/14/2014] [Accepted: 05/04/2014] [Indexed: 11/17/2022] Open
Abstract
This first part of a two-part study focuses on the technical feasibility of applying radio frequency (RF) heating at different temperatures (58, 65 and 72 °C) to a stirred yoghurt gel after culturing. For comparison, a convectional (CV) heating process was also applied. The aim was to increase the yoghurt shelf-life, by preventing post-acidification and the growth of yeasts and molds. At the same time, the viability of lactic acid bacteria (LAB) was investigated in view of existing legal regulations for yoghurts. Additionally, the yoghurt color, aroma and taste profiles were evaluated. It was found that the application of RF heating was effective for the rapid attainment of homogenous temperatures of 58 and 65 °C, respectively. For RF heating at 72 °C, it was not possible to establish a stable heating regime, since in some cases, there was significant overheating followed by strong contraction of the yoghurt curd and whey separation. Hence, it was decided not to continue with the RF heating series at 72 °C. In the case of CV heating, heat transfer limitations were observed, and prolonged heating was required. Nevertheless, we showed that yeasts and molds survived neither the RF nor CV heat treatment. LAB were found not to survive the CV treatment, but these beneficial microorganisms were still present in reduced numbers after RF heating to 58 and 65 °C. This important observation is most likely related to the mildness of RF treatment. While post-acidification was not observed on yoghurt storage, slight color changes occurred after heat treatment. The flavor and taste profiles were shown to be similar to the reference product. Furthermore, a trained sensory panel was not able to distinguish between, for example, the reference yoghurt and the RF 65 °C sample by triangular testing (α = 5%), showing the potential of novel strategies for further improvements of heat-treated yoghurt.
Collapse
Affiliation(s)
- Caroline Siefarth
- Department of Chemistry and Pharmacy, Emil Fischer Centre, Friedrich-Alexander Universität Erlangen-Nürnberg, Schuhstr. 19, Erlangen 91052, Germany.
- Fraunhofer Institute for Process Engineering and Packaging (IVV), Giggenhauser Str. 35, Freising 85354, Germany.
| | - Thi Bich Thao Tran
- Fraunhofer Institute for Process Engineering and Packaging (IVV), Giggenhauser Str. 35, Freising 85354, Germany.
| | - Peter Mittermaier
- Fraunhofer Institute for Process Engineering and Packaging (IVV), Giggenhauser Str. 35, Freising 85354, Germany.
| | - Thomas Pfeiffer
- Fraunhofer Institute for Process Engineering and Packaging (IVV), Giggenhauser Str. 35, Freising 85354, Germany.
| | - Andrea Buettner
- Department of Chemistry and Pharmacy, Emil Fischer Centre, Friedrich-Alexander Universität Erlangen-Nürnberg, Schuhstr. 19, Erlangen 91052, Germany.
- Fraunhofer Institute for Process Engineering and Packaging (IVV), Giggenhauser Str. 35, Freising 85354, Germany.
| |
Collapse
|
37
|
|
38
|
Galiş AM, Marcq C, Marlier D, Portetelle D, Van I, Beckers Y, Théwis A. Control ofSalmonellaContamination of Shell Eggs-Preharvest and Postharvest Methods: A Review. Compr Rev Food Sci Food Saf 2013. [DOI: 10.1111/1541-4337.12007] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Anca M. Galiş
- Univ. of Agronomical Sciences and Veterinary Medicine of Bucharest; Animal Science Unit; Bd. Mărăşti, no. 59, sector 1; Bucharest; 011464; Romania
| | - Christopher Marcq
- Univ. of Liege, Gembloux Agro-Bio Tech; Animal Science Unit. Passage des Déportés; 2, B-5030; Gembloux; Belgium
| | - Didier Marlier
- Univ. of Liege, Faculty of Veterinary Medicine; Dept. of Clinical Science, Clinic for Birds, Rabbits and Rodents; Boulevard de Colonster 20, B42; Sart-Tilman; B4000; Liege; Belgium
| | - Daniel Portetelle
- Univ. of Liege, Gembloux Agro-Bio Tech; Animal and Microbial Biology Unit.; Passage des Déportés, 2; B-5030; Gembloux; Belgium
| | - Ilie Van
- Univ. of Agronomical Sciences and Veterinary Medicine of Bucharest; Animal Science Unit; Bd. Mărăşti, no. 59, sector 1; Bucharest; 011464; Romania
| | - Yves Beckers
- Univ. of Liege, Gembloux Agro-Bio Tech; Animal Science Unit. Passage des Déportés; 2, B-5030; Gembloux; Belgium
| | - André Théwis
- Univ. of Liege, Gembloux Agro-Bio Tech; Animal Science Unit. Passage des Déportés; 2, B-5030; Gembloux; Belgium
| |
Collapse
|
39
|
Kim SY, Sagong HG, Choi SH, Ryu S, Kang DH. Radio-frequency heating to inactivate Salmonella Typhimurium and Escherichia coli O157:H7 on black and red pepper spice. Int J Food Microbiol 2012; 153:171-5. [DOI: 10.1016/j.ijfoodmicro.2011.11.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 11/01/2011] [Accepted: 11/06/2011] [Indexed: 10/15/2022]
|
40
|
de Regil LM, de la Barca AMC. Nutritional and technological evaluation of an enzymatically methionine-enriched soy protein for infant enteral formulas. Int J Food Sci Nutr 2009; 55:91-9. [PMID: 14985181 DOI: 10.1080/09637480410001666478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Enzymatically modified soy proteins have the amino acid profile and functional properties required for dietary support. The objective of this study was to evaluate the nutritional and technological properties of an enzymatically modified soy protein ultrafiltered fraction with bound methionine (F(1-10)E) to be used as a protein ingredient for infant enteral formulas. F(1-10)E was chemically characterized and biologically evaluated. Thirty-six weaning Wistar rats were fed during 3 weeks with a 4% casein-containing diet. Rats were divided into three groups and recovered for 3 weeks with 18% protein-containing diets based on: (1) F(1-10)E, (2) casein or (3) soy isolate+methionine. Nutritional indicators were weight gain, protein efficiency ratio, plasma proteins, apparent digestibility and protein in the carcass. Additionally, F(1-10)E was added as a protein ingredient of an enteral formula, and its sensory and rheological properties were compared with a hydrolyzed-whey protein commercial formula. F(1-10)E contained 68% protein and 5% sulphur amino acids, with 60% of peptides </=6 kDa. Casein-based and F(1-10)E-based diets were comparable (P>0.05) in weight gain (108 g and 118 g, respectively), protein efficiency ratio (2.7), apparent digestibility (93% and 95%), plasma proteins (5.7 mg/100 ml) and carcass protein (61%), and better than soy isolate-based+methionine diet (P<0.05). Viscosity of the commercial formula and our formula was similar during a 24-h period. Sensory acceptability was 8 for our formula and 3.5 for the commercial one, on a scale of 1-10 (P<0.05). Due to its nutritional, sensorial and rheological properties, F(1-10)E could be used as a protein source in infant enteral formulas.
Collapse
Affiliation(s)
- Luz María de Regil
- Departamento de Nutrición Humana Centro de Investigación en Alimentación y Desarrollo A.C. P.O. Box 1735, Hermosillo 83000 Sonora, México
| | | |
Collapse
|
41
|
Abstract
Means of controlling or even improving the safety of food products is to decontaminate the carcasses or products during or at the end of the production line. The decontamination of meat and poultry can help to reduce human foodborne infections. However, process hygiene to prevent contamination should never be neglected. Some techniques of decontaminating raw meat and poultry meat products are discussed in this review.
Collapse
Affiliation(s)
- A Handan Dinçer
- Department of Food Engineering, Faculty of Engineering, University of Ege, Izmir, Turkey
| | | |
Collapse
|
42
|
Lakins D, Echeverry A, Alvarado C, Brooks J, Brashears M, Brashears M. Quality of and Mold Growth on White Enriched Bread for Military Rations Following Directional Microwave Treatment. J Food Sci 2008; 73:M99-103. [DOI: 10.1111/j.1750-3841.2008.00677.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Abstract
Contaminated food continues to be the principal vehicle for transmission of Escherichia coli O157:H7 and other Shiga toxin-producing E. coli (STEC) to humans. A large number of foods, including those associated with outbreaks (alfalfa sprouts, fresh produce, beef, and unpasteurized juices), have been the focus of intensive research studies in the past few years (2003 to 2006) to assess the prevalence and identify effective intervention and inactivation treatments for these pathogens. Recent analyses of retail foods in the United States revealed E. coli O157:H7 was present in 1.5% of alfalfa sprouts and 0.17% of ground beef but not in some other foods examined. Differences in virulence patterns (presence of both stx1 and stx2 genes versus one stx gene) have been observed among isolates from beef samples obtained at the processing plant compared with retail outlets. Research has continued to examine survival and growth of STEC in foods, with several models being developed to predict the behavior of the pathogen under a wide range of environmental conditions. In an effort to develop effective strategies to minimize contamination, several influential factors are being addressed, including elucidating the underlying mechanism for attachment and penetration of STEC into foods and determining the role of handling practices and processing operations on cross-contamination between foods. Reports of some alternative nonthermal processing treatments (high pressure, pulsed-electric field, ionizing radiation, UV radiation, and ultrasound) indicate potential for inactivating STEC with minimal alteration to sensory and nutrient characteristics. Antimicrobials (e.g., organic acids, oxidizing agents, cetylpyridinium chloride, bacteriocins, acidified sodium chlorite, natural extracts) have varying degrees of efficacy as preservatives or sanitizing agents on produce, meat, and unpasteurized juices. Multiple-hurdle or sequential intervention treatments have the greatest potential to minimize transmission of STEC in foods.
Collapse
Affiliation(s)
- Marilyn C Erickson
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, Georgia 30223-1797, USA
| | | |
Collapse
|
44
|
Response to the questions posed by the Food Safety and Inspection Service regarding consumer guidelines for the safe cooking of poultry products. J Food Prot 2007; 70:251-60. [PMID: 17265890 DOI: 10.4315/0362-028x-70.1.251] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|