1
|
Cheng L, Wei Y, Peng L, Wei K, Liu Z, Wei X. State-of-the-art review of theabrownins: from preparation, structural characterization to health-promoting benefits. Crit Rev Food Sci Nutr 2024; 64:11321-11340. [PMID: 37584203 DOI: 10.1080/10408398.2023.2236701] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
As far as health benefit is concerned, dark tea is one of the best beverages in the world. Theabrownins are the major ingredient contributing to the health benefits of dark tea and known as "the soft gold in dark tea." A growing body of evidence indicated that theabrownins are macromolecular pigments with reddish-brown color and mellow taste, and mainly derived from the oxidative polymerization of tea polyphenols. Theabrownins are the main active ingredients in dark tea which brings multiple health-promoting effects in modulating lipid metabolism, reducing body weight gain, attenuating diabetes, mitigating NAFLD, scavenging ROS, and preventing tumors. More importantly, it's their substantial generation in microbial fermentation that endows dark tea with much stronger hypolipidemic effect compared with other types of tea. This review firstly summarizes the most recent findings on the preparation, structural characteristics, and health-promoting effects of theabrownins, emphasizing the underlying molecular mechanism, especially the different mechanisms behind the effect of theabrownins-mediated gut microbiota on the host's multiple health-promoting benefits. Furthermore, this review points out the main limitations of current research and potential future research directions, hoping to provide updated scientific evidence for their better theoretical research and industrial utilization.
Collapse
Affiliation(s)
- Lizeng Cheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Lanlan Peng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Kang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, P.R. China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
2
|
Chen X, Chen T, Liu J, Wei Y, Zhou W. Physicochemical stability and antibacterial mechanism of theabrownins prepared from tea polyphenols catalyzed by polyphenol oxidase and peroxidase. Food Sci Biotechnol 2024; 33:47-61. [PMID: 38186623 PMCID: PMC10766583 DOI: 10.1007/s10068-023-01341-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 01/09/2024] Open
Abstract
Tea polyphenols were used as substrates and oxidized successively by polyphenol oxidase and peroxidase to prepare theabrownins (TBs-dE). The conversion rate of catechins to TBs-dE was 90.91%. The ultraviolet and infrared spectroscopic properties and zeta potential of TBs-dE were characterized. TBs-dE is more stable at pH 5.0-7.0, about 25 °C or in dark environment. Ultraviolet light and sunlight can deepen its color due to the further oxidative polymerization. Mg2+, Cu2+, and Al3+ had a significant effect on the stability of TBs-dE. The inhibitory rates of TBs-dE (1 mg/mL) against Staphylococcus aureus and Escherichia coli DH5α were 51.45% and 45.05%, respectively. After TBs-dE treatment, the cell morphology of both bacteria changed, some cell walls were blurred, and the cytoplasmic content leaked. The research results can provide theoretical support for the industrialization of theabrownins.
Collapse
Affiliation(s)
- Xiaoqiang Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068 China
| | - Tingting Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068 China
| | - Jiayan Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068 China
| | - Yan’an Wei
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068 China
| | - Weilong Zhou
- National Center for Tea Quality Inspection and Testing, Hangzhou Tea Research Institute, All China Federation of Supply and Marketing Cooperatives, Hangzhou, 310016 China
| |
Collapse
|
3
|
Wang J, Zhang T, Wan C, Lai Z, Li J, Chen L, Li M. The effect of theabrownins on the amino acid composition and antioxidant properties of hen eggs. Poult Sci 2023; 102:102717. [PMID: 37734359 PMCID: PMC10518584 DOI: 10.1016/j.psj.2023.102717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/04/2023] [Accepted: 04/09/2023] [Indexed: 09/23/2023] Open
Abstract
Pu-erh tea theabrownins (TBs) exert beneficial effect on egg quality and antioxidant properties of eggs, but the underlying mechanisms behind this response are unclear. In this study, we investigate the effect of TBs on egg antioxidative activity, amino acid and fatty acid profiles, and the underlying relationship between the TBs and oxidant-sensitive Nrf2 signaling pathway in laying hens. Eighty layers were fed a basal diet (control) and 400 mg/kg of TBs supplemented diet for 12 wk. TBs led to an increase in albumen height and Haugh unit (P < 0.05). The albumen lysine, valine, and tryptophan were higher in layers fed TBs, whereas yolk tryptophan, methionine, vitamin A, and α-tocopherol content were enhanced by TBs (P < 0.05). Eggs albumen and yolk showed higher total antioxidant capacity (T-AOC), reducing power (RP), and the scavenging rate of 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH), and lower MDA content than those of eggs from the control group (P < 0.05). Also, magnum Nrf2, hemeoxygenase 1 (HO-1), NAD(P)H quinone dehydrogenase 1 (NQO1), and Bcl2 expression were up-regulated by TBs, whereas magnum proapoptotic gene (Bax, caspase 3, Cyt C) were down-regulated by TBs (P < 0.05). Our findings suggest that TBs improved egg albumen quality and antioxidant activity, and the Nrf2-ARE pathway were found to be involved in this process.
Collapse
Affiliation(s)
- Jianping Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tao Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chunpeng Wan
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhangfeng Lai
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jun Li
- Tea Science Research Institute, Xiushui, Jiujiang, 332400, China
| | - Luojun Chen
- Tea Science Research Institute, Xiushui, Jiujiang, 332400, China
| | - Mingxi Li
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
4
|
Xu J, Wei Y, Huang Y, Weng X, Wei X. Current understanding and future perspectives on the extraction, structures, and regulation of muscle function of tea pigments. Crit Rev Food Sci Nutr 2023; 63:11522-11544. [PMID: 35770615 DOI: 10.1080/10408398.2022.2093327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the aggravating aging of modern society, the sarcopenia-based aging syndrome poses a serious potential threat to the health of the elderly. Natural dietary supplements show great potential to reduce muscle wasting and enhance muscle performance. Tea has been widely recognized for its health-promoting effects. which contains active ingredients such as tea polyphenols, tea pigments, tea polysaccharides, theanine, caffeine, and vitamins. In different tea production processes, the oxidative condensation and microbial transformation of catechins and other natural substances from tea promotes the production of various tea pigments, including theaflavins (TFs), thearubigins (TRs), and theabrownins (TBs). Tea pigments have shown a positive effect on maintaining muscle health. Nevertheless, the relationship between tea pigments and skeletal muscle function has not been comprehensively elucidated. In addition, the numerous research on the extraction and purification of tea pigments is disordered with the limited recent progress due to the complexity of species and molecular structure. In this review, we sort out the strategies for the separation of tea pigments, and discuss the structures of tea pigments. On this basis, the regulation mechanisms of tea pigments on muscle functional were emphasized. This review highlights the current understanding on the extraction methods, molecular structures and regulation mechanisms of muscle function of tea pigments. Furthermore, main limitations and future perspectives are proposed to provide new insights into broadening theoretical research and industrial applications of tea pigments in the future.
Collapse
Affiliation(s)
- Jia Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- School of Environmental and Chemical Engineering, Shanghai University, Baoshan, Shanghai, People's Republic of China
| | - Yang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yi Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xinchu Weng
- School of Environmental and Chemical Engineering, Shanghai University, Baoshan, Shanghai, People's Republic of China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
5
|
Ye L, Ding X, Liu C, Ruan F, Zhong H, Lv R, Yu Y, He C, Zuo Z, Huang J. The hepatoprotective effects of Herbt Tea Essences on phenanthrene-induced liver damage in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114899. [PMID: 37060801 DOI: 10.1016/j.ecoenv.2023.114899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/09/2023] [Accepted: 04/09/2023] [Indexed: 06/19/2023]
Abstract
Phenanthrene (Phe), one of the most frequently occurring pollutants in nature, can cause substantial damage to the human liver. Herbt Tea Essences (HTE), a kind of black tea extract with strong anti-inflammatory activity, can protect humans against disease. Currently, whether HTE can protect the liver from Phe-induced hepatotoxicity remains unclear. Herein, we explore the protective effects of HTE against Phe-induced hepatotoxicity. Our results showed that Phe exposure could significantly induce liver damage and increase serum hepatic enzyme levels in mice. HTE could prevent liver damage and recover the expression levels of inflammatory factors. Furthermore, we found that HTE suppressed the excessive activation of the nuclear transcription factor kappa-B and transforming growth factor-β/SMAD signaling pathways to alleviate Phe-induced liver inflammation and fibrosis. Overall, our data showed that HTE treatment could be a new preventive means for Phe-induced liver disease.
Collapse
Affiliation(s)
- Lingxiao Ye
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaoyan Ding
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Changqian Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Fengkai Ruan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Hongbin Zhong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Rongfu Lv
- Xiamen Herbt Biotechnology Company Limited, Xiamen, Fujian 361005, China
| | - Yi Yu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China.
| | - Jiyi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
6
|
Zhao L, Miao Y, Shan B, Zhao C, Peng C, Gong J. Theabrownin Isolated from Pu-Erh Tea Enhances the Innate Immune and Anti-Inflammatory Effects of RAW264.7 Macrophages via the TLR2/4-Mediated Signaling Pathway. Foods 2023; 12:foods12071468. [PMID: 37048289 PMCID: PMC10094067 DOI: 10.3390/foods12071468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Theabrownin (TB) is a tea pigment extracted from Pu-erh Tea. The effects of TB on innate immunity and inflammation are not well understood. Herein, the effects of TB on innate immunity are investigated using RAW264.7 macrophages. We found that TB promoted the proliferation of RAW264.7 macrophages, altered their morphology, enhanced their pinocytic and phagocytic ability, and significantly increased their secretion of nitric oxide (NO) and cytokines, all of which enhanced the immune response. Additionally, TB inhibited the release of inflammatory signals in RAW264.7 macrophages primed with lipopolysaccharide (LPS), implying that TB modulates the excessive inflammation induced by bacterial infection. A Western blot showed that TB could activate the toll-like receptor (TLR)2/4-mediated myeloid differentiation factor 88 (MyD88)-dependent mitogen activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathway and the TLR2-mediated phosphoinositide 3-kinase (PI3K)-AKT signaling pathway, enhancing the immune functions of RAW264.7 macrophages. TB also inhibited the phosphorylation of core proteins in the MAPK/NF-κB/PI3K-AKT signaling pathway induced by LPS. In addition, we analyzed the transcriptomes of RAW264.7 macrophages, and a Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis revealed that TB modulated thetoll-like receptor signal pathway. A gene ontology (GO) enrichment analysis indicated that TB treatment strongly modulated the immune response and inflammation. As a result, TB-enhanced innate immunity and modulated inflammation via the TLR2/4 signaling pathway.
Collapse
Affiliation(s)
- Lei Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Yue Miao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Bo Shan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Chunyan Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Chunxiu Peng
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China
| | - Jiashun Gong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Agro-products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
| |
Collapse
|
7
|
Zhao Y, Tang C, Tang W, Zhang X, Jiang X, Duoji Z, Kangzhu Y, Zhao X, Xu X, Hong F, Liu Q. The association between tea consumption and blood pressure in the adult population in Southwest China. BMC Public Health 2023; 23:476. [PMID: 36915113 PMCID: PMC10010002 DOI: 10.1186/s12889-023-15315-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 02/23/2023] [Indexed: 03/16/2023] Open
Abstract
OBJECTIVES Prior research on the effect of tea consumption on blood pressure (BP) generated inconsistent findings. The objective of this study was to explore the effects of different types of tea consumption on BP. METHODS We included 76,673 participants aged 30-79 from the baseline data of the China Multi-Ethnic Cohort (CMEC) study. Binary logistic regression was used to analyze the influences of different types of tea consumption on the risk of hypertensive BP. Moreover, multiple linear regression was used to examine the association between tea drinking and BP. RESULTS Tea consumption was associated with a reduced risk of hypertensive BP by 10% (AOR: 0.90, 95%CI: 0.86-0.94). While dark tea was related to a 1.79-5.31 mmHg reduction in systolic blood pressure (SBP) and a 0.47-1.02 mmHg reduction in diastolic blood pressure (DBP), sweet tea, regardless of the duration, frequency, or amount of consumption, significantly was associated with a reduced SBP by 3.19-7.18 mmHg. Green tea also was associated with a reduced SBP by 1.21-2.98 mmHg. Although scented tea was related to reduced SBP by 1.26-2.48 mmHg, the greatest effect came from the long duration (> 40 years:β=-2.17 mmHg, 95%CI=-3.47 mmHg --0.87 mmHg), low frequency (1-2 d/w: β = -2.48 mmHg, 95%CI=-3.76 mmHg--1.20 mmHg), and low amount (≤ 2 g/d: β=-2.21 mmHg, 95%CI=-3.01 mmHg--1.40 mmHg). Additionally, scented tea was correlated to a decrease in DBP at the frequency of 1-2 d/w (β=-0.84 mmHg, 95%CI=-1.65 mmHg--0.02 mmHg). Drinking black tea only was associated with lowered SBP. The protective effect of black tea on SBP was characterized by the long-duration (> 15 years, -2.63--5.76 mmHg), high frequency (6-7 d/w, -2.43 mmHg), and medium amount (2.1-4.0 g/d, -3.06 mmHg). CONCLUSION Tea consumption was associated with lower SBP and a reduced risk of hypertensive BP. The antihypertensive effect varies across types of tea consumed.
Collapse
Affiliation(s)
- Ying Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu City, Sichuan, China
| | - Chengmeng Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu City, Sichuan, China
| | - Wenge Tang
- Chongqing Municipal Center for Disease Control and Prevention, 400042, Chongqing, China
| | - Xuehui Zhang
- School of Public Health, Kunming Medical University, 650500, Kunming, China
| | - Xiaoman Jiang
- Chengdu Center for Disease Control and Prevention, 610041, Chengdu, China
| | - Zhuoma Duoji
- School of Medicine, Tibet University, 850000, Lhasa, China
| | - Yixi Kangzhu
- Tibet Center for disease control and prevention, 850000, Lhasa, China
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu City, Sichuan, China
| | - Xiaohe Xu
- Department of Sociology , University of Texas at San Antonio, San Antonio, USA.,Department of Sociology and Psychology, School of Public Administration, Sichuan University, 610064, Chengdu, China
| | - Feng Hong
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.
| | - Qiaolan Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu City, Sichuan, China.
| |
Collapse
|
8
|
Liao SY, Zhao YQ, Jia WB, Niu L, Bouphun T, Li PW, Chen SX, Chen W, Tang DD, Zhao YL, Zou Y, Zhu MZ, Xu W. Untargeted metabolomics and quantification analysis reveal the shift of chemical constituents between instant dark teas individually liquid-state fermented by Aspergillus cristatus, Aspergillus niger, and Aspergillus tubingensis. Front Microbiol 2023; 14:1124546. [PMID: 36846747 PMCID: PMC9947791 DOI: 10.3389/fmicb.2023.1124546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Instant dark teas (IDTs) were individually liquid-state fermented using the fungi Aspergillus cristatus, Aspergillus niger, and Aspergillus tubingensis. To understand how the chemical constituents of IDTs were affected by the fungi, samples were collected and measured by liquid chromatography-tandem mass-tandem mass spectrometry (LC-MS/MS). Untargeted metabolomics analysis revealed that 1,380 chemical constituents were identified in positive and negative ion modes, and 858 kinds of chemical components were differential metabolites. Through cluster analysis, IDTs were different from the blank control, and their chemical constituents mostly included carboxylic acids and their derivatives, flavonoids, organooxygen compounds, and fatty acyls. And the metabolites of IDTs fermented by A. niger and A. tubingensis had a high degree of similarity and were classified into one category, which showed that the fungus used to ferment is critical to the formation of certain qualities of IDTs. The biosynthesis of flavonoids and phenylpropanoid, which involved nine different metabolites such as p-coumarate, p-coumaroyl-CoA, caffeate, ferulate, naringenin, kaempferol, leucocyanidin, cyanidin, and (-)-epicatechin, were significant pathways influencing the quality formation of IDTs. Quantification analysis indicated that the A. tubingensis fermented-IDT had the highest content of theaflavin, theabrownin, and caffeine, while the A. cristatus fermented-IDT had the lowest content of theabrownin, and caffeine. Overall, the results provided new insights into the relationship between the quality formation of IDTs and the microorganisms used in liquid-state fermentation.
Collapse
Affiliation(s)
- Si-yu Liao
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yi-qiao Zhao
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Wen-bao Jia
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Li Niu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Tunyaluk Bouphun
- Faculty of Science and Agricultural Technology, Rajamangala University of Technology Lanna Lampang, Lampang, Thailand
| | - Pin-wu Li
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Sheng-xiang Chen
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Wei Chen
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dan-dan Tang
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yue-ling Zhao
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yao Zou
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China,*Correspondence: Yao Zou,
| | - Ming-zhi Zhu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, China,Ming-zhi Zhu,
| | - Wei Xu
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China,Wei Xu,
| |
Collapse
|
9
|
Xu W, Ayu Y, Wang J, Zeng Q, Bai S, Ding X, Lv L, Peng H, Xuan Y, Zhang K. Effects of dietary theabrownins on production performance, egg quality and ovarian function of laying hens with different ages. Poult Sci 2023; 102:102545. [PMID: 37019071 PMCID: PMC10106962 DOI: 10.1016/j.psj.2023.102545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/25/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
This experiment was conducted to investigate the effect of theabrownins (TB) on production performance, egg quality, and ovarian function of laying hens at different ages. A total of 240 Lohmann laying hens were assigned in a 2 × 2 factorial design, which encompassed 2 layers ages (47-wk-old and 67-wk-old) and 2 dietary levels of TB (0 and 100 mg/kg) for 12 wk. Results showed that older layers had lower laying rate, egg mass, and higher feed-to-egg ratio (F/E), egg weight and unqualified egg rate than the younger layers (P(AGE) < 0.01) during all the experimental period. The effect of TB was found to increase egg laying rate and feed efficiency during 5 to 8 wk, 9 to 12 wk and the overall phases and decreased unqualified egg rate during 1 to 4 wk and the overall phases (P(TB) ≤ 0.05). The eggshell quality (strength, thickness), albumen quality (albumen height and Haugh unit) of eggs from older layers were decreased during overall phases (P(AGE) ≤ 0.05). TB increased eggshell strength during all phases and enhanced eggshell thickness at the end of wk 4 and 8 and increased albumen height and Haugh unit at the end of wk 8 and 12 of older layers (P(Interaction) ≤ 0.05). In addition, TB also increased egg quality of older layers after 14 d storage. A decrease in the serum concentration of progesterone, melatonin, follicle stimulating hormone, estradiol was observed in the older compared to the younger ones (P(AGE) < 0.05), while the increase in serum concentration of progesterone, melatonin, anti-Müllerian hormone (AMH) were more emphasized when older hens received TB supplemented diet (P(Interaction) < 0.05). The older layer demonstrated lower the concentration of glutathione (GSH) (P(AGE) < 0.05). And the activity of glutathione-s-transferase (GST) was significantly decreased in layers under 67-wk-old (P(AGE) <0.05). The increase in concentration of GSH and the decrease in concentration of malondialdehyde (MDA) were more pronounced when TB were supplemented in 67-wk-old layers (P(Interaction) ≤ 0.05). Layers at 67-wk-old had lower mRNA expression of Heme oxygenase 1 (HO-1) (P(AGE) < 0.01) in ovary. Dietary TB supplementation upregulated mRNA gene expression of HO-1, Nuclear factor E2 related factor 2 (Nrf2), Quinone oxidoreductase 1 (NQO1) (P(TB) < 0.01). Dietary TB upregulated mRNA expression of ovarian reproductive hormone receptor (estrogen receptor 1 [ESR1] and steroidogenic acute regulatory protein 1 [StAR1]]; P(TB) < 0.01). The results suggest feeding TB (100 mg/kg) could improve the egg production rate, egg quality, and antioxidant capacity of the ovary. Moreover, the effect of TB was more pronounced in older layers (64-wk-old vs. 47-wk-old).
Collapse
Affiliation(s)
- Wenwen Xu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuxiang Ayu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jianping Wang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiufeng Zeng
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Shiping Bai
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xuemei Ding
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Li Lv
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Huanwei Peng
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yue Xuan
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Keying Zhang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
10
|
Nurmilah S, Cahyana Y, Utama GL. Metagenomics Analysis of the Polymeric and Monomeric Phenolic Dynamic Changes Related to the Indigenous Bacteria of Black Tea Spontaneous Fermentation. BIOTECHNOLOGY REPORTS 2022; 36:e00774. [DOI: 10.1016/j.btre.2022.e00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/19/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
|
11
|
Hou Y, Zhang Z, Cui Y, Peng C, Fan Y, Tan C, Wang Q, Liu Z, Gong J. Pu-erh Tea and Theabrownin Ameliorate Metabolic Syndrome in Mice via Potential Microbiota-Gut-Liver-Brain Interactions. Food Res Int 2022; 162:112176. [DOI: 10.1016/j.foodres.2022.112176] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
|
12
|
Cheng L, Wei Y, Xu L, Peng L, Wang Y, Wei X. Gut Microbiota Differentially Mediated by Qingmao Tea and Qingzhuan Tea Alleviated High-Fat-Induced Obesity and Associated Metabolic Disorders: The Impact of Microbial Fermentation. Foods 2022; 11:3210. [PMCID: PMC9601715 DOI: 10.3390/foods11203210] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Although dark tea is a unique microbial-fermented tea with a high reputation for having an antiobesity effect, little is known about the effect of microbial fermentation on tea leaves’ antiobesity properties. This study compared the antiobesity effects of microbial-fermented Qingzhuan tea (QZT) and unfermented Qingmao tea (QMT), providing insight into their underlying mechanisms associated with gut microbiota. Our results indicated that the supplementation of QMT extract (QMTe) and QZT extract (QZTe) displayed similar antiobesity effects in high-fat diet (HFD)-fed mice, but the hypolipidemic effect of QZTe was significantly stronger than that of QMTe. The microbiomic analysis indicated that QZTe was more effective than QMTe at regulating HFD-caused gut microbiota dysbiosis. Akkermansiaceae and Bifidobacteriaceae, which have negative correlations with obesity, were enhanced notably by QZTe, whereas Faecalibaculum and Erysipelotrichaceae, which are positively correlated with obesity, were decreased dramatically by QMTe and QZTe. A Tax4Fun analysis of QMTe/QZTe-mediated gut microbiota revealed that QMTe supplementation drastically reversed the HFD-induced upregulation of glycolysis and energy metabolism, whereas QZTe supplementation significantly restored the HFD-caused downregulation of pyruvate metabolism. Our findings suggested that microbial fermentation showed a limited effect on tea leaves’ antiobesity, but enhanced their hypolipidemic activity, and QZT could attenuate obesity and associated metabolic disorders by favorably modulating gut microbiota.
Collapse
Affiliation(s)
- Lizeng Cheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lurong Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lanlan Peng
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yuanfeng Wang
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
- Correspondence: (Y.W.); (X.W.); Tel.: +86-18616184495 (Y.W.); +86-021-34208533 (X.W.)
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Correspondence: (Y.W.); (X.W.); Tel.: +86-18616184495 (Y.W.); +86-021-34208533 (X.W.)
| |
Collapse
|
13
|
An Improved Method of Theabrownins Extraction and Detection in Six Major Types of Tea (Camellia sinensis). J CHEM-NY 2022. [DOI: 10.1155/2022/8581515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Tea pigments consisting of theabrownins (TBs), theaflavins (TFs), and thearubigins (TRs) affect the color and taste of tea. TBs include a variety of water-soluble compounds, but do not dissolve in n-butanol and ethyl acetate. Previously, the traditional method of TB extraction only mixed tea with n-butanol, and TBs were retained in the water phase. However, without ethyl acetate extraction, TFs and TRs remained in the water phase and affected the detection of TB content. Although an improved method had been devised by adding an ethyl acetate extraction step between tea production and n-butanol extraction, the proportional equation for calculating TB content (%) was not yet developed. In this study, we compared the absorbance at 380 nm (A380) of TB solutions from six major types of tea (green, yellow, oolong, white, black, and dark teas) extracted by improved and traditional methods from the same tea samples. Significantly lower A380 values were obtained from TB solutions via the improved method compared to the traditional method for six major types of tea, and the highest and lowest slops in TB concentrations from A380 analyses were from dark tea and green tea, respectively. Moreover, newly developed equations for TB content in those six tea types extracted by the improved methods were also established.
Collapse
|
14
|
Xiao Y, Huang Y, Long F, Yang D, Huang Y, Han Y, Wu Y, Zhong K, Bu Q, Gao H, Huang Y. Insight into structural characteristics of theabrownin from Pingwu Fuzhuan brick tea and its hypolipidemic activity based on the in vivo zebrafish and in vitro lipid digestion and absorption models. Food Chem 2022; 404:134382. [DOI: 10.1016/j.foodchem.2022.134382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022]
|
15
|
Yue S, Peng C, Zhao D, Xia X, Tan C, Wang Q, Gong J. Theabrownin isolated from Pu-erh tea regulates Bacteroidetes to improve metabolic syndrome of rats induced by high-fat, high-sugar and high-salt diet. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4250-4265. [PMID: 35040129 DOI: 10.1002/jsfa.11777] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/12/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Theabrownin (TB), a high macromolecular compound and a characteristic component of Pu-erh tea, is able to markedly regulate blood lipid and glucose metabolism. We hypothesized that TB could ameliorate metabolic syndrome induced by high-fat, high-sugar and high-salt diet (HFSSD). RESULTS To test these hypotheses, we fed rats with HFSSD and administered a gavage of TB. HFSSD successfully induced metabolic syndrome in rats. TB significantly improved serum lipid status, prevented obesity and fasting blood glucose (FBG) and glycosylated hemoglobin (GHbAIc) in rats. After TB intervention, Firmicutes/Bacteroides (F/B) ratio was greatly reduced and showed a dose-effect relationship. TB promoted the reproduction of Bacteroidetes such as prevotella_sp._CAG:1031, prevotella_sp._MGM2 and Bacteroides_sartorii, and inhibited the reproduction of Firmicutes such as roseburia_sp._1XD42-69 and roseburia_sp._831b. CONCLUSION In HFSSD mode, prevotella_sp._CAG:1031 was one of the main dominant characteristic bacteria of TB targeting regulation, while roseburia_sp._1XD42-69 mainly inhibitory intestinal bacteria, which help to reduce body weight, TG and blood sugar levels of HFSSD rats. Glycerophospholipid metabolism, arachidonic acid metabolism, glycolysis/gluconeogenesis and insulin resistance were the critical pathway. TB has a high application potential in reducing the risk of metabolic diseases. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Suijuan Yue
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Chunxiu Peng
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, China
| | - Dan Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xuechao Xia
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Chao Tan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Qiuping Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jiashun Gong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
16
|
Li T, Yan B, Xiao X, Zhou L, Zhang J, Yuan Q, Shan L, Wu H, Efferth T. Onset of p53/NF-κB signaling crosstalk in human melanoma cells in response to anti-cancer theabrownin. FASEB J 2022; 36:e22426. [PMID: 35779042 DOI: 10.1096/fj.202200261r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 06/10/2022] [Indexed: 12/27/2022]
Abstract
As a major tea component, theabrownin represents a promising anti-cancer candidate. However, its effect on the melanoma is unknown. To evaluate the in vitro and in vivo anti-melanoma efficacy of TB, we conducted cell viability, immunostaining, comet, and TUNEL assays on human A375 melanoma cells, and employed a zebrafish xenograft model of A375 cells. Real-time PCR (qPCR) and western blot were conducted to explore the molecular mechanisms of TB. In vitro, TB significantly inhibited the proliferation of A375 cells, and A375 cells showed the highest inhibitory rate among the other melanoma cell line (A875) and human dermal fibroblasts. TB triggered DNA damage and induced apoptosis of A375 cells and significantly inhibited the growth of A375 xenograft tumors in zebrafishes. Several key molecular events were activated by TB, including DNA damage-associated p53 and NF-κB pathways, through up-regulation of GADD45α, γ-H2A.X, phospho-ATM(p-ATM), phospho-ATR (p-ATR), phospho-p53 (p-p53), phospho-IKKα/β (p-IKKα/β), phospho-p65 (p-p65), etc. However, the TB-activated molecular events were counteracted by either knockdown of p53 or p65, and only dual knockdown of both p53 and p65 completed counteracted the anti-melanoma efficacy of TB. In conclusion, TB triggered DNA damage and thereby inhibited proliferation and induced cellular senescence and apoptosis of melanoma cells through mechanisms mediated by p53/NF-κB signaling crosstalk. This is the first report on the efficacy and mechanisms of TB on melanoma cells, making TB a promising candidate for anti-melanoma agent development.
Collapse
Affiliation(s)
- Ting Li
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Plastic and Aesthetic Center, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Bo Yan
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Cell Resource Bank and Integrated Cell Preparation Center of Xiaoshan District, Hangzhou Regional cell preparation Center (Shangyu Biotechnology Co., Ltd), Hangzhou, China
| | - Xiujuan Xiao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | | | - Qiang Yuan
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huiling Wu
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Plastic and Aesthetic Center, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
17
|
A comprehensive review on bioavailability, safety and antidepressant potential of natural bioactive components from tea. Food Res Int 2022; 158:111540. [DOI: 10.1016/j.foodres.2022.111540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/12/2022] [Accepted: 06/18/2022] [Indexed: 11/22/2022]
|
18
|
Hu S, Li X, Gao C, Meng X, Li M, Li Y, Xu T, Hao Q. Detection of composition of functional component theabrownins in Pu-erh tea by degradation method. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Effect of main taste compounds on the release of methoxyphenolic compounds in Pu-erh tea. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Theabrownin modulates the gut microbiome and serum metabolome in aging mice induced by D-galactose. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
21
|
Untargeted and targeted metabolomics reveals potential marker compounds of an tea during storage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Ma W, Shi Y, Yang G, Shi J, Ji J, Zhang Y, Wang J, Peng Q, Lin Z, Lv H. Hypolipidaemic and antioxidant effects of various Chinese dark tea extracts obtained from the same raw material and their main chemical components. Food Chem 2021; 375:131877. [PMID: 34953244 DOI: 10.1016/j.foodchem.2021.131877] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 12/28/2022]
Abstract
In order to investigate the hypolipidaemic and antioxidant effects of various dark teas produced from different post-fermentation using the same raw material, a hyperlipidaemia zebrafish model combined with binding bile salts assay and antioxidant assays were performed in this study. Results showed that the hypolipidaemic effect of dark tea extracts increased significantly (p < 0.05) while the antioxidant ability decreased sharply compared with raw material. Particularly, Liupao tea (50%) and Pu-erh tea (48%) showed promising hypolipidaemic potential; however, the antioxidant capacity of Pu-erh tea decreased (31-49%) most dramatically. Besides, the levels of total polyphenols and catechins decreased sharply, but theabrownin, gallic acid, and caffeine increased significantly after post-fermentation. Moreover, the potential mechanisms of regulating hyperlipidaemia by dark tea extracts were discussed. These results suggest that microbial fermentation significantly affects the bioactivity of dark teas, and provide theoretical basis for processing and improving of dark tea products for hyperlipidaemia therapy.
Collapse
Affiliation(s)
- Wanjun Ma
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yali Shi
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Gaozhong Yang
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiang Shi
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Junpeng Ji
- Hunter Biotechnology, Inc, Hangzhou 310051, China
| | - Yue Zhang
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jiatong Wang
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qunhua Peng
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Haipeng Lv
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
23
|
He M, Lyu X. Application of BRAFO-tiered approach for health benefit-risk assessment of dark tea consumption in China. Food Chem Toxicol 2021; 158:112615. [PMID: 34656696 DOI: 10.1016/j.fct.2021.112615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/09/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022]
Abstract
Dark tea, a unique tea fermented primarily in China, has numerous potential beneficial effects. However, harmful substances present in dark tea have provoked significant concern. To conduct a quantitative benefit-risk assessment of dark tea for Chinese residents and provide guidance on rational consumption, a framework of Benefit-Risk Analysis for Foods (BRAFO) and meta-analysis was applied to construct a disability-adjusted life year (DALY). Based on the BRAFO-tiered approach, a reference scenario (no intake) and an alternative scenario (intake of 3 cups/day) were determined. The overall health impacts of dark tea were simulated by comparing the risks of fluoride and AF with benefits of reduced-risk to coronary heart disease (CHD) and diabetes in different scenarios. Three cups of fermented tea consumed per day decreased risks of CHD and diabetes by 8.16% and 12.77% respectively. After quantitative integration of information, the ultimate net health effect was found to be -1958.827 illustrating that the benefits of drinking three cups of dark tea per day outweigh the risks. However, considering the uncertainties in the process, decision-makers should proceed with caution, consulting additional well-conducted studies and further managing harmful substances in dark tea.
Collapse
Affiliation(s)
- Mengru He
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaohua Lyu
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
24
|
Wang Y, Zhao A, Du H, Liu Y, Qi B, Yang X. Theabrownin from Fu Brick Tea Exhibits the Thermogenic Function of Adipocytes in High-Fat-Diet-Induced Obesity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11900-11911. [PMID: 34581185 DOI: 10.1021/acs.jafc.1c04626] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study explored whether the antiobesity effect of theabrownin (TB) extracted from Fu brick tea (FBT) was associated with the activation of brown adipose tissue (BAT) or browning of the white adipose tissue (WAT) in mice fed a high-fat diet (HFD). Mice were divided into five groups, which received a normal diet, HFD, or HFD plus TB (200, 400, and 800 mg/kg), respectively. A 12-week administration of TB in a dose-dependent manner reduced the body weight and WAT weight and improved lipid and glucose disorders in the HFD-fed mice (p < 0.05). TB also promoted the expression of thermogenic and mitochondrial genes, whereas inflammation genes were reduced in interscapular BAT (iBAT), inguinal WAT (iWAT), and epididymis white adipose tissue (eWAT), accompanied by improvement in the intestinal homeostasis by improving SCFAs, especially butyric acid levels (p < 0.05), which was related to thermogenic and inflammatory factors of iBAT and iWAT. Mechanistically, TB was shown to efficiently promote thermogenesis by stimulating the AMPK-PGC1α pathway with an increase in uncoupling protein 1 (UCP1). Conclusively, these findings suggest that long-term consumption of TB can enhance BAT activity and WAT browning by activating the AMPK-PGC1α pathway and modulating SCFAs; meanwhile, SCFAs regulating TB improved inflammatory disorder in HFD-fed mice.
Collapse
Affiliation(s)
- Yu Wang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Aiqing Zhao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Haiping Du
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yueyue Liu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Bangran Qi
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
25
|
An T, Chen M, Zu Z, Chen Q, Lu H, Yue P, Gao X. Untargeted and targeted metabolomics reveal changes in the chemical constituents of instant dark tea during liquid-state fermentation by Eurotium cristatum. Food Res Int 2021; 148:110623. [PMID: 34507767 DOI: 10.1016/j.foodres.2021.110623] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 11/26/2022]
Abstract
Instant green tea powder was used as raw material to prepare an instant dark tea via liquid-state fermentation by Eurotium cristatum. To understand how the chemical constituents present in fermented green tea develop during fermentation, samples were collected on different days during fermentation for qualitative analyses by ultra-performance liquid chromatography-Q Exactive Orbitrap/Mass spectrometry. Untargeted metabolomics analyses revealed that the levels of original secondary metabolites in the instant green tea changed significantly from day 3 to day 5 during fermentation. Targeted metabolomics indicated that the levels of galloylated catechins (GCs) and free amino acids (FAAs) significantly decreased, but the nongalloylated catechins (NGCs), alkaloids, thearubigins and theabrownins increased dramatically after fermentation. The changes in the contents of catechins, gallic acid and free amino acids in the instant dark tea samples were positively related to the DPPH radical scavenging activities in vitro, and the phenolic acids and FAAs were positively related to the inhibitory effects towards α-glucosidase. These results showed that fermentation by Eurotium cristatum is critical to the formation of certain qualities of instant dark tea.
Collapse
Affiliation(s)
- Tingting An
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, Anhui Engineering Laboratory for Agro-products Processing, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Mengxue Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, Anhui Engineering Laboratory for Agro-products Processing, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Zhongqi Zu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, Anhui Engineering Laboratory for Agro-products Processing, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, Anhui Engineering Laboratory for Agro-products Processing, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Hengqian Lu
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Pengxiang Yue
- Shandong Tailory Agriculture Technology Co., Ltd., Taian 271400, Shandong, China
| | - Xueling Gao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, Anhui Engineering Laboratory for Agro-products Processing, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China.
| |
Collapse
|
26
|
Circulating bile acids as a link between the gut microbiota and cardiovascular health: impact of prebiotics, probiotics and polyphenol-rich foods. Nutr Res Rev 2021; 35:161-180. [PMID: 33926590 DOI: 10.1017/s0954422421000081] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Beneficial effects of probiotic, prebiotic and polyphenol-rich interventions on fasting lipid profiles have been reported, with changes in the gut microbiota composition believed to play an important role in lipid regulation. Primary bile acids, which are involved in the digestion of fats and cholesterol metabolism, can be converted by the gut microbiota to secondary bile acids, some species of which are less well reabsorbed and consequently may be excreted in the stool. This can lead to increased hepatic bile acid neo-synthesis, resulting in a net loss of circulating low-density lipoprotein. Bile acids may therefore provide a link between the gut microbiota and cardiovascular health. This narrative review presents an overview of bile acid metabolism and the role of probiotics, prebiotics and polyphenol-rich foods in modulating circulating cardiovascular disease (CVD) risk markers and bile acids. Although findings from human studies are inconsistent, there is growing evidence for associations between these dietary components and improved lipid CVD risk markers, attributed to modulation of the gut microbiota and bile acid metabolism. These include increased bile acid neo-synthesis, due to bile sequestering action, bile salt metabolising activity and effects of short-chain fatty acids generated through bacterial fermentation of fibres. Animal studies have demonstrated effects on the FXR/FGF-15 axis and hepatic genes involved in bile acid synthesis (CYP7A1) and cholesterol synthesis (SREBP and HMGR). Further human studies are needed to determine the relationship between diet and bile acid metabolism and whether circulating bile acids can be utilised as a potential CVD risk biomarker.
Collapse
|
27
|
Xie G, Yan J, Lu A, Kun J, Wang B, Song C, Tong H, Meng Q. Characterizing relationship between chemicals and in vitro bioactivities of teas made by six typical processing methods using a single Camellia sinensis cultivar, Meizhan. Bioengineered 2021; 12:1251-1263. [PMID: 33904375 PMCID: PMC8806275 DOI: 10.1080/21655979.2021.1903237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Processing method is considered as a major factor that affects biotransformation of phytochemicals in tea and leads to diverse flavor and bioactivity of tea. In the present work, six typical tea manufacturing processings were employed to compare the effect on chemical composition of teas through using leaves of the single tea cultivar – – Camellia sinensis var. Meizhan. And in vitro antioxidant activity, inhibition against α-glucosidase and three lipid metabolism enzymes of these teas were also investigated, the relationships among them were analyzed further. As fresh leaves were processed into six categories of teas, the content of total catechins (TCs) has decreased in varying degrees while theaflavins (TFs) has increased. The antioxidant capacity composite index (ACCI) from high to low were green tea, yellow tea, oolong tea, white tea, dark tea, and black tea with the range from 98.44 to 58.38, which dominated by the content of TCs. Furthermore, all categories of teas possessed an inhibition effect on the pancreatic lipase (PL), 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-COA reductase), lecithin cholesterol acyltransferase (LCAT), and α-glucosidase. The inhibition rate of PL and α-glucosidase appears to be positively influenced by TFs content (r =0.863, r =0.857, p < 0.05) while that of LCAT showed significant positive correlations with the content of tea polyphonels (TPs) (r = 0.902, p < 0.01). These results provide a better understanding of the relationships between processing method and chemical components of tea. It is suggested that various tea categories possess potential healthy effects which could serve as promising nutritional supplements.![]() ![]()
Collapse
Affiliation(s)
- Guanhua Xie
- College of Food Science, Southwest University, Chongqing, China
| | - Jingna Yan
- College of Food Science, Southwest University, Chongqing, China
| | - Anxia Lu
- College of Food Science, Southwest University, Chongqing, China
| | - Jirui Kun
- College of Food Science, Southwest University, Chongqing, China
| | - Bei Wang
- College of Food Science, Southwest University, Chongqing, China
| | - Chengda Song
- College of Food Science, Southwest University, Chongqing, China
| | - Huarong Tong
- College of Food Science, Southwest University, Chongqing, China
| | - Qing Meng
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
28
|
Effects of bioactive components of Pu-erh tea on gut microbiomes and health: A review. Food Chem 2021; 353:129439. [PMID: 33743430 DOI: 10.1016/j.foodchem.2021.129439] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 12/20/2022]
Abstract
Pu-erh tea is a post-fermentation tea with unique flavor and multiple health benefits. Due to the various microorganisms involved in the post-fermentation process, Pu-erh tea contains highly complex components, which have rich interactions with the gut microbiomes (GMs). Because the structure and homeostasis of GMs are closely related to human wellness and the various diseases progress, the beneficial effects of Pu-erh tea on GMs have a great potential for application in health care. However, there is no systematic summary of the bioactive components of Pu-erh tea, and their effects on the GMs. Here, we review the current studies on the effects of Pu-erh tea and its bioactive components on the structure of GMs as well as on health improvement, and further discuss the relevant quality indicators. This "components - function - indicators" clue will hopefully stimulate the standardization of Pu-erh tea fermentation process and the development of its functional products.
Collapse
|
29
|
Deng X, Hou Y, Zhou H, Li Y, Xue Z, Xue X, Huang G, Huang K, He X, Xu W. Hypolipidemic, anti-inflammatory, and anti-atherosclerotic effects of tea before and after microbial fermentation. Food Sci Nutr 2021; 9:1160-1170. [PMID: 33598200 PMCID: PMC7866600 DOI: 10.1002/fsn3.2096] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Microbial fermentation significantly affects the flavor and efficacy of tea. It is generally believed that fermented tea is more effective in lowering lipids, while unfermented tea can more effectively inhibit inflammation. However, there is not sufficient evidence to support this claim. To systematically compare the hypolipidemic, anti-inflammatory, and anti-atherosclerotic effects of tea before and after microbial fermentation, hyperlipidemic rats and inflammatory injury cells were treated with Monascus purpureus-fermented pu-erh tea water extract (MPT) and sun-dried green tea water extract (SGT), respectively. RESULTS MPT, with higher levels of theabrownins, flavonoids, gallic acid (GA), and lovastatin, was more effective in reducing serum triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and inflammatory cytokines (TNF-α, IL-1β, and IL-6), while SGT, with higher levels of tea polyphenols, amino acids, (-)-epigallocatechin gallate (EGCG), and theaflavins, was more effective in increasing serum high-density lipoprotein cholesterol (HDL-C) in hyperlipidemic rats. The foam cells on the arterial wall of the rats in the MPT group were visibly less, and the thrombosis time was longer than that in the SGT group. Cell experiments showed that MPT was more effective in protecting endothelial cells from damage than SGT. CONCLUSION Surprisingly, Monascus purpureus-fermented pu-erh tea not only had better hypolipidemic and anti-atherosclerotic effects than its raw material (sun-dried green tea), but also was superior in anti-inflammatory effects to the latter, which was possibly attributable to the great changes in functional ingredients during microbial fermentation.
Collapse
Affiliation(s)
- Xiujuan Deng
- College of Food Science and TechnologyYunnan Agricultural UniversityKunmingChina
| | - Yan Hou
- College of Long Run Pu‐erh TeaYunnan Agricultural UniversityKunmingChina
| | - Hongjie Zhou
- College of Long Run Pu‐erh TeaYunnan Agricultural UniversityKunmingChina
| | - Yali Li
- College of Long Run Pu‐erh TeaYunnan Agricultural UniversityKunmingChina
| | - Zhiqiang Xue
- College of Long Run Pu‐erh TeaYunnan Agricultural UniversityKunmingChina
| | - Xiaoting Xue
- College of Long Run Pu‐erh TeaYunnan Agricultural UniversityKunmingChina
| | - Ganghua Huang
- College of Long Run Pu‐erh TeaYunnan Agricultural UniversityKunmingChina
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityBeijingChina
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityBeijingChina
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityBeijingChina
| |
Collapse
|
30
|
Wu Y, Sun H, Yi R, Tan F, Zhao X. Anti‐obesity effect of Liupao tea extract by modulating lipid metabolism and oxidative stress in high‐fat‐diet‐induced obese mice. J Food Sci 2020; 86:215-227. [DOI: 10.1111/1750-3841.15551] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/02/2020] [Accepted: 11/02/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Ya Wu
- Chongqing Collaborative Innovation Center for Functional Food Chongqing University of Education Chongqing 400067 China
- Chongqing Engineering Research Center of Functional Food Chongqing University of Education Chongqing 400067 China
- Chongqing Engineering Laboratory for Research and Development of Functional Food Chongqing University of Education Chongqing 400067 China
- College of Biological and Chemical Engineering Chongqing University of Education Chongqing 400067 China
| | - Hailan Sun
- Department of Nutrition Chongqing Health Center for Women and Children Chongqing 400021 China
| | - Ruokun Yi
- Chongqing Collaborative Innovation Center for Functional Food Chongqing University of Education Chongqing 400067 China
- Chongqing Engineering Research Center of Functional Food Chongqing University of Education Chongqing 400067 China
- Chongqing Engineering Laboratory for Research and Development of Functional Food Chongqing University of Education Chongqing 400067 China
| | - Fang Tan
- Department of Public Health Our Lady of Fatima University Valenzuela 838 Philippines
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food Chongqing University of Education Chongqing 400067 China
- Chongqing Engineering Research Center of Functional Food Chongqing University of Education Chongqing 400067 China
- Chongqing Engineering Laboratory for Research and Development of Functional Food Chongqing University of Education Chongqing 400067 China
| |
Collapse
|
31
|
Armstrong L, Araújo Vieira do Carmo M, Wu Y, Antônio Esmerino L, Azevedo L, Zhang L, Granato D. Optimizing the extraction of bioactive compounds from pu-erh tea (Camellia sinensis var. assamica) and evaluation of antioxidant, cytotoxic, antimicrobial, antihemolytic, and inhibition of α-amylase and α-glucosidase activities. Food Res Int 2020; 137:109430. [DOI: 10.1016/j.foodres.2020.109430] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/13/2020] [Accepted: 06/07/2020] [Indexed: 12/13/2022]
|
32
|
Enhancement of the water-resistance properties of an edible film prepared from mung bean starch via the incorporation of sunflower seed oil. Sci Rep 2020; 10:13622. [PMID: 32788603 PMCID: PMC7423944 DOI: 10.1038/s41598-020-70651-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/24/2020] [Indexed: 11/27/2022] Open
Abstract
Mung bean starch (MBS)-based edible films with incorporation of guar gum (GG) and sunflower seed oil (SSO) were developed in this study. MBS, GG, and SSO were used as the main filmogenic biopolymer, thickener, and hydrophobicity-imparting substance, respectively. To investigate the effect of SSO content on the physicochemical, mechanical, and optical properties of the films, they were supplemented with various concentrations (0, 0.5, 1, and 2%, w/w) of SSO. Increasing SSO content tended to decrease tensile strength, elongation at break, crystallinity, water solubility, and the water vapor permeability; in contrast, it increased the oxygen transmission rate and water contact angle. Consequently, the incorporation of SSO into the matrix of MBS-based films decreased their mechanical strength but effectively enhanced their water-resistance properties. Therefore, the MBS-based film developed here can be properly used as an edible film in settings that require high water-resistance properties but do not call for robust mechanical strength.
Collapse
|
33
|
Long P, Wen M, Granato D, Zhou J, Wu Y, Hou Y, Zhang L. Untargeted and targeted metabolomics reveal the chemical characteristic of pu-erh tea (Camellia assamica) during pile-fermentation. Food Chem 2020; 311:125895. [DOI: 10.1016/j.foodchem.2019.125895] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 12/26/2022]
|
34
|
Cao SY, Li BY, Gan RY, Mao QQ, Wang YF, Shang A, Meng JM, Xu XY, Wei XL, Li HB. The In Vivo Antioxidant and Hepatoprotective Actions of Selected Chinese Teas. Foods 2020; 9:E262. [PMID: 32121649 PMCID: PMC7143450 DOI: 10.3390/foods9030262] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
Tea is a popular beverage and shows very strong in vitro antioxidant activity. However, the relationship among in vitro and in vivo antioxidant activities in teas is seldom reported. In this study, in vivo antioxidant and hepatoprotective activities of 32 selected Chinese teas were evaluated on a mouse model with acute alcohol-induced liver injury. The results showed that most teas significantly reduced the levels of alanine transaminase, aspartate transaminase, alkaline phosphatase, triacylglycerol, and total bilirubin in the sera of mice at a dose of 400 mg/kg. In addition, most teas greatly decreased the malondialdehyde level and increased the levels of superoxide dismutase, glutathione peroxidase, and glutathione in the liver of mice, indicating the antioxidant and hepatoprotective activities of teas. Furthermore, the in vivo antioxidant activity of dark tea was stronger than that of green tea, opposite to the results of the in vitro study. Among these 32 teas, Black Fu Brick Tea, Pu-erh Tea, and Qing Brick Tea showed the strongest antioxidant and hepatoprotective activities. Moreover, total phenolic content as well as the contents of epicatechin, gallocatechin gallate, and chlorogenic acid were found to contribute, at least partially, to the antioxidant and hepatoprotective actions of these teas. Overall, teas are good dietary components with antioxidant and hepatoprotective actions.
Collapse
Affiliation(s)
- Shi-Yu Cao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (S.-Y.C.); (B.-Y.L.); (Q.-Q.M.); (A.S.); (J.-M.M.); (X.-Y.X.)
| | - Bang-Yan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (S.-Y.C.); (B.-Y.L.); (Q.-Q.M.); (A.S.); (J.-M.M.); (X.-Y.X.)
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China;
| | - Qian-Qian Mao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (S.-Y.C.); (B.-Y.L.); (Q.-Q.M.); (A.S.); (J.-M.M.); (X.-Y.X.)
| | - Yuan-Feng Wang
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China;
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (S.-Y.C.); (B.-Y.L.); (Q.-Q.M.); (A.S.); (J.-M.M.); (X.-Y.X.)
| | - Jin-Ming Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (S.-Y.C.); (B.-Y.L.); (Q.-Q.M.); (A.S.); (J.-M.M.); (X.-Y.X.)
| | - Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (S.-Y.C.); (B.-Y.L.); (Q.-Q.M.); (A.S.); (J.-M.M.); (X.-Y.X.)
| | - Xin-Lin Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (S.-Y.C.); (B.-Y.L.); (Q.-Q.M.); (A.S.); (J.-M.M.); (X.-Y.X.)
| |
Collapse
|
35
|
Shen Y, Xiao X, Wu K, Wang Y, Yuan Y, Liu J, Sun S, Liu J. Effects and molecular mechanisms of Ninghong black tea extract in nonalcoholic fatty liver disease of rats. J Food Sci 2020; 85:800-807. [PMID: 32090345 DOI: 10.1111/1750-3841.14846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 09/03/2019] [Accepted: 09/16/2019] [Indexed: 12/24/2022]
Abstract
The aim of this study is to observe the effects of Ninghong black tea extract on fat deposition and high-fat diet-induced nonalcoholic fatty liver disease (NAFLD) and to explore the potential mechanisms of these effect. Under 2% Ninghong black tea extract diet feeding in rat model, the results showed that Ninghong black tea extract decreased the body fat ratio and the number of lipid droplets in the liver and significantly alleviated NAFLD in the rat model. The real-time fluorescence quantitative polymerase chain reaction results showed that Ninghong black tea extract significantly upregulated the expression of peroxisome proliferator-activated receptor α (PPARα), which is important in fatty acid β-oxidation, and microsomal triglyceride transfer protein (MTP), which plays an important role in the synthesis of very low density lipoprotein (VLDL). By promoting the expression of PPARα and MTP in liver tissue and thereby promoting fatty acid β-oxidation and VLDL synthesis, Ninghong black tea extract relieves high-fat diet-induced NAFLD.
Collapse
Affiliation(s)
- Yu Shen
- Molecular Biology Research Center, School of Life Sciences, Central South Univ., Changsha, 410078, China
| | - Xiaojuan Xiao
- Molecular Biology Research Center, School of Life Sciences, Central South Univ., Changsha, 410078, China
| | - Kunlu Wu
- Molecular Biology Research Center, School of Life Sciences, Central South Univ., Changsha, 410078, China
| | - Yanpeng Wang
- Molecular Biology Research Center, School of Life Sciences, Central South Univ., Changsha, 410078, China
| | - Yijun Yuan
- Molecular Biology Research Center, School of Life Sciences, Central South Univ., Changsha, 410078, China
| | - Jianwei Liu
- Molecular Biology Research Center, School of Life Sciences, Central South Univ., Changsha, 410078, China
| | - Shuming Sun
- Molecular Biology Research Center, School of Life Sciences, Central South Univ., Changsha, 410078, China
| | - Jing Liu
- Molecular Biology Research Center, School of Life Sciences, Central South Univ., Changsha, 410078, China
| |
Collapse
|
36
|
Structural Characteristics and Hypolipidemic Activity of Theabrownins from Dark Tea Fermented by Single Species Eurotium cristatum PW-1. Biomolecules 2020; 10:biom10020204. [PMID: 32019226 PMCID: PMC7072556 DOI: 10.3390/biom10020204] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 11/22/2022] Open
Abstract
Recently, studies on theabrownins (TBs), the main bioactive polymeric pigments found in dark tea, have received increasing attention for its health effects. Thus far, information on their structural characteristics is unclear. In the present study, theabrownins were isolated from single species Eurotium cristatum PW-1-fermented loose tea and their structural and hypolipidemic characteristics were studied for the first time. The theabrownins were fractionated by their molecular weights and were then analyzed. Ultraviolet–visible spectrophotometry (UV-Vis) and Flourier transformation infrared spectroscopy (FT-IR) showed that they were polymerized phenolic substances containing abundant hydroxy and carboxyl groups. All theabrownin samples exhibited hypolipidemic activity in high-fat zebrafish; among which TBs-10-30k sample, decreased lipid level in high-fat zebrafish to 51.57% at 1000 μg/mL, was most effective. It was found that TBs-10-30k was a type of amorphous and thermostable polymer with slice shape and smooth surface under scanning electron microscope (SEM). Atomic force microscope (AFM) analysis showed that it had island-like structure because of aggregation of theabrownin molecules. Pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) analysis further showed that the main pyrolytic products of TBs-10-30k were hexadecanoic acid (33.72%), phenol (14.90%), and eicosane (12.95%), indicating TBs-10-30k was mainly composed of phenols, lipids, saccharides, and proteins. These results not only facilitate subsequent identification of theabrownins, but also provide insights into the applications of theabrownins in functional foods.
Collapse
|
37
|
Xiao Y, Zhong K, Bai JR, Wu YP, Zhang JQ, Gao H. The biochemical characteristics of a novel fermented loose tea by Eurotium cristatum (MF800948) and its hypolipidemic activity in a zebrafish model. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108629] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
38
|
Luo D, Chen X, Zhu X, Liu S, Li J, Xu J, Zhao J, Ji X. Pu-Erh Tea Relaxes the Thoracic Aorta of Rats by Reducing Intracellular Calcium. Front Pharmacol 2019; 10:1430. [PMID: 31849675 PMCID: PMC6892945 DOI: 10.3389/fphar.2019.01430] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/08/2019] [Indexed: 01/05/2023] Open
Abstract
Previous studies suggested that pu-erh tea aqueous extract could lower blood pressure and ameliorate hypertension symptoms. However, the antihypertension mechanisms of pu-erh tea remain unclear. In this work, the direct effects of pu-erh tea on vessels and cells were investigated by detecting isometric tension and intracellular calcium ([Ca2+]i), respectively. Additionally, to identify the main active components, the aqueous extract of pu-erh was separated by organic solvents to obtain various fractions, and the effects of these fractions on arteries were assessed. The results showed that pu-erh aqueous extract vasodilated rat thoracic aortas preconstricted by phenylephrine or KCl. These vasodilation effects were not significantly affected by the removal of the endothelium or by preincubation with potassium channel blockers (tetraethylammonium, glibenclamide, aminopyridine, or barium chloride). Moreover, pu-erh aqueous extract could reduce the vessel contractibility induced by CaCl2 and phenylephrine under KCl-depolarizing or Ca2+-free buffer conditions, respectively. Furthermore, pu-erh aqueous extract attenuated the KCl-induced increase in [Ca2+]i in cultured rat aortic smooth muscle A7r5 cells. In addition, the chloroform precipitate of pu-erh aqueous extract produced the most potent vasodilation. Theabrownins (the characteristic components of pu-erh tea) accounted for 41.91 ± 1.09 % of the chloroform precipitate and vasodilated arteries in an endothelium-independent manner. In addition, the vasodilation effect of caffeine was verified. In conclusion, theabrownins and caffeine should be the two main active components in pu-erh tea. Pu-erh aqueous extract vasodilated arteries in an endothelium-independent manner, which might partly be attributed to the decrease in extracellular Ca2+ influx. Moreover, our study provided data on the potential mechanism of the hypotensive actions of pu-erh tea, which might improve our understanding of the effect of pu-erh tea on the prevention and treatment of hypertension.
Collapse
Affiliation(s)
- Dan Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xuejiao Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xu Zhu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shuang Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jie Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jianping Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jinhua Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xu Ji
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, China
| |
Collapse
|
39
|
Sun Y, Wang Y, Song P, Wang H, Xu N, Wang Y, Zhang Z, Yue P, Gao X. Anti-obesity effects of instant fermented teas in vitro and in mice with high-fat-diet-induced obesity. Food Funct 2019; 10:3502-3513. [PMID: 31143917 DOI: 10.1039/c9fo00162j] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity is a chronic metabolic disorder that is associated with higher risks of developing diabetes and cardiovascular disease. Chinese dark tea is a fermented beverage with many biological effects and could be considered for the management of obesity. This study is aimed to assess the possible anti-obesity properties of instant dark tea (IDT) and instant pu-erh tea (PET) in high fat diet (HFD)-fed mice. Male C57BL/6 mice were divided into 5 groups. They received low-fat diet (LFD), HFD, HFD supplemented with drinking IDT infusion (5 mg mL-1), PET infusion (5 mg mL-1) or water for 8 weeks. The results showed IDT exhibited better inhibitory effect than PET on body weight gain and visceral fat weights. IDT also improved the serum high-density lipoprotein cholesterol (HDL-C) level, but decreased the low-density lipoprotein cholesterol (LDL-C) and leptin levels more effectively than PET. Both IDT and PET lowered the levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in the plasma and significantly increased the ratio of albumin to globin (A/G) in the serum compared to the control group. IDT treatment reduced the malondialdehyde (MDA) level in the liver. Histomorphology evidenced that the liver tissue architecture was well preserved by IDT administration. Moreover, IDT regulated the expression of obesity-related genes more effectively than PET. Overall, the present findings have provided the proof of concept that dietary IDT could provide a safer and cost-effective option for people with HFD-induced obesity.
Collapse
Affiliation(s)
- Yue Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Yue S, Zhao D, Peng C, Tan C, Wang Q, Gong J. Effects of theabrownin on serum metabolites and gut microbiome in rats with a high-sugar diet. Food Funct 2019; 10:7063-7080. [PMID: 31621728 DOI: 10.1039/c9fo01334b] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Evidence has proven that the gut microbiota is an important environmental factor contributing to obesity by altering host energy harvest and storage. We performed a high-throughput 16S rDNA sequencing association study and serum metabolomics profiling in rats with a high-sugar diet. Our studies revealed that the high sugar diet reduced the diversity of cecal microorganisms, while the combination of theabrownin and the high sugar diet increased the diversity of cecal microorganisms and promoted reproduction of Alloprevotella, Coprostanoligenes_group, Bacteroides, Prevotellaceae_NK3B31_group, Desulfovibrio, Intestinimonas, Alistipes, Bifidobacterium, Phascolarctobacterium, Ruminococcaceae_UCG-010 and Staphylococcus. The combination also inhibited the growth of Lactobacillus, Prevotellaceae_Ga6A1_group and Tyzzerella. The Firmicutes/Bacteroidetes (F/B) ratio can be significantly reduced after the intervention of theabrownin in high sugar diet rats, and the reproduction of Bacteroides acidifaciens (BA) and Staphylococcus saprophyticus subsp. saprophyticus can be promoted. We found that the obesity-associated gut microbial species were linked to the changes in circulating metabolites. Serum levels of deoxycholic acid, cholic acid, 1H-indole-3-acetic acid, 3-indole acrylic acid and melatonin were negatively correlated with BA and Staphylococcus saprophyticus subsp. saprophyticus, but positively correlated with Lactobacillus murinus, Leptum and Gut_metagenome. 2-Hydroxy-6-methylpyridin-3-carboxylic acid, l-homoserine, and 1,7-dimethylxanthine were positively correlated with BA and Staphylococcus saprophyticus subsp. saprophyticus, but negatively correlated with Lactobacillus murinus, Leptum, and Gut_metagenome. In a high sugar diet mode, theabrownin reduced the body weight and triglycerides and improved insulin resistance mainly by targeting the reproduction of intestinal microorganisms such as BA, Staphylococcus saprophyticus subsp. saprophyticus, Lactobacillus murinus, Leptum, Gut_metagenome and so on. A strong correlation between cecal microorganisms and serum metabolites, obesity and insulin resistance was observed. Theabrownin has high potential in reducing the risk of cardiovascular diseases such as diabetes and obesity.
Collapse
Affiliation(s)
- Suijuan Yue
- College of Food Science and Technology, Yunnan Agricultural University, Heilong Tan, Kunming, Yunnan 650201, China.
| | - Dan Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Heilong Tan, Kunming, Yunnan 650201, China.
| | - Chunxiu Peng
- College of Horticulture and Landscape, Yunnan Agricultural University, Heilong Tan, Kunming, Yunnan 650201, China
| | - Chao Tan
- College of Food Science and Technology, Yunnan Agricultural University, Heilong Tan, Kunming, Yunnan 650201, China.
| | - Qiuping Wang
- College of Food Science and Technology, Yunnan Agricultural University, Heilong Tan, Kunming, Yunnan 650201, China.
| | - Jiashun Gong
- College of Food Science and Technology, Yunnan Agricultural University, Heilong Tan, Kunming, Yunnan 650201, China.
| |
Collapse
|
41
|
Wu E, Zhang T, Tan C, Peng C, Chisti Y, Wang Q, Gong J. Theabrownin from Pu-erh tea together with swinging exercise synergistically ameliorates obesity and insulin resistance in rats. Eur J Nutr 2019; 59:1937-1950. [PMID: 31273522 DOI: 10.1007/s00394-019-02044-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/30/2019] [Indexed: 01/03/2023]
Abstract
PURPOSE Theabrownin (TB)-containing Pu-erh tea has been shown to be hypolipidemic in rats fed a high-fat diet. Physical exercise such as swinging is also known to reduce obesity. We hypothesized that TB in combination with swinging can synergistically ameliorate obesity and insulin resistance in rats with metabolic syndrome. METHODS TB, rosiglitazone, or lovastatin (controls) was administered by gavage to rats fed a diet high in fat, sugar, and salt. A subgroup of the rats was subjected to a 30-min daily swinging exercise regimen, whereas the other rats did not exercise. RESULTS Theabrownin in combination with swinging was found to significantly improve serum lipid status and prevent development of obesity and insulin resistance in rats. Liver transcriptomics data suggested that theabrownin activated circadian rhythm, protein kinase A, the adenosine monophosphate-activated protein kinase, and insulin signaling pathways by enhancing cyclic adenosine monophosphate levels and, hence, accelerating nutrient metabolism and the consumption of sugar and fat. The serum dopamine levels in rats increased significantly after exercise. In parallel work, intraperitoneal dopamine injections were shown to significantly reduce weight gain and prevent the elevation in triglyceride levels that would otherwise be induced by the high fat-sugar-salt diet. Theabrownin prevented obesity and insulin resistance mainly by affecting the circadian rhythm, while swinging exercise stimulated the overproduction of dopamine to accelerate metabolism of glucose and lipid. CONCLUSIONS Theabrownin and exercise synergistically ameliorated metabolic syndrome in rats and effectively prevented obesity.
Collapse
Affiliation(s)
- Enkai Wu
- College of Food Science and Technology, Yunnan Agricultural University, Heilong Tan, Kunming, 650201, Yunnan, China
| | - Tingting Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Heilong Tan, Kunming, 650201, Yunnan, China
| | - Chao Tan
- College of Food Science and Technology, Yunnan Agricultural University, Heilong Tan, Kunming, 650201, Yunnan, China
| | - Chunxiu Peng
- College of Horticulture and Landscape, Yunnan Agricultural University, Heilong Tan, Kunming, 650201, Yunnan, China
| | - Yusuf Chisti
- School of Engineering, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | - Qiuping Wang
- College of Food Science and Technology, Yunnan Agricultural University, Heilong Tan, Kunming, 650201, Yunnan, China.
| | - Jiashun Gong
- College of Food Science and Technology, Yunnan Agricultural University, Heilong Tan, Kunming, 650201, Yunnan, China.
| |
Collapse
|
42
|
Araya-Quintanilla F, Gutiérrez-Espinoza H, Moyano-Gálvez V, Muñoz-Yánez MJ, Pavez L, García K. Effectiveness of black tea versus placebo in subjects with hypercholesterolemia: A PRISMA systematic review and meta-analysis. Diabetes Metab Syndr 2019; 13:2250-2258. [PMID: 31235165 DOI: 10.1016/j.dsx.2019.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 05/22/2019] [Indexed: 01/27/2023]
Abstract
AIM To determine if the black tea is more effective in serum lipid profile that placebo in subjects with hypercholesterolemia. DESIGN Systematic review with meta-analysis of randomized clinical trials (RCTs). DATA SOURCES The databases Medline, Central, Embase, Lilacs, Cinahl, SPORTDiscus, and Web of Science were searched from inception up to January 2019. ELIGIBILITY CRITERIA FOR SELECTING STUDIES RCTs that compared black tea versus placebo, that included serum lipid profile outcomes in subjects older than 18 years of age with hypercholesterolemia. RESULTS Seven RCTs met the eligibility criteria, and for the quantitative synthesis, six studies were included. Mean difference for total cholesterol was 1.67 mg/dl 95% CI = -5.47 to 8.80 (p = 0.65), mean difference 0.28 mg/dl, 95% CI = -3.89 to 4.45 (p = 0.90) for triglycerides, mean difference 3.21 mg/dl, 95% CI = -11.02 to 4.60 (p = 0.42) for low density lipoprotein-cholesterol, mean difference 0.38 mg/dl, 95% CI = -1.12 to 1.87 (p = 0.62) for high density lipoprotein-cholesterol. CONCLUSION In the short term, no significant differences were found in lipid serum profile comparing black tea consumption with placebo.
Collapse
Affiliation(s)
- Felipe Araya-Quintanilla
- Faculty of Health Sciences, Universidad Gabriela Mistral. Santiago, Chile; Faculty of Health, Universidad de las Americas. Santiago, Chile.
| | - Héctor Gutiérrez-Espinoza
- Faculty of Health, Universidad de las Americas. Santiago, Chile; Center of Diagnostic and Treatment, Clinical Hospital San Borja Arriaran. Santiago, Chile
| | | | | | - Leonardo Pavez
- Instituto de Ciencias Naturales, Universidad de las Américas. Santiago, Chile; Departamento de Ciencias Químicas y Biológicas, Universidad Bernardo O'Higgins. Santiago, Chile
| | - Katherine García
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud. Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
43
|
Jiang C, Zeng Z, Huang Y, Zhang X. Chemical compositions of Pu'er tea fermented by Eurotium Cristatum and their lipid-lowering activity. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.08.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
44
|
Chen Y, Wang C, Liu H, Liu Q, Kong B. Enhanced physical and oxidative stability of porcine plasma protein hydrolysates based oil-in-water emulsions by adding oxidized chlorogenic acid. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.08.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
45
|
Wang Q, Šarkanj B, Jurasovic J, Chisti Y, Sulyok M, Gong J, Sirisansaneeyakul S, Komes D. Evaluation of microbial toxins, trace elements and sensory properties of a high‐theabrownins instant Pu‐erh tea produced using
Aspergillus tubingensis
via submerged fermentation. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.14017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Qiuping Wang
- College of Food Science and Technology Yunnan Agricultural University Heilong Tan Kunming 650201 China
| | - Bojan Šarkanj
- Department of Food Technology University Center Koprivnica University North Trg dr. Žarka Dolinara 1 Koprivnica 48000 Croatia
| | - Jasna Jurasovic
- Institute for Medical Research and Occupational Health Ksaverska Cesta 2 Zagreb 10001 Croatia
| | - Yusuf Chisti
- School of Engineering Massey University Private Bag 11 222 Palmerston North New Zealand
| | - Michael Sulyok
- Center for Analytical Chemistry Department of Agrobiotechnology (IFA‐Tulln) University of Natural Resources and Life Sciences Vienna (BOKU) Konrad Lorenzstr. 20 A‐3430 Tulln Austria
| | - Jiashun Gong
- College of Food Science and Technology Yunnan Agricultural University Heilong Tan Kunming 650201 China
| | - Sarote Sirisansaneeyakul
- Faculty of Agro‐Industry Kasetsart University 50 Ngam Wong Wan Road Ladyao Chatuchak Bangkok 10900 Thailand
| | - Draženka Komes
- Faculty of Food Technology and Biotechnology University of Zagreb Pierrotijeva 6 Zagreb 10000 Croatia
| |
Collapse
|
46
|
Ling W, Li S, Zhang X, Xu Y, Gao Y, Du Q, Wang G, Fan W, Sun K, Bian J. Evaluation of Anti-Obesity Activity, Acute Toxicity, and Subacute Toxicity of Probiotic Dark Tea. Biomolecules 2018; 8:biom8040099. [PMID: 30257523 PMCID: PMC6316303 DOI: 10.3390/biom8040099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 12/13/2022] Open
Abstract
Probiotic dark tea (PDT) is a novel kind of dark tea produced by fresh albino tea leaves and fermented with specific probiotics. Our study demonstrates that PDT can ameliorate high-fat diet-induced overweight and lipid metabolic disorders and shows no acute or subacute toxicity in Sprague-Dawley (SD) rats. Daily intragastric administration of 5% PDT infusion for 14 days caused no obvious effect on general physiological features and behaviors of rats. Oral administration of 1%, 2%, and 3% of PDT infusion for six weeks had no influence on the biochemistry and histopathology of rats’ organs and blood, as well as the body weight and ratios of organ/body weight. To investigate its anti-obesity activity, SD rats were randomly divided into four groups, treated with normal diet + water (Group I), high-fat diet + water (Group II), high-fat diet + 3% traditional dark tea infusion (Group III), high-fat diet + 3% PDT infusion (Group IV). After six weeks, the body weight, serum total triacylglycerol (TG) and serum total cholesterol (TC) levels of rats in Group II were significantly increased and the high-density lipoprotein cholesterol (HDL) levels were significantly decreased compared with those in the other three groups. Both traditional dark tea and PDT treatment effectively counteracted the adverse effect of a high-fat diet in SD rats. These results suggest that PDT could be applied for the prevention of obesity, which ameliorates overweight and lipid metabolic disorders and which shows no acute or subacute toxicity.
Collapse
Affiliation(s)
- Wang Ling
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.
- Jiangsu Co-innovation Canter for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou 225009, China.
| | - Shungeng Li
- Tianmu Lake Longxin Agricultural Ecological Park in Liyang City of Jiangsu Province, Liyang 213334, China.
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| | - Yongquan Xu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou 310008, China.
| | - Ying Gao
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou 310008, China.
| | - Qizhen Du
- College of Agricultural and Food Sciences, Zhejiang A & F University, Linan 311300, China.
| | - Guangguang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.
- Jiangsu Co-innovation Canter for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou 225009, China.
| | - Wentong Fan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.
- Jiangsu Co-innovation Canter for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou 225009, China.
| | - Kai Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.
- Jiangsu Co-innovation Canter for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou 225009, China.
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.
- Jiangsu Co-innovation Canter for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou 225009, China.
| |
Collapse
|
47
|
Liu T, Xiang Z, Chen F, Yin D, Huang Y, Xu J, Hu L, Xu H, Wang X, Sheng J. Theabrownin suppresses in vitro osteoclastogenesis and prevents bone loss in ovariectomized rats. Biomed Pharmacother 2018; 106:1339-1347. [PMID: 30119205 DOI: 10.1016/j.biopha.2018.07.103] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 12/11/2022] Open
Abstract
Drinking tea exhibits beneficial effects on bone health and may protect against osteoporosis, particularly in postmenopausal women. Theabrownin (TB) is the main component responsible for the biological activities of Pu-erh tea, but whether it possesses anti-osteoporotic potential remains unknown. Here we investigated the in vitro and in vivo anti-osteoporotic effects of TB in the RAW 264.7 cell line and ovariectomized (OVX) rats, respectively. Our in vitro studies showed that TB significantly suppressed RANKL-induced osteoclastogenesis and the expression of related marker proteins, including NFATc1, TRAP, c-Fos, and cathepsin K. In vivo studies showed that TB treatment effectively ameliorated blood biochemical parameters, organ weights and organ coefficients in OVX rats. In addition, TB treatment significantly improved femoral bone mineral density (BMD) and biomechanical properties. What's more, TB treatment strikingly ameliorated bone microarchitecture in OVX rats because of increased cortical bone thickness and trabecular bone area in the femur. Our study therefore demonstrated that TB can inhibit RANKL-induced osteoclastogenesis in vitro and prevent bone loss in ovariectomized rats. Consequently, TB has a promising potential in postmenopausal osteoporosis treatment.
Collapse
Affiliation(s)
- Titi Liu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Tea Research Center of Yunnan, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Zemin Xiang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Tea Research Center of Yunnan, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Fei Chen
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Tea Research Center of Yunnan, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Dan Yin
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Tea Research Center of Yunnan, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yewei Huang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Tea Research Center of Yunnan, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jing Xu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Tea Research Center of Yunnan, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Lihong Hu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Tea Research Center of Yunnan, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Huanhuan Xu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Tea Research Center of Yunnan, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| | - Xuanjun Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Tea Research Center of Yunnan, Kunming 650201, China; College of Science, Yunnan Agricultural University, Kunming 650201, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming 650201, China.
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Tea Research Center of Yunnan, Kunming 650201, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming 650201, China.
| |
Collapse
|
48
|
Jin W, Zhou L, Yan B, Yan L, Liu F, Tong P, Yu W, Dong X, Xie L, Zhang J, Xu Y, Li C, Yuan Q, Shan L, Efferth T. Theabrownin triggers DNA damage to suppress human osteosarcoma U2OS cells by activating p53 signalling pathway. J Cell Mol Med 2018; 22:4423-4436. [PMID: 29993186 PMCID: PMC6111873 DOI: 10.1111/jcmm.13742] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/21/2018] [Indexed: 12/21/2022] Open
Abstract
Osteosarcoma becomes the second leading cause of cancer death in the younger population. Current outcomes of chemotherapy on osteosarcoma were unsatisfactory to date, demanding development of effective therapies. Tea is a commonly used beverage beneficial to human health. As a major component of tea, theabrownin has been reported to possess anti‐cancer activity. To evaluate its anti‐osteosarcoma effect, we established a xenograft model of zebrafish and employed U2OS cells for in vivo and in vitro assays. The animal data showed that TB significantly inhibited the tumour growth with stronger effect than that of chemotherapy. The cellular data confirmed that TB‐triggered DNA damage and induced apoptosis of U2OS cells by regulation of Mki67, PARP, caspase 3 and H2AX, and Western blot assay showed an activation of p53 signalling pathway. When P53 was knocked down by siRNA, the subsequent downstream signalling was blocked, indicating a p53‐dependent mechanism of TB on U2OS cells (p53 wt). Using osteosarcoma cell lines with p53 mutations (HOS, SAOS‐2 and MG63), we found that TB exerted stronger inhibitory effect on U2OS cells than that on p53‐mut cell lines, but it also exerted obvious effect on SAOS‐2 cells (p53 null), suggesting an activation of p53‐independent pathway in the p53‐null cells. Interestingly, theabrownin was found to have no toxicity on normal tissue in vivo and could even increase the viability of p53‐wt normal cells. In sum, theabrownin could trigger DNA damage and induce apoptosis on U2OS cells via a p53‐dependent mechanism, being a promising candidate for osteosarcoma therapy.
Collapse
Affiliation(s)
- Wangdong Jin
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Yan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Yan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fucun Liu
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Peijian Tong
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenhua Yu
- Hangzhou First People's Hospital, Hangzhou, China
| | | | - Li Xie
- Analysis Center of Agrobiology and Environmental Science, Zhejiang University, Hangzhou, China
| | | | - Yiqiao Xu
- Hunter Biotechnology, Inc, Hangzhou, China
| | - Chunqi Li
- Hunter Biotechnology, Inc, Hangzhou, China
| | - Qiang Yuan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
49
|
Chen D, Sun J, Dong W, Shen Y, Xu Z. Effects of polysaccharides and polyphenolics fractions of Zijuan tea (Camellia sinensis var. kitamura
) on α-glucosidase activity and blood glucose level and glucose tolerance of hyperglycaemic mice. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13825] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Dejing Chen
- Shaanxi Key Laboratory of Bio-Resources; Shaanxi University of Technology; Hanzhong, Shaanxi China
- School of Biological Science and Engineering; Shaanxi University of Technology; Hanzhong, Shaanxi China
| | - Jingyuan Sun
- School of Biological Science and Engineering; Shaanxi University of Technology; Hanzhong, Shaanxi China
| | - Weixue Dong
- School of Biological Science and Engineering; Shaanxi University of Technology; Hanzhong, Shaanxi China
| | - Yixiao Shen
- School of Nutrition and Food Sciences; Louisiana State University Agricultural Center; Baton Rouge LA USA
| | - Zhimin Xu
- School of Nutrition and Food Sciences; Louisiana State University Agricultural Center; Baton Rouge LA USA
| |
Collapse
|
50
|
Wang Q, Belščak-Cvitanović A, Durgo K, Chisti Y, Gong J, Sirisansaneeyakul S, Komes D. Physicochemical properties and biological activities of a high-theabrownins instant Pu-erh tea produced using Aspergillus tubingensis. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.01.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|