1
|
Liatis T, Madden M, Marioni‐Henry K. Bruxism in awake dogs as a clinical sign of forebrain disease: 4 cases. Vet Med (Auckl) 2022; 36:2132-2141. [DOI: 10.1111/jvim.16570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Theofanis Liatis
- Queen Mother Hospital for Animals, Royal Veterinary College University of London Hatfield UK
- Hospital for Small Animals, Royal (Dick) School of Veterinary Studies University of Edinburgh Midlothian UK
| | - Megan Madden
- Hospital for Small Animals, Royal (Dick) School of Veterinary Studies University of Edinburgh Midlothian UK
| | - Katia Marioni‐Henry
- Hospital for Small Animals, Royal (Dick) School of Veterinary Studies University of Edinburgh Midlothian UK
| |
Collapse
|
2
|
Kick GR, Meiman EJ, Sabol JC, Whiting REH, Ota-Kuroki J, Castaner LJ, Jensen CA, Katz ML. Visual system pathology in a canine model of CLN5 neuronal ceroid lipofuscinosis. Exp Eye Res 2021; 210:108686. [PMID: 34216614 PMCID: PMC8429270 DOI: 10.1016/j.exer.2021.108686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/17/2021] [Accepted: 06/28/2021] [Indexed: 10/21/2022]
Abstract
CLN5 neuronal ceroid lipofuscinosis is a hereditary neurodegenerative disease characterized by progressive neurological decline, vision loss and seizures. Visual impairment in children with CLN5 disease is attributed to a progressive decline in retinal function accompanied by retinal degeneration as well as impaired central nervous system function associated with global brain atrophy. We studied visual system pathology in five Golden Retriever littermates homozygous for the CLN5 disease allele previously identified in the breed. The dogs exhibited signs of pronounced visual impairment by 21-22 months of age. Electroretinogram recordings showed a progressive decline in retinal function primarily affecting cone neural pathways. Altered visual evoked potential recordings indicated that disease progression affected visual signal processing in the brain. Aside from several small retinal detachment lesions, no gross retinal abnormalities were observed with in vivo ocular imaging and histologically the retinas did not exhibit apparent abnormalities by 23 months of age. However, there was extensive accumulation of autofluorescent membrane-bound lysosomal storage bodies in almost all retinal layers, as well as in the occipital cortex, by 20 months of age. In the retina, storage was particularly pronounced in retinal ganglion cells, the retinal pigment epithelium and in photoreceptor cells just interior to the outer limiting membrane. The visual system pathology of CLN5-affected Golden Retrievers is similar to that seen early in the human disease. It was not possible to follow the dogs to an advanced stage of disease progression due to the severity of behavioral and motor disease signs by 23 months of age. The findings reported here indicate that canine CLN5 disease will be a useful model of visual system disease in CLN5 neuronal ceroid lipofuscinosis. The baseline data obtained in this investigation will be useful in future therapeutic intervention studies. The findings indicate that there is a fairly broad time frame after disease onset within which treatments could be effective in preserving vision.
Collapse
Affiliation(s)
- Grace Robinson Kick
- Neurodegenerative Diseases Research Laboratory, University of Missouri, Columbia, MO, 65212, USA
| | - Elizabeth J Meiman
- Neurodegenerative Diseases Research Laboratory, University of Missouri, Columbia, MO, 65212, USA
| | - Julianna C Sabol
- Neurodegenerative Diseases Research Laboratory, University of Missouri, Columbia, MO, 65212, USA
| | | | - Juri Ota-Kuroki
- Neurodegenerative Diseases Research Laboratory, University of Missouri, Columbia, MO, 65212, USA
| | - Leilani J Castaner
- Neurodegenerative Diseases Research Laboratory, University of Missouri, Columbia, MO, 65212, USA
| | - Cheryl A Jensen
- Neurodegenerative Diseases Research Laboratory, University of Missouri, Columbia, MO, 65212, USA
| | - Martin L Katz
- Neurodegenerative Diseases Research Laboratory, University of Missouri, Columbia, MO, 65212, USA.
| |
Collapse
|
3
|
Marelli SP, Polli M, Frattini S, Cortellari M, Rizzi R, Crepaldi P. Genotypic and allelic frequencies of MDR1 gene in dogs in Italy. Vet Rec Open 2020; 7:e000375. [PMID: 32617164 PMCID: PMC7319724 DOI: 10.1136/vetreco-2019-000375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/18/2020] [Accepted: 03/05/2020] [Indexed: 12/28/2022] Open
Abstract
Background A mutation in the canine multidrug resistance MDR1 gene (also referred as ABCB1), encoding for the multidrug resistance (MDR) P-glycoprotein (P-gp) transponder, causes a pathological condition known as ‘ivermectin toxicosis’. The causative mutation, known since 2001, has been described to affects sheep herding breeds related to collie lineage. The present study is a retrospective investigation of the presence of MDR1 mutated allele in Italian dog populations in a 5 years’ time lapse. The aim of the research is to offer a deep knowledge in MDR1 allelic and genotypic frequencies in canine breeds and populations raised in Italy. Methods Genotype data for the 4-bp deletion (c296_299del4) in MDR1 gene from 811 dogs belonging to 32 breeds/populations were collected. Results The mutated allele has been found in 9 out of 31 breeds: Rough Collie, Smooth Collie, Border Collie, Bearded Collie, Shetland Sheepdog, Australian Shepherd, White Swiss Shepherd, Old English Sheepdog, Whippet and also in crossbreed. The breeds with the highest allelic mutation frequency are Smooth and Rough Collies with 75 per cent and 66 per cent of mutant MDR1 allele, respectively. Conclusions The results support the usefulness of this genetic analysis to optimise medical care in dogs at risk of multidrug resistance and to create an objective basis in breeding programme definition and in the risk evaluation in different breeds.
Collapse
Affiliation(s)
- Stefano Paolo Marelli
- Department of Veterinary Medicine, Università degli Studi di Milano, Milano, Lombardia, Italy
| | - Michele Polli
- Department of Veterinary Medicine, Università degli Studi di Milano, Milano, Lombardia, Italy
| | - Stefano Frattini
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, Università degli Studi di Milano, Milano, Lombardia, Italy
| | - Matteo Cortellari
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, Università degli Studi di Milano, Milano, Lombardia, Italy
| | - Rita Rizzi
- Department of Veterinary Medicine, Università degli Studi di Milano, Milano, Lombardia, Italy
| | - Paola Crepaldi
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, Università degli Studi di Milano, Milano, Lombardia, Italy
| |
Collapse
|
4
|
Nelvagal HR, Cooper JD. An update on the progress of preclinical models for guiding therapeutic management of neuronal ceroid lipofuscinosis. Expert Opin Orphan Drugs 2019. [DOI: 10.1080/21678707.2019.1703672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Hemanth Ramesh Nelvagal
- Department of Pediatrics, Division of genetics and genomics, Washington University School of Medicine in St. Louis, St Louis, MO, USA
| | - Jonathan D Cooper
- Department of Pediatrics, Division of genetics and genomics, Washington University School of Medicine in St. Louis, St Louis, MO, USA
| |
Collapse
|
5
|
Kolicheski A, Barnes Heller HL, Arnold S, Schnabel RD, Taylor JF, Knox CA, Mhlanga-Mutangadura T, O'Brien DP, Johnson GS, Dreyfus J, Katz ML. Homozygous PPT1 Splice Donor Mutation in a Cane Corso Dog With Neuronal Ceroid Lipofuscinosis. J Vet Intern Med 2016; 31:149-157. [PMID: 28008682 PMCID: PMC5259623 DOI: 10.1111/jvim.14632] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/05/2016] [Accepted: 11/10/2016] [Indexed: 12/23/2022] Open
Abstract
A 10‐month‐old spayed female Cane Corso dog was evaluated after a 2‐month history of progressive blindness, ataxia, and lethargy. Neurologic examination abnormalities indicated a multifocal lesion with primarily cerebral and cerebellar signs. Clinical worsening resulted in humane euthanasia. On necropsy, there was marked astrogliosis throughout white matter tracts of the cerebrum, most prominently in the corpus callosum. In the cerebral cortex and midbrain, most neurons contained large amounts of autofluorescent storage material in the perinuclear area of the cells. Cerebellar storage material was present in the Purkinje cells, granular cell layer, and perinuclear regions of neurons in the deep nuclei. Neuronal ceroid lipofuscinosis (NCL) was diagnosed. Whole genome sequencing identified a PPT1c.124 + 1G>A splice donor mutation. This nonreference assembly allele was homozygous in the affected dog, has not previously been reported in dbSNP, and was absent from the whole genome sequences of 45 control dogs and 31 unaffected Cane Corsos. Our findings indicate a novel mutation causing the CLN1 form of NCL in a previously unreported dog breed. A canine model for CLN1 disease could provide an opportunity for therapeutic advancement, benefiting both humans and dogs with this disorder.
Collapse
Affiliation(s)
- A Kolicheski
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO
| | - H L Barnes Heller
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI
| | - S Arnold
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI
| | - R D Schnabel
- Division of Animal Sciences and Informatics Institute, University of Missouri, Columbia, MO
| | - J F Taylor
- Division of Animal Sciences, University of Missouri, Columbia, MO
| | | | | | - D P O'Brien
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO
| | - G S Johnson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO
| | - J Dreyfus
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI
| | - M L Katz
- Mason Eye Institute, University of Missouri, Columbia, MO
| |
Collapse
|
6
|
Kolicheski A, Johnson GS, O'Brien DP, Mhlanga-Mutangadura T, Gilliam D, Guo J, Anderson-Sieg TD, Schnabel RD, Taylor JF, Lebowitz A, Swanson B, Hicks D, Niman ZE, Wininger FA, Carpentier MC, Katz ML. Australian Cattle Dogs with Neuronal Ceroid Lipofuscinosis are Homozygous for a CLN5 Nonsense Mutation Previously Identified in Border Collies. J Vet Intern Med 2016; 30:1149-58. [PMID: 27203721 PMCID: PMC5084771 DOI: 10.1111/jvim.13971] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 04/17/2016] [Accepted: 04/28/2016] [Indexed: 12/13/2022] Open
Abstract
Background Neuronal ceroid lipofuscinosis (NCL), a fatal neurodegenerative disease, has been diagnosed in young adult Australian Cattle Dogs. Objective Characterize the Australian Cattle Dog form of NCL and determine its molecular genetic cause. Animals Tissues from 4 Australian Cattle Dogs with NCL‐like signs and buccal swabs from both parents of a fifth affected breed member. Archived DNA samples from 712 individual dogs were genotyped. Methods Tissues were examined by fluorescence, electron, and immunohistochemical microscopy. A whole‐genome sequence was generated for 1 affected dog. A TaqMan allelic discrimination assay was used for genotyping. Results The accumulation of autofluorescent cytoplasmic storage material with characteristic ultrastructure in tissues from the 4 affected dogs supported a diagnosis of NCL. The whole‐genome sequence contained a homozygous nonsense mutation: CLN5:c.619C>T. All 4 DNA samples from clinically affected dogs tested homozygous for the variant allele. Both parents of the fifth affected dog were heterozygotes. Archived DNA samples from 346 Australian Cattle Dogs, 188 Border Collies, and 177 dogs of other breeds were homozygous for the reference allele. One archived Australian Cattle Dog sample was from a heterozygote. Conclusions and Clinical Importance The homozygous CLN5 nonsense is almost certainly causal because the same mutation previously had been reported to cause a similar form of NCL in Border Collies. Identification of the molecular genetic cause of Australian Cattle Dog NCL will allow the use of DNA tests to confirm the diagnosis of NCL in this breed.
Collapse
Affiliation(s)
- A Kolicheski
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO
| | - G S Johnson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO
| | - D P O'Brien
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO
| | | | - D Gilliam
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO
| | - J Guo
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO
| | - T D Anderson-Sieg
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO
| | - R D Schnabel
- Division of Animal Sciences and Informatics Institute, University of Missouri, Columbia, MO
| | - J F Taylor
- Division of Animal Sciences, University of Missouri, Columbia, MO
| | - A Lebowitz
- Animal Medical Center of New York, New York, NY
| | - B Swanson
- Animal Medical Center of New York, New York, NY
| | - D Hicks
- Blue Pearl Veterinary Hospital, Tacoma, WA
| | - Z E Niman
- Chicago Veterinary Specialty Group, Chicago, IL
| | - F A Wininger
- Veterinary Specialty Services Neurology Department, Manchester, MO
| | - M C Carpentier
- Veterinary Specialty Services Neurology Department, Manchester, MO
| | - M L Katz
- Mason Eye Institute, University of Missouri, Columbia, MO
| |
Collapse
|
7
|
International Veterinary Epilepsy Task Force's current understanding of idiopathic epilepsy of genetic or suspected genetic origin in purebred dogs. BMC Vet Res 2015; 11:175. [PMID: 26316206 PMCID: PMC4552344 DOI: 10.1186/s12917-015-0463-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/29/2015] [Indexed: 12/20/2022] Open
Abstract
Canine idiopathic epilepsy is a common neurological disease affecting both purebred and crossbred dogs. Various breed-specific cohort, epidemiological and genetic studies have been conducted to date, which all improved our knowledge and general understanding of canine idiopathic epilepsy, and in particular our knowledge of those breeds studied. However, these studies also frequently revealed differences between the investigated breeds with respect to clinical features, inheritance and prevalence rates. Awareness and observation of breed-specific differences is important for successful management of the dog with epilepsy in everyday clinical practice and furthermore may promote canine epilepsy research. The following manuscript reviews the evidence available for breeds which have been identified as being predisposed to idiopathic epilepsy with a proven or suspected genetic background, and highlights different breed specific clinical features (e.g. age at onset, sex, seizure type), treatment response, prevalence rates and proposed inheritance reported in the literature. In addition, certain breed-specific diseases that may act as potential differentials for idiopathic epilepsy are highlighted.
Collapse
|
8
|
Gilliam D, Kolicheski A, Johnson GS, Mhlanga-Mutangadura T, Taylor JF, Schnabel RD, Katz ML. Golden Retriever dogs with neuronal ceroid lipofuscinosis have a two-base-pair deletion and frameshift in CLN5. Mol Genet Metab 2015; 115:101-9. [PMID: 25934231 DOI: 10.1016/j.ymgme.2015.04.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/14/2015] [Accepted: 04/14/2015] [Indexed: 11/20/2022]
Abstract
We studied a recessive, progressive neurodegenerative disease occurring in Golden Retriever siblings with an onset of signs at 15 months of age. As the disease progressed these signs included ataxia, anxiety, pacing and circling, tremors, aggression, visual impairment and localized and generalized seizures. A whole genome sequence, generated with DNA from one affected dog, contained a plausibly causal homozygous mutation: CLN5:c.934_935delAG. This mutation was predicted to produce a frameshift and premature termination codon and encode a protein variant, CLN5:p.E312Vfs*6, which would lack 39 C-terminal amino acids. Eighteen DNA samples from the Golden Retriever family members were genotyped at CLN5:c.934_935delAG. Three clinically affected dogs were homozygous for the deletion allele; whereas, the clinically normal family members were either heterozygotes (n = 11) or homozygous for the reference allele (n = 4). Among archived Golden Retrievers DNA samples with incomplete clinical records that were also genotyped at the CLN5:c.934_935delAG variant, 1053 of 1062 were homozygous for the reference allele, 8 were heterozygotes and one was a deletion-allele homozygote. When contacted, the owner of this homozygote indicated that their dog had been euthanized because of a neurologic disease that progressed similarly to that of the affected Golden Retriever siblings. We have collected and stored semen from a heterozygous Golden Retriever, thereby preserving an opportunity for us or others to establish a colony of CLN5-deficient dogs.
Collapse
Affiliation(s)
- D Gilliam
- Department of Veterinary Pathobiology, University of Missouri-Columbia, Columbia, MO, USA.
| | - A Kolicheski
- Department of Veterinary Pathobiology, University of Missouri-Columbia, Columbia, MO, USA.
| | - G S Johnson
- Department of Veterinary Pathobiology, University of Missouri-Columbia, Columbia, MO, USA.
| | - T Mhlanga-Mutangadura
- Department of Veterinary Pathobiology, University of Missouri-Columbia, Columbia, MO, USA.
| | - J F Taylor
- Division of Animal Science, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, USA.
| | - R D Schnabel
- Division of Animal Science, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, USA.
| | - M L Katz
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
9
|
Use of model organisms for the study of neuronal ceroid lipofuscinosis. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1842-65. [PMID: 23338040 DOI: 10.1016/j.bbadis.2013.01.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 12/26/2022]
Abstract
Neuronal ceroid lipofuscinoses are a group of fatal progressive neurodegenerative diseases predominantly affecting children. Identification of mutations that cause neuronal ceroid lipofuscinosis, and subsequent functional and pathological studies of the affected genes, underpins efforts to investigate disease mechanisms and identify and test potential therapeutic strategies. These functional studies and pre-clinical trials necessitate the use of model organisms in addition to cell and tissue culture models as they enable the study of protein function within a complex organ such as the brain and the testing of therapies on a whole organism. To this end, a large number of disease models and genetic tools have been identified or created in a variety of model organisms. In this review, we will discuss the ethical issues associated with experiments using model organisms, the factors underlying the choice of model organism, the disease models and genetic tools available, and the contributions of those disease models and tools to neuronal ceroid lipofuscinosis research. This article is part of a Special Issue entitled: The Neuronal Ceroid Lipofuscinoses or Batten Disease.
Collapse
|
10
|
Mizukami K, Kawamichi T, Koie H, Tamura S, Matsunaga S, Imamoto S, Saito M, Hasegawa D, Matsuki N, Tamahara S, Sato S, Yabuki A, Chang HS, Yamato O. Neuronal ceroid lipofuscinosis in Border Collie dogs in Japan: clinical and molecular epidemiological study (2000-2011). ScientificWorldJournal 2012; 2012:383174. [PMID: 22919312 PMCID: PMC3417203 DOI: 10.1100/2012/383174] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 05/03/2012] [Indexed: 11/25/2022] Open
Abstract
Neuronal ceroid lipofuscinosis (NCL) is an inherited, neurodegenerative lysosomal disease that causes premature death. The present study describes the clinical and molecular epidemiologic findings of NCL in Border Collies in Japan for 12 years, between 2000 and 2011. The number of affected dogs was surveyed, and their clinical characteristics were analyzed. In 4 kennels with affected dogs, the dogs were genotyped. The genetic relationships of all affected dogs and carriers identified were analyzed. The survey revealed 27 affected dogs, but there was a decreasing trend at the end of the study period. The clinical characteristics of these affected dogs were updated in detail. The genotyping survey demonstrated a high mutant allele frequency in examined kennels (34.8%). The pedigree analysis demonstrated that all affected dogs and carriers in Japan are related to some presumptive carriers imported from Oceania and having a common ancestor. The current high prevalence in Japan might be due to an overuse of these carriers by breeders without any knowledge of the disease. For NCL control and prevention, it is necessary to examine all breeding dogs, especially in kennels with a high prevalence. Such endeavors will reduce NCL prevalence and may already be contributing to the recent decreasing trend in Japan.
Collapse
Affiliation(s)
- Keijiro Mizukami
- Laboratory of Clinical Pathology, Department of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima 890-0065, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Mizukami K, Chang HS, Yabuki A, Kawamichi T, Kawahara N, Hayashi D, Hossain MA, Rahman MM, Uddin MM, Yamato O. Novel rapid genotyping assays for neuronal ceroid lipofuscinosis in Border Collie dogs and high frequency of the mutant allele in Japan. J Vet Diagn Invest 2012; 23:1131-9. [PMID: 22362793 DOI: 10.1177/1040638711425590] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Neuronal ceroid lipofuscinosis (NCL) constitutes a group of recessively inherited lysosomal storage diseases that primarily affect neuronal cells. Such diseases share certain clinical and pathologic features in human beings and animals. Neuronal ceroid lipofuscinosis in Border Collie dogs was first detected in Australia in the 1980s, and the pathogenic mutation was shown to be a nonsense mutation (c.619C>T) in exon 4 in canine CLN5 gene. In the present study, novel rapid genotyping assays including polymerase chain reaction (PCR)-restriction fragment length polymorphism, PCR primer-induced restriction analysis, mutagenically separated PCR, and real-time PCR with TaqMan minor groove binder probes, were developed. The utility of microchip electrophoresis was also evaluated. Furthermore, a genotyping survey was carried out in a population of Border Collies in Japan using these assays to determine the current allele frequency in Japan, providing information to control and prevent this disease in the next stage. All assays developed in the current study are available to discriminate these genotypes, and microchip electrophoresis showed a timesaving advantage over agarose gel electrophoresis. Of all assays, real-time PCR was the most suitable for large-scale examination because of its high throughput. The genotyping survey demonstrated that the carrier frequency was 8.1%. This finding suggested that the mutant allele frequency of NCL in Border Collies is high enough in Japan that measures to control and prevent the disease would be warranted. The genotyping assays developed in the present study could contribute to the prevention of NCL in Border Collies.
Collapse
Affiliation(s)
- Keijiro Mizukami
- Laboratory of Clinical Pathology, Department of Veterinary Clinical Sciences, Faculty of Agriculture, Kagoshima University, 1-21-24 Kohrimoto, Kagoshima 890-0065. Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hülsmeyer V, Zimmermann R, Brauer C, Sauter-Louis C, Fischer A. Epilepsy in Border Collies: clinical manifestation, outcome, and mode of inheritance. J Vet Intern Med 2010; 24:171-8. [PMID: 20391637 DOI: 10.1111/j.1939-1676.2009.0438.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND There is a lack of data on idiopathic epilepsy (IE) in Border Collies (BCs) in the veterinary literature. HYPOTHESIS Genetic epilepsy occurs in BCs and is frequently characterized by a severe clinical course and poor response to medical treatment. ANIMALS Forty-nine BCs diagnosed with IE. METHODS Medical records, seizure data, treatment data, and pedigree information of affected dogs were collected. Cases were classified phenotypically as affected or not affected; mild, moderate, or severe clinical course; active epilepsy (AE) or remission; and drug resistant or not drug resistant. RESULTS Clinical manifestations were classified as having a moderate (33%) or severe clinical course (49%), characterized by a high prevalence of cluster seizures and status epilepticus. Survival time was significantly decreased in dogs < 2 years of age at seizure onset, and in dogs with a severe clinical course. Drug resistance was apparent in 71% of 24 dogs treated with > 2 antiepileptic drugs. The epilepsy remission rate was 18%. Median age at onset was significantly higher and initial seizure frequency was significantly lower in dogs with remission compared with dogs with AE. Pedigree analyses indicated a strong genetic founder effect in the appearance of epilepsy, resembling autosomal recessive inheritance. CONCLUSION AND CLINICAL IMPORTANCE The present study confirms the occurrence of genetically mediated epilepsy with a frequent severe clinical course and drug resistance in BCs. The results provide information about the long-term prognosis of IE in BCs for veterinarians and concerned owners, and may benefit breeders as well.
Collapse
Affiliation(s)
- V Hülsmeyer
- Section of Neurology, Clinic of Small Animal Medicine, Ludwig-Maximilians University, Munich, Germany
| | | | | | | | | |
Collapse
|
13
|
Evans J, Katz ML, Levesque D, Shelton GD, Lahunta A, O'Brien D. A Variant Form of Neuronal Ceroid Lipofuscinosis in American Bulldogs. J Vet Intern Med 2005. [DOI: 10.1111/j.1939-1676.2005.tb02657.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
14
|
Cho SK, Hofmann SL. pdf1, a palmitoyl protein thioesterase 1 Ortholog in Schizosaccharomyces pombe: a yeast model of infantile Batten disease. EUKARYOTIC CELL 2004; 3:302-10. [PMID: 15075260 PMCID: PMC387660 DOI: 10.1128/ec.3.2.302-310.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Accepted: 01/18/2004] [Indexed: 11/20/2022]
Abstract
Infantile Batten disease is a severe neurodegenerative storage disorder caused by mutations in the human PPT1 (palmitoyl protein thioesterase 1) gene, which encodes a lysosomal hydrolase that removes fatty acids from lipid-modified proteins. PPT1 has orthologs in many species, including lower organisms and plants, but not in Saccharomyces cerevisiae. The fission yeast Schizosaccharomyces pombe contains a previously uncharacterized open reading frame (SPBC530.12c) that encodes the S. pombe Ppt1p ortholog fused in frame to a second enzyme that is highly similar to a previously cloned mouse dolichol pyrophosphatase (Dolpp1p). In the present study, we characterized this interesting gene (designated here as pdf1, for palmitoyl protein thioesterase-dolichol pyrophosphate phosphatase fusion 1) through deletion of the open reading frame and complementation by plasmids bearing mutations in various regions of the pdf1 sequence. Strains bearing a deletion of the entire pdf1 open reading frame are nonviable and are rescued by a pdf1 expression plasmid. Inactivating mutations in the Dolpp1p domain do not rescue the lethality, whereas mutations in the Ppt1p domain result in cells that are viable but abnormally sensitive to sodium orthovanadate and elevated extracellular pH. The latter phenotypes have been previously associated with class C and class D vacuolar protein sorting (vps) mutants and vacuolar membrane H(+)-ATPase (vma) mutants in S. cerevisiae. Importantly, the Ppt1p-deficient phenotype is complemented by the human PPT1 gene. These results indicate that the function of PPT1 has been widely conserved throughout evolution and that S. pombe may serve as a genetically tractable model for the study of human infantile Batten disease.
Collapse
Affiliation(s)
- Steve K Cho
- Department of Internal Medicine and the Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | |
Collapse
|
15
|
Koie H, Shibuya H, Sato T, Sato A, Nawa K, Nawa Y, Kitagawa M, Sakai M, Takahashi T, Yamaya Y, Yamato O, Watari T, Tokuriki M. Magnetic Resonance Imaging of Neuronal Ceroid Lipofuscinosis in a Border Collie. J Vet Med Sci 2004; 66:1453-6. [PMID: 15585966 DOI: 10.1292/jvms.66.1453] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A castrated male border collie 23 months of age weighing 19.4 kg was referred to the Animal Medical Center of Nihon University with complaints of visual disturbance and behavioral abnormality, hyperacusis and morbid fear. The MRI examination revealed the slight dilated cerebral sulci and cerebellar fissures and left ventricular enlargement. This is the first report of MRI findings of canine neuronal ceroid lipofuscinosis.
Collapse
Affiliation(s)
- Hiroshi Koie
- Laboratory of Comprehensive Veterinary Clinical Studies, Department of Veterinary Medicine, College of Bioresouce Sciences, Nihon University, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bronson RT, Donahue LR, Johnson KR, Tanner A, Lane PW, Faust JR. Neuronal ceroid lipofuscinosis (nclf), a new disorder of the mouse linked to chromosome 9. AMERICAN JOURNAL OF MEDICAL GENETICS 1998; 77:289-97. [PMID: 9600738 DOI: 10.1002/(sici)1096-8628(19980526)77:4<289::aid-ajmg8>3.0.co;2-i] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The neuronal ceroid lipofuscinoses (NCLs) comprise a set of at least 6 distinct human and an unknown number of animal diseases characterized by storage of proteolipids in lysosomes of many cell types. By unknown mechanisms, this accumulation leads to or is associated with severe neuronal and retinal degeneration. The genes for 3 human NCLs, infantile, late infantile, and juvenile, have been cloned. The first murine form of NCL, the motor neuron degeneration (mnd) mouse, has been described and mapped to proximal Chromosome 8. Here we describe a second genetic variant of NCL in the mouse, neuronal ceroid lipofuscinosis, nclf. These mice exhibited a phenotype that was almost exactly the same as that observed in mnd/mnd mice. Homozygous nclf mice developed progressive retinal atrophy early in life and become paralyzed at around 9 months of age. They accumulated luxol fast blue staining material in cytoplasm of neurons and many other cell types. Ultrastructurally, affected lysosomes had a "finger print pattern" with membranous material arranged in "pentalaminar" patterns. Affected mice developed severe cerebral gliosis in late stages of their disease. They also had severe Wallerian degeneration of long tracts in spinal cord and brain stem, lesions that accounted for the distinctive upper motor neuron signs displayed by both nclf/nclf and mnd/mnd mice. By crossing nclf/nclf mice with CAST/Ei mice, linkage analysis of nclf with respect to SSLP markers was performed, showing that nclf is located on Chromosome 9 between D9Mit164 and D9Mit165, in a region that is homologous with human Ch 15q21, where the gene for one variant of late infantile NCL, CLN6, recently has been mapped. The genes for two proteolipids known to be stored in lysosomes of animals and people with NCL were also mapped in this study and found not to map to the mnd or nclf loci nor to any mouse locus homologous to any known human NCL disease locus.
Collapse
Affiliation(s)
- R T Bronson
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | | | | | | | | | | |
Collapse
|
17
|
Black L, Pullarkat RK. Bibliography on ceroid-lipofuscinoses, II. AMERICAN JOURNAL OF MEDICAL GENETICS 1995; 57:130-6. [PMID: 7668316 DOI: 10.1002/ajmg.1320570204] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- L Black
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island 10314, USA
| | | |
Collapse
|
18
|
Woods PR, Storts RW, Shelton M, Menzies C. Neuronal ceroid lipofuscinosis in Rambouillet sheep: characterization of the clinical disease. Vet Med (Auckl) 1994; 8:370-5. [PMID: 7837115 DOI: 10.1111/j.1939-1676.1994.tb03252.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A chronic progressive, neurodegenerative disease has been identified in 4 closely related flocks of purebred Rambouillet sheep. Blindness, circling, proprioceptive deficits, reduced cognition, and poor body condition are the main clinical signs. Prominent lesions include markedly decreased cerebral size and weight, enlarged cerebral ventricles, and intraneuronal accumulations of autofluorescent pigment. Affected sheep usually die between 1 and 2 years of age. The clinical signs and postmortem findings are consistent with neuronal ceroid-lipofuscinosis.
Collapse
Affiliation(s)
- P R Woods
- Department of Veterinary Large Animal Medicine and Surgery, College of Veterinary Medicine, Texas A & M University, College Station
| | | | | | | |
Collapse
|
19
|
Jolly RD, Palmer DN, Studdert VP, Sutton RH, Kelly WR, Koppang N, Dahme G, Hartley WJ, Patterson JS, Riis RC. Canine ceroid-lipofuscinoses: A review and classification. J Small Anim Pract 1994. [DOI: 10.1111/j.1748-5827.1994.tb03290.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|